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Abstract: Very recently, Cao et al. presented the MAPLE approach, which accelerates
queries with multiple instances of the same relation by sharing their scan operator.
The principal idea is to derive, in a first phase, a non-shared tree-shaped plan via a
traditional plan generator. In a second phase, common instances of a scan are detected
and shared by turning the operator tree into an operator DAG (directed acyclic graph).

The limits of their approach are obvious. (1) Sharing more than scans is often pos-
sible and can lead to considerable performance benefits. (2) As sharing influences plan
costs, a separation of the optimization into two phases comprises the danger of missing
the optimal plan, since the first optimization phase does not know about sharing.

We remedy both points by introducing a general framework for reasoning about
sharing: plans can be shared whenever they are share equivalent and not only if they
are scans of the same relation. Second, we sketch how this framework can be inte-
grated into a plan generator, which then constructs optimal DAG-structured plans.

1 Introduction

Standard query evaluation relies on tree-structured algebraic expressions which are gen-
erated by the plan generator and then evaluated by the query execution engine [Lor74].
Conceptually, the algebra consists of operators working on sets or bags. On the imple-
mentation side, they take one or more tuple (object) streams as input and produce a single
output stream. The tree-structure thereby guarantees that every operator — except for the
root — has exactly one consumer of its output. This flexible concept allows a nearly arbi-
trary combination of operators and highly efficient implementations.

However, this model has several limitations. Consider, e.g., the following SQL query:

select ckey

from customer, order
where ckey=ocustomer
group by ckey

having sum(price) = (select max(total)
from (select ckey, sum(price) as total
from customer, order

where ckey=ocustomer
group by ckey))
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Figure 1: Example plans

This query leads to a plan like the one at the left of Fig. 1. We observe that (1) both
relations are accessed twice, (2) the join and (3) the grouping are calculated twice. To
(partially) remedy this situation, Cao et al. proposed to share scans of the same relation
[CDCTOS]. The plan resulting from their approach is shown in the middle of Fig. 1. Still,
not all sharing possibilities are exploited. Obviously, only the plan at the right exploits
sharing to its full potential.

Another disadvantage of the approach by Cao et al. is that optimization is separated into
two phases. In a first phase, a traditional plan generator is used to generate tree-structured
plans like the one on the left of Fig. 1. In a second step, this plan is transformed into
the one at the middle of Fig. 1. This approach is very nice in the sense that it does not
necessitate any modification to existing plan generators: just an additional phase needs to
be implemented. However, as always when more than a single optimization phase is used,
there is the danger of coming up with a suboptimal plan. In our case, this is due to the
fact that adding sharing substantially alters the costs of a plan. As the plan generator is
not aware of this cost change, it can come up with (from its perspective) best plan, which
exhibits (after sharing) higher costs than the optimal plan.

In this paper, we remedy both disadvantages of the approach by Cao et al. First, we present
a general framework that allows us to reason about share equivalences. This will allow us
to exploit as much sharing as possible, if this leads to the best plan. Second, we sketch a
plan generator that needs a single optimization phase to generate plans with sharing. Using
a single optimization phase avoids the generation of suboptimal plans. The downside is
that the plan generator has to be adopted to include our framework for reasoning about
share equivalence. However, we are strongly convinced that this effort is worth it.

The rest of the paper is organized a follows. Section 2 discusses related work. Section 3
precisely defines the problem. Section 4 describes the theoretical foundation for reasoning
about share equivalence. Section 5 sketches the plan generator. The detailed pseudocode
and its discussion is given in [NMO08]. Section 6 contains the evaluation. Section 7 con-
cludes the paper.

2 Related Work

Let us start the discussion on related work with a general categorization. Papers discussing
the generation of DAG-structured query execution plans fall into two broad categories. In
the first category, a single optimal tree-structured plan is generated, which is then turned
into a DAG by exploiting sharing. This approach is in danger of missing the optimal plan
since the tree-structured plan is generated with costs which neglect sharing opportunities.



We call this post plan generation share detection (PPGSD). This approach is the most
prevailing one in multi-query optimization, e.g. [Sel88]. In the second category, common
subexpressions are detected in a first phase before the actual plan generation takes place.
The shared subplans are generated independently and then replaced by an artificial single
operator. This modified plan is then given to the plan generator. If several sharing al-
ternatives exist, several calls to the plan generator will be made. Although this is a very
expensive endeavor due to the (in the worst case exponentially many) calls to the plan
generator. Since the partial plans below and above the materialization (temp) operator are
generated separately, there is a slight chance that the optimal plan is missed. We term this
loose coupling between the share detection component and the plan generator. In stark
contrast, we present a tightly integrated approach that allows to detect sharing opportuni-
ties incrementally during plan generation.

A Starburst paper mentions that DAG-structured query graphs would be nice, but too com-
plex [HFLP89]. A later paper about the DB2 query optimizer [GLSW93] explains that
DAG-structured query plans are created when considering views, but this solution materi-
alizes results in a temporary relation. Besides, DB2 optimizes the parts above and below
the temp operator independently, which can lead to suboptimal plans. Similar techniques
are mentioned in [Cha98, GLJO01].

The Volcano query optimizer [Gra90] can generate DAGs by partitioning data and execut-
ing an operator in parallel on the different data sets, merging the result afterwards. Similar
techniques are described in [Gra93], where algorithms like select, sort, and join are exe-
cuted in parallel. However, these are very limited forms of DAGs, as they always use data
partitioning (i.e., in fact, one tuple is always read by one operator) and sharing is only done
within one logical operator.

Another approach using loose coupling is described in [Roy98]. A later publication by the
same author [RSSBO00] applies loose coupling to multi-query optimization. Another in-
teresting approach is [DSRSO1]. It also considers cost-based DAG construction for multi-
query optimization. However, its focus is quite different. It concentrates on scheduling
problems and uses greedy heuristics instead of constructing the optimal plan. Another
loose coupling approach is described in [ZLFLO7]. They run the optimizer repeatedly and
use view matching mechanisms to construct DAGs by using solutions from the previous
runs. Finally, there exist a number of papers that consider special cases of DAGs, e.g.
[DSRSO1, BBDT04]. While they propose using DAGs, they either produce heuristical
solutions or do not support DAGs in the generality of the approach presented here.

3 Problem Definition

Before going into detail, we provide a brief formal overview of the optimization problem
we are going to solve in this paper. This section is intended as an illustration to understand
the problem and the algorithm. Therefore, we ignore some details like the problem of op-
erator selection here (i.e. the set of operators does not change during query optimization).

We first consider the classical tree optimization problem and then extend it to DAG opti-
mization. Then, we distinguish this from similar DAG-related problems in the literature.
Finally, we discuss further DAG-related problems that are not covered in this paper.



3.1 Optimizing Trees

It is the query optimizer’s task to find the cheapest query execution plan that is equivalent
to the given query. Usually this is done by algebraic optimization, which means the query
optimizer tries to find the cheapest algebraic expression (e.g. in relational algebra) that is
equivalent to the original query. For simplicity we ignore the distinction between physical
and logical algebra in this section. Further, we assume that the query is already given as
an algebric expression. As a consequence, we can safely assume that the query optimizer
transforms one algebraic expression into another.

Nearly all optimizers use a tree-structured algebra, i.e. the algebraic expression can be
written as a tree of operators. The operators themselves form the nodes of the tree, the
edges represent the dataflow between the operators. In order to make the distinction be-
tween trees and DAGs apparent, we give their definitions. A free is a directed, cycle-free
graph G = (V, E),|E| = |V| — 1 with a distinguished root node vy € V such that all
v € V' \ {vo} are reachable from vy.

Now, given a query as a tree G = (V, E) and a cost function ¢, the query optimizer tries to
find anew tree G’ = (V, E’) such that G = G’ (concerning the produced output) and ¢(G”)
is minimal (to distinguish the tree case from the DAG case we will call this equivalence
=r). This can be done in different ways, either transformatively by transforming G into
G’ using known equivalences [Gra94, GM93, Gra95], or constructively by building G’
incrementally [Loh88, SACT79]. The optimal solution is usually found by using dynamic
programming or memoization. If the search space is too large then heuristics are used to
find good solutions.

An interesting special case is the join ordering problem where V' consists only of joins
and relations. Here, the following statement holds: any tree G’ that satisfies the syntax
constraints (binary tree, relations are leafs) is equivalent to G. This makes constructive
optimization quite simple. However, this statement does no longer hold for DAGs (see
Sec. 4).

3.2 Optimizing DAGs

DAGs are directed acyclic graphs, similar to trees with overlapping (shared) subtrees.
Again, the operators form the nodes, and the edges represent the dataflow. In contrast to
trees, multiple operators can depend on the same input operator. We are only interested in
DAGs that can be used as execution plans, which leads to the following definition. A DAG
is a directed, cycle-free graph G = (V, E) with a denoted root node vy € V' such that all
v € V \ {vg} are reachable from vy. Note that this is the definition of trees without the
condition |E| = |V| — 1. Hence, all trees are DAGs.

As stated above, nearly all optimizers use a tree algebra, with expressions that are equiva-
lent to an operator tree. DAGs are no longer equivalent to such expressions. Therefore, the
semantics of a DAG has to be defined. To make full use of DAGs, a DAG algebra would
be required (and some techniques require such a semantics, e.g. [SPMK95]). However,
the normal tree algebra can be lifted to DAGs quite easily: a DAG can be transformed
into an equivalent tree by copying all vertices with multiple parents once for each parent.
Of course this transformation is not really executed: it only defines the semantics. This
trick allows us to lift tree operators to DAG operators, but it does not allow the lifting of
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tree-based equivalences (see Sec. 4).

We define the problem of optimizing DAGs as follows. Given the query as a DAG G =
(V,E) and a cost function ¢, the query optimizer has to find any DAG G' = (V' C
V, E') such that G = G’ and ¢(G”) is minimal. Thereby, we defined two DAG-structured
expressions to be equivalent (=p) if and only if they produce the same output. Note that
there are two differences between tree optimization and DAG optimization: First, the result
is a DAG (obviously), and second, the result DAG possibly contains fewer operators than
the input DAG.

Both differences are important and both are a significant step from trees! The significance
of the latter is obvious as it means that the optimizer can choose to eliminate operators by
reusing other operators. This requires a kind of reasoning that current query optimizers are
not prepared for. Note that this decision is made during optimization time and not before-
hand, as several possibilities for operator reuse might exist. Thus, a cost-based decision is
required. But also the DAG construction itself is more than just reusing operators: a real
DAG algebra (e.g. [SPMKO95]) is vastly more expressive and cannot e.g. be simulated by
deciding operator reuse beforehand and optimizing trees.

The algorithm described in this work solves the DAG construction problem in its full
generality.

By this we mean that (1) it takes an arbitrary query DAG as input (2) constructs the optimal
equivalent DAG, and (3) thereby applies equivalences, i.e. a rule-based description of the
algebra. This discriminates it from the problems described below, which consider different
kinds of DAG generation.

3.3 Problems Not Treated in Depth

In this work, we concentrate on the algebraic optimization of DAG-structured query graphs.
However, using DAGs instead of trees produces some new problems in addition to the op-
timization itself.

One problem area is the execution of DAG-structured query plans. While a tree-structured
plan can be executed directly using the iterator model, this is no longer possible for DAGs.
One possibility is to materialize the intermediate results used by multiple operators, but
this induces additional costs that reduce the benefit of DAGs. Ideally, the reuse of interme-
diate results should not cause any additional costs, and, in fact, this can be achieved in most
cases. As the execution problem is common for all techniques that create DAGs as well
as for multi-query optimization, many techniques have been proposed. A nice overview
of different techniques can be found in [HSAOS]. In addition to this generic approach,
there are many special cases like e.g. application in parallel systems [Gra90] and sharing
of scans only [CDCTO08]. The more general usage of DAGs is considered in [Roy98] and
[NeuOS5], which describe runtime systems for DAGs.

Another problem not discussed in detail is the cost model. This is related to the execution
method, as the execution model determines the execution costs. Therefore, no general
statement is possible. However, DAGs only make sense if the costs for sharing are low
(ideally zero). This means that the input costs of an operator can no longer be determined
by adding the costs of its input, as the input may overlap. This problem has not been
studied as thoroughly as the execution itself. It is covered in [Neu05].
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Figure 2: Invalid transformation for DAGs

4 Algebraic Optimization

In this section, we present a theoretical framework for DAG optimization. We first high-
light three different aspects that differentiate DAG optimization from tree optimization.
Then, we use these observations to formalize the reasoning over DAGs.

4.1 Using Tree Equivalences

Algebraic equivalences are fundamental to any plan generator: It uses them either directly
by transforming algebraic expressions into equivalent ones, or indirectly by constructing
expressions that are equivalent to the query. For tree-structured query graphs, many equiv-
alences have been proposed (see e.g. [GMUW99, Mai83]). But when reusing them for
DAGs, one has to be careful.

When only considering the join ordering problem, the joins are freely reorderable. This
means that a join can be placed anywhere where its syntax constraints are satisfied (i.e.
the join predicate can be evaluated). However, this is not true when partial results are
shared. Let us demonstrate this by the example presented in Fig. 2. The query computes
the same logical expression twice. In a) the join AXB is evaluated twice and can be
shared as shown in b). But the join with C' may not be executed before the split, as
shown in c), which may happen when using a constructive approach to plan generation
(e.g. dynamic programming or memoization) that aggressively tries to share relations and
only considers syntax constraints. That is, a join can be build into a partial plan as soon
as its join predicate is evaluable which in turn only requires that the referenced tables are
present. This is the only check performed by a dynamic programming approach to join
ordering. Intuitively, it is obvious that c) is not a valid alternative, as it means that XC' is
executed on both branches. But in other situations, a similar transformation is valid, e.g.
selections can often be applied multiple times without changing the result. As the plan
generator must not rely on intuition, we now describe a formal method to reason about
DAG transformations. Note that the problem mentioned above does not occur in current
query optimization systems, as they treat multiple occurrences of the same relation in a
query as distinct relations. But for DAG generation, the query optimizer wants to treat
them as identical relations and thus potentially avoid redundant scans.

The reason why the transformation in Fig. 2 is invalid becomes clear if we look at the
variable bindings. Let us denote by A : a the successive binding of variable a to members
of a set A. In the relational context, a would be bound to all tuples found in relation
A. As shown in Fig. 3 a), the original expression consists of two different joins AXB
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Figure 3: More verbose representation of Fig. 2

with different bindings. The join can be shared in b) by properly applying the renaming
operator (p) to the output. While a similar rename can be used after the join XC in c),
this still means that the topmost join joins C' twice, which is different from the original
expression.

This brings us to a rather surprising method to use normal algebra semantics:
A binary operator must not construct a (logical) DAG.

Here, logical means that the same algebra expression is executed on both sides of its input.
Further:

What we do allow are physical DAGs, which means that we allow sharing
operators to compute multiple logical expressions simultaneously.

As a consequence, we only share operators after proper renames: if an operator has more
than one consumer, all but one of these must be rename operators. Thus, we use p to
pretend that the execution plan is a tree (which it is, logically) instead of the actual DAG.

4.2 Share Equivalence

Before going into more detail, we define whether two algebra expressions are share equiv-
alent. This notion will express that one expression can be computed by using the other
expression and renaming the result. Thus, given two algebra expressions A and B, we
define

A=sBiff3;, 4 (A)=p B.

(A)—A(B), 545 bijective Poas
where we denote by A(A) all the attributes provided in the result of A.

As this condition is difficult to test in general, we use a constructively defined sufficient
condition of share equivalence instead. First, two scans of the same relation are share
equivalent, since they produce exactly the same output (with different variable bindings):

scany (R) =g scans(R)

Note that in a constructive bottom-up approach, the mapping function §4 p is unique.
Therefore, we always know how attributes are mapped.
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Figure 4: Definition of share equivalence for common operators

Other operators are share equivalent if their input is share equivalent and their predicates
are equivalent after applying the mapping function. The conditions for share equivalence
for common operators are summarized in Fig. 4. They are much easier to check, especially
when constructing plans bottom-up (as this follows the definition).

Note that share equivalence as calculated by the tests above is orthogonal to normal expres-
sion equivalence. For example, 01 (02(R)) and o3(01 (R)) are equivalent but not derivable
as share equivalent by testing the sufficient conditions. This will not pose any problems
to the plan generator, as it will consider both orderings. On the other hand, scan;(R) and
scang(R) are share equivalent, but not equivalent, as they may produce different attribute
bindings.

Share equivalence is only used to detect if exactly the same operations occur twice in a
plan and, therefore, cause costs only once. Logical equivalence of expressions is handled
by the plan generator anyway, it is not DAG-specific.

Using this notion, the problem in Fig. 2 becomes clear: In part b), the expression AXDB is
shared, which is ok, as (AXB) =g (AXB). But in part c¢), the top-most join tries to also
share the join with C, which is not ok, as (AXB) #g ((AXB)XC'). Note that while this
might look obvious, it is not when e.g. constructing plans bottom up and assuming freely
reorderable joins, as discussed in Section 3.1.

4.3 Optimizing DAGs

The easiest way to reuse existing equivalences is to hide the DAG structure completely:
During query optimization, the query graph is represented as a tree, and only when deter-
mining the costs of a tree the share equivalent parts are determined and the costs adjusted
accordingly. Only after the query optimization phase the query is converted into a DAG by
merging share equivalent parts. While this reduces the changes required for DAG support
to a minimum, it makes the cost function very expensive. Besides, if the query graph is
already DAG-structured (e.g. for bypass plans), the corresponding tree-structured repre-
sentation is much larger (e.g. exponentially for bypass plans), enlarging the search space
accordingly.

A more general optimization can be done by sharing operators via rename operators.
While somewhat difficult to do in a transformation-based plan generator, for a constructive
plan generator it is easy to choose a share equivalent alternative and add a rename operator

14



X X
X X X X

— — ~
[ ]
/N s\ s\
A B C B C D A B C D
locally optimal globally optimal

Figure 5: Possible non-optimal substructure for DAGs

as needed. Logically, the resulting plans behave as if the version without renaming was
executed (i.e. as if the plan was a tree instead of a DAG). Therefore, the regular algebraic
equivalences can be used for optimization. This issue will come up again when we discuss
the plan generator.

4.4 (No) Optimal Substructure

Optimization techniques like dynamic programming and memoization rely on an optimal
substructure of a problem (neglecting physical properties like sortedness or groupedness
for a moment). This means that Bellmann’s optimality principle holds and, thus, the opti-
mal solution can be found by combining optimal solutions for subproblems. This is true for
generating optimal tree-structured query graphs, but is not necessarily true for generating
optimal DAGs. To see this, consider Fig. 5, which shows two plans for A} BXCXBXCXD.
The plan on the left-hand side was constructed bottom-up, relying on the optimal substruc-
ture. Thus, ANMBXC was optimized, resulting in the optimal join ordering (AXB)XC'.
Besides, the optimal solution for BXCXD was constructed, resulting in B}(CxD). But
when these two optimal partial solutions are combined, no partial join result can be reused.
When choosing the suboptimal partial solutions AX(BX(C') and (BXC')XD, the expression
BXC can be shared, which might result in a better plan. Therefore, the optimal DAG can-
not be constructed by just combining optimal partial solutions. Our approach avoids this
problem by keeping track of sharing opportunities and considering them while pruning
otherwise dominated plans.

4.5 Reasoning over DAGs

After looking at various aspects of DAG generation, we now give a formal model to reason
about DAGs. More precisely, we specify when two DAGs are equivalent and when one
DAG dominates another. Both operations are crucial for algebraic optimization.

As we want to lift tree equivalences to DAGs, we need some preliminaries: We name the
equivalences for trees =7 and assume that the following conditions hold for all operators
0, that is the equivalence can be checked on a per operator basis.

t=rt = 0(t)=r6(t)
th=rth Nty =p th = (t10ts) =1 (1,0t5)

These conditions are a fundamental requirement of constructive plan generation, but as
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seen in Sec. 4.1, they do no longer hold for DAGs in general. However, they hold for
DAGs (V, E) that logically are a tree (LT, i.e. that have non-overlapping input for all
operators. For an expression e let A(e) denote the set of attributes produced by e. We then
define LT ((V, E)) for a DAG (V, E) as follows:

LT(V,E)) iff Yo,v1,v2 €V, (v,01) € E,(v,v2) € E:
A(v1) N A(ve) =0

Note that this definition implies that all sharing of intermediate results must be done by
renaming attributes.

Using this definition, we can now lift tree equivalences =1 to DAG equivalences =p for
DAGs d and d’: We reuse the tree equivalences directly, but thereby must make sure that
the input indeed behaves like a tree, as the equivalences were originally only defined on
trees:

d=rd NLT(d)ANLT(d) = d=pd

Note that the condition LT(d) = LT(d" C d) holds, therefore partial DAGs that vio-
late the logical tree constraint should be discarded immediately. As a consequence, tests
for LT (d) are required only when adding binary (or n-ary) operators, as unary operators
cannot produce a new violation.

While lifting the tree equivalences to DAGs is important, they are not enough for DAG
optimization, as they only create trees. DAGs can be created by using the notion of share
equivalence defined above: If two DAGs d and d’ are share equivalent, the two DAGs
become equivalent by renaming the result suitably:

d=sd = d=p paa)—awd

While these two implications are not exhaustive, lifting the tree equivalences to DAG
equivalences and reusing intermediate results already allows for a wide range of DAG
plans. Additional equivalences can be derived e.g. from [MFPR90, SPMKO95].

In addition to checking if two plans are equivalent, the query optimizer has to decide
which of two equivalent plans is better. Better usually means cheaper, according to a cost
function. But sometimes two plans are incomparable, e.g. because one plan satisfies other
ordering properties than the other. This is true for both, trees and DAGs. Here, we only
look at the costs and DAG-specific limitations to keep the definitions short.

As shown in Sec. 4.4, DAGs cannot be compared by just looking at the costs, as one DAG
might allow for more sharing of intermediate results than the other. To identify these plans,
we require a labeling function that marks sharing opportunities. Here, we specify only the
characteristics, see Section 5.3 for an explicit definition.

The DAGs are labeled using a function S. Its codomain is required to be partially ordered.
We require that .S assigns the same label to share equivalent DAGs. Further the partial
ordering between labels must express the fact that one DAG provides more sharing oppor-
tunities than another. Thus, for two DAGs d; = (V1, E1) and dy = (Va, Es) we require
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the following formal properties for S:

S(dl) = S(dg) iff d1 =9 d2
S(dl) < S(dg) iff E'd/Q Cpdsy:dy =g d/2

Note that that d; = (V3, E3) Cp da iff Vi C Vo A Ej = Egyy A dz is a DAG).

Now a plan dominates another equivalent plan if it is cheaper and offers at least the same
sharing opportunities:

dy =p da A costs(dy) < costs(dz) A S(d2) < S(dy)
= dy dominates ds.

Note that the characterization of .S given above is overly conservative: one plan might offer
more sharing opportunities than another, but these could be irrelevant for the current query.
This is similar to order optimization, where the query optimizer only considers differences
in interesting orderings [SACT79, SSM96]. The algorithm presented in Section 5.3 im-
proves the labeling by checking which of the operators could produce interesting shared
intermediate results for the given query. As only whole subgraphs can be shared, the la-
beling function stops assigning new labels if any operator in the partial DAG cannot be
reused. This greatly improves plan pruning, as more plans become comparable.

5 Plan Generator Skeleton
5.1 Overview

The main motivation for generating DAG structured execution plans is the ability to share
intermediate results. Obviously, the fewer sharing opportunities are missed, the better.
Hence, it is important to allow for a very aggressive sharing during plan generation.

In order to share intermediate results, the plan generator has to detect that partial plans
produce the same (or rather equivalent) output. This is a problem for a rule-based plan
generator, as the set of operators cannot be hard-coded and tests for equivalence are ex-
pensive. We overcome this problem by using a very abstract description of logical plan
properties. Instead of using a complex property vector like, e.g., [Loh88], the plan gen-
erator uses a set of logical properties. The semantics of these logical properties is only
known to the rules. They guarantee that two plans are equivalent if they have the same
logical properties. A suitable representation is e.g. a bit vector with one bit for each prop-
erty.

We assume that the logical properties are set properly by the optimization rules. This is
all the plan generator has to know about the logical properties! However, to make things
more concrete for the reader, we discuss some possible logical properties here. The most
important ones are “relation / attribute available” and “operator applied”. In fact, these
properties are already sufficient when optimizing only selections and joins as both are
freely reorderable. We discuss more complex properties in Section 5.2.

As the logical properties describe equivalent plans, they can be used to partition the search
space. This allows for a very generic formulation of a plan generator:
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PLANGEN(goal)

1 bestPlan « NIL

2 for each optimization rule r

3 doif r can produce a logical property in goal

4 then rem < goal \ {p|p is produced by r}
5 part < PLANGEN(rem)

6 p < BUILDPLAN(r, part)

7 if best Plan = NIL or p is cheaper

8 then bestPlan <« p

9 return bestPlan

This algorithm performs a top-down exploration of the search space. Starting with the
complete problem (i.e. finding a plan that satisfies the query), it asks the optimization
rules for partial solutions and solves the remaining (sub-) problem(s) recursively. For
SPJ queries, this implies splitting the big join into smaller join problems (and selections)
and solving them recursively. This algorithm is highly simplified, it only supports unary
operators, does not perform memoization etc. Adding support for binary operators is easy
but lengthy to describe, see [NMOS] for a detailed discussion. Other missing and essential
details will be discussed in Section 5.4. Let us summarize the main points of the above
approach:

1. The search space is represented by abstract logical properties,

2. the plan generator recursively solves subproblems, which are fully specified by prop-
erty combinations, and

3. property combinations are split into smaller problems by the optimization rules.

This approach has several advantages. First, it is very extensible, as the plan generator
only reasons about abstract logical properties: the actual semantics is hidden in the rules.
Second, it constructs DAGs naturally: if the same subproblem (i.e. the same logical prop-
erty combination) occurs twice in a plan, the plan generator produces only one plan and
thus creates a DAG. In reality, this is somewhat more complex, as queries usually do not
contain exactly the same subproblem twice (with the same variable bindings etc.), but as
we will see in Section 5.4, the notion of share equivalence can be used to identify sharable
subplans.

5.2 Search Space Organization

An unusual feature of our plan generator is that it operates on an abstract search space,
as the semantics of the logical properties are only known to concrete optimization rules.
To give an intuition why this is a plausible concept, we now discuss constructing suitable
properties for commonly used queries.

The most essential part of choosing properties is to express the query semantics properly.
In particular, two plans must only have the same logical properties when they are equiv-
alent. For the most common and (simplest) type of queries, the selection-projection-join
(SPJ) queries using inner joins, it is sufficient to keep track of the available relations (and
attributes) and the applied operators. For this kind of queries, two plans are equivalent
if they operate on the same set of relations and they have applied the same operators.
Therefore using the available attributes/relations and the applied operators as properties is
sufficient for this kind of queries. Note that the properties are not only used by the plan
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generator but also by the optimization rules, e.g. to check if all attributes required by a
selection are available.

For more general queries involving e.g. outer joins, the same properties are sufficient, but
the operator dependencies are more complex: Using the extended eligibility list concept
from [RLL101], each operator specifies which other operators have to be applied before
it becomes applicable. These operator dependencies allow for handling complex queries
with relatively simple properties, and can be extended to express dependent subqueries
etc. Note that we do not insist on a ’dense” encoding of the search space that only allows
for valid plans (which is desirable, but difficult to achieve in the presence of complex
operator). Instead, we allow for a slightly sparse encoding and then guarantee that we
only explore the valid search space.

Note that these properties are just examples, which are suitable for complex queries but not
mandatory otherwise. The plan generator makes only two assumptions about the logical
properties: Two plans with the same properties are equivalent and properties can be split
to form subproblems. Further, not all information about plans have to be encoded into the
logical properties. In our implementation, ordering/grouping properties are handled sepa-
rately, as the number of orderings/groupings can be very large. We use the data structure
described in [NMO04] to represent them. This implies that multiple plans with the same
logical properties might be relevant during the search, as they could differ in some addi-
tional aspects. We will see another example for additional properties in the next section.

5.3 Sharing Properties

Apart from the logical properties used to span the search space, each plan contains a shar-
ing bit set to indicate potentially shared operators. It can be considered as the materializa-
tion of the labeling function S used in Section 4.5: The partial ordering on S is defined by
the subset relation, that is, one plan can only dominate another plan if it offers at least the
same sharing opportunities. We now give a constructive approach for computing S

When considering a set of share equivalent plans, it is sufficient to keep one representative,
as the other plans can be constructed by using the representative and adding a rename
(note that all share equivalent plans have the same costs). Analogously, the plan generator
determines all operators that are share equivalent (more precisely: could produce share
equivalent plans if their subproblems had share equivalent solutions) and places them in
equivalence classes. As a consequence, two plans can only be share equivalent if their
top-most operators are in the same equivalence class, which makes it easier to detect share
equivalence. The equivalence classes that contain only a single operator are discarded, as
they do not affect plan sharing. For the remaining equivalence classes, one representative
is selected and one bit in the sharing bit set is assigned to it.

For example, the query in Fig. 5 consists of 11 operators: A, By, Cy, Bs, Cy, D, X1 (A
and B;), Xy (between By and C1), M3 (between By and C5), My (between Cy and D) and
M5 (between A and D). Then three equivalence classes with more than one element can
be constructed: By =g B, C7 =g (5 and Xy =g M3. We assume that the operator
with the smallest subscript was chosen as representative for each equivalence class. Then
the plan generator would set the sharing bit By for the plan By, but not for the plan Bs.
The plan A, (B1X2C1) would set sharing bits for By, C; and X, as the subplan can be
shared, while the plan (A, B;)MoCy would only set the bits By and C, as the join Xy
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cannot be shared here (only whole subgraphs can be shared). The sharing bit set allows
the plan generator to detect that the first plan is not dominated by the second, as the first
plan allows for more sharing. This solves the problem discussed in Section 4.4.

The equivalence classes are also used for another purpose: When an optimization rule
requests a plan with the logical properties produced by an operator, the plan generator first
checks if a share equivalent equivalence class representative exists. For example, if a rule
requests a plan with By, Cs and X3, the plan generator first tries to build a plan with B,
(' and X9, as these are the representatives. If this rewrite is possible (i.e. a plan could be
constructed), the plan constructed this way is also considered a possible solution.

In general, the plan generator uses sharing bits to explicitly mark sharing opportunities:
whenever a partial plan is built using an equivalence class representative, the correspond-
ing bit is set. In more colloquial words: the plan offers to share this operator. Note that it
is sufficient to identify the selected representative, as all other operators in the equivalence
class can be built by just using the representative and renaming the output. As sharing
is only possible for whole subplans, the bit must only be set if the input is also sharable.
Given, for example, three selections o1, 09 and o3, with o1(R) =g o2(R). The two oper-
ator rules for o1 and o5 are in the same equivalence class, we assume that o1 was selected
as representative. Now the plan o (R) is marked as shares o7, as it can be used instead
of 03(R). The same is done for o3(01 (R)), as it can be used instead of o3 (o2 (R)). But for
the plan oy (03(R)) the sharing attribute is empty, as o cannot be shared (since o3 cannot
be shared). The plans containing oo do not set the sharing property, as o1 was selected as
representative and, therefore, o is never shared.

Note that the sharing bits are only set when the whole plan can be shared, but the already
existing sharing bits are still propagated even if it is no longer possible to share the whole
plan. Otherwise a slightly more expensive plan might be pruned early even though parts
of it could be reused for other parts of the query.

Explicitly marking the sharing opportunities serves two purposes. First, it is required to
guarantee that the plan generator generates the optimal plan, as one plan only dominates
another if it is cheaper and offers at least the same sharing opportunities. Second, sharing
information is required by the cost model, as it has to identify the places where a DAG
is formed (i.e. the input overlaps). This can now be done by checking for overlapping
sharing properties. It is not sufficient to check if the normal logical properties overlap,
as the plans pretend to perform different operations (which they do, logically), but share
physical operators.

5.4 Search Space Exploration under Sharing

After describing the general approach for plan generation, we now present the specific
steps required to handle shared plans. Unfortunately, the plan generator is not a single,
concise algorithm but a set of algorithms that are slightly interwoven with the optimization
rules. This is unavoidable, as the plan generator has to be as generic as possible and,
therefore, does not understand the semantics of the operators. However, there is still a clear
functional separation between the different modules: The plan generator itself maintains
the partial plans, manages the memoization and organizes the search. The optimization
rules describe the semantics of the operators and guide the search with their requirements.
For the specific query, several optimization rules are instantiated, i.e. annotated with the
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query specific information like selectivities, operator dependencies etc. Typically each
operator in the original query will cause a rule instantiation. Note that we only present
a simplified plan generator here to illustrate the approach, in particular the search space
navigation. The detailed algorithms are discussed in [NMOS].

Within the search space, the plan generator tries to find the cheapest plan satisfying all
logical properties required for the final solution. Note that in the following discussion,
we ignore performance optimization to make the conceptual structure clearer. In practice,
the plan generator prunes plans against known partial solutions, uses heuristics like KBZ
[KBZ86] to get upper bounds for costs etc. However, as these are standard techniques, we
do not elaborate on them here.

The core of the plan generator itself is surprisingly small and only consists of a single func-
tion that finds the cheapest plans with a given set of logical properties. Conceptually this is
similar to the top-down optimization strategy known from Volcano [Gra95, GM93]. The
search phase is started by requesting the cheapest plan that provides the goal properties.
PLANGEN(goal)
plans «— memoizationT able[goal]
if plans already computed
then return plans
plans < create a new, empty PlanSet
shared < goal rewritten using representatives
if shared N goal = ()
then plans < PLANGEN(shared)
for each r in instantiated rules
do filter « r.produces U r.required
10 if filter C goal
11 then sub — PLANGEN(goal \ r.produced)
12 plans «— plans U {r(p)|p € sub}
13 memoizationTable[goal] — plans
14 return plans

O 0NN N B~ Wi =

What is happening here is that the plan generator is asked to produce plans with a given
set of logical properties. First, it checks the memoization data structure (e.g. a hash table,
logical properties—plan set) to see if this was already done before. If not, it creates a new
set (initially empty) and stores it in the memoization structure. Then, it checks if the goal
can be rewritten to use only representatives from equivalence classes as described in Sec-
tion 5.3 (if the operators o, and o5 are in the same equivalence class, the logical properties
produced by oy can be replaced by those produced by o7). If the rewrite is complete, i.e.,
the new goal is disjunct from the original goal (shared N goal = (), the current problem
can be formulated as a new one using only share equivalent operators. This is an applica-
tion of the DAG equivalence given in Section 4.5. Thus, the plan generator tries to solve
the new problem and adds the results to the set of usable plans. Afterwards, it looks at all
rule instances, checks if the corresponding filter is a subset of the current goal (i.e. the rule
is relevant) and generates new plans using this rule. Note that the lines 8-12 are very sim-
plified and assume unary operators. In practice, the optimizer delegates the search space
navigation (here a simple goal \ r.produced) to the rules.
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6 Evaluation

In the previous sections, we discussed several aspects of optimizing DAG-structured query
graphs. However, we still have to show three claims: 1) creating DAG-structured query
plans is actually beneficial for common queries, 2) sharing base scans as proposed by Cao
et al. [CDCTOS] is inferior to full DAG support, and 3) the overhead of generating DAG-
structured plans is negligible. Therefore, we present several queries for which we create
tree-structured and DAG-structured query plans. Both the compile time and the runtime
of the resulting plans are compared to see if the overhead for DAGs is worthwhile. For
the DAG plans, we created the full DAGs in a single phase optimizer using our DAG
reasoning, and the scan sharing plans by a two phase optimizer based upon the tree plans
as proposed in [CDCTO08]. All experiments were executed on a 2.2 GHz Athlon64 system
running Windows XP. The plans were executed using a runtime system that could execute
DAGs natively [NeuO5].

Each operator (join, group-by etc.) is given 1MB buffer space. This is somewhat unfair
against the DAG-structured query plans, as they need fewer operators and could therefore
allocate larger buffers. But dynamic buffer sizes would affect the cost model, and the space
allocation should probably be a plan generator decision. As this is beyond the scope of
this work, we just use a static buffer size here.

As a comparison with the state of the art in commercial database systems, we included re-
sults for DB2 9.2.1, which factorizes common subexpressions using materialization of in-
termediate results. As we were unable to measure the optimization time accurately enough,
we only show the total execution time (which includes optimization) for DB2.

6.1 TPC-H

The TPC-H benchmark is a standard benchmark to evaluate relational database systems.
It tests ad-hoc queries which result in relatively simple plans allowing for an illustrative
comparison between tree- and DAG-structured plans. We used a scale factor 1 database
(1GB).

Before looking at some exemplary queries, we would like to mention that queries without
sharing opportunities are unaffected by DAG support: The plan generator produces ex-
actly the same plans with and without DAG support, and their compile times are identical.
Therefore, it is sufficient to look at queries, which potentially benefit from DAGs.

Query 11

Query 11 is a typical query that benefits from DAG-structured query plans. It determines
the most important subset of suppliers’ stock in a given country (Germany in the refer-
ence query). The available stock is determined by joining partsupp, supplier and
nation. As the top fraction is requested, this join is performed twice, once to get the
total sum and once to compare each part with the sum. When constructing a DAG, this
duplicate work can be avoided. The compile time and runtime characteristics are shown
below:
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tree Scan Full DB2
Sharing DAG
compilation [ms] | 10.5  10.5 10.6

execution [ms] 4793 4256 2436 | 3291

While the compile time is slightly higher when considering DAGs (profiling showed this is
due to the checks for share equivalence), the runtime is much smaller. The corresponding
plans are shown in Fig. 6: In the tree version, the relations partsupp, supplier and
nation are joined twice, once to get the total sum and once to get the sum for each part.
In the DAG version, this work can be shared, which nearly halves the execution time. The
scan sharing approach from [CDCTO08] only slightly better than the tree plan as it still has
to join twice. DB2 performs between trees and full DAGs, as it reuses intermediate results
but materializes to support multiple reads.

sort sort
. A I
Lisum Tps _partkeyssum Lisum Lps_partkey;sum e pe-portheyisum
| | |
X X X X X
VRN VAN /N —— VRN
X partsupp X partsupp X partsupp X X partsupp
VAN VAN /N
. ) . \WupﬁfV . .
supplier o supplier o supplier o
[ [ T [
nation nation nation nation
tree scan sharing full DAG

Figure 6: Execution plans for TPC-H Query 11

Query 2

Query 2 selects the supplier with the minimal supply costs within a given region. Struc-
turally, this query is similar to Query 11, as it performs a large join twice, once for the
result and once to get the minimum. However, it is more complex, as the nested minimum
query depends on the outer query. We assume that the rewrite step unnests the query (by
grouping and using a join), but still the nested query lacks a relation used in the outer query,
which prevents sharing the whole join. To allow for greater sharing, the relation (and the
corresponding predicates) can be re-added by a magic set like transformation [MFPR90].
Here, we consider three alternatives: Normal tree construction, DAG construction and
DAG construction with rules for magic set transformation enabled. We omit the sharing
approach from [CDCTO8] here, as it is nearly identical to the second alternative for this
query (one additional (cheap) join). Compile time and runtime are shown below.

tree DAG DAG + DB2
‘ magic set ‘
compilation [ms] | 9.3 9.2 9.7
execution [ms] 11933 7480 3535

8705
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The compile times for tree and DAG are about the same (the DAG is slightly faster, as it can
ignore some dominated alternatives), while the magic set variant is about 5% slower due
to the increased search space. The runtime behavior of the alternatives is very different.
Fig. 7 shows the plans. The tree variant simply calculates the outer query and the nested
query independently and joins the result. The DAG variant tries to reuse some intermediate
results (reducing the runtime by 37%). It still performs most of the joins in both parts, as
the subqueries are not identical. It would be possible to share more by applying the join
with part later, but this does not pay off due to selectivity of the join. When using the
magic set transformation, large parts of the query become equivalent, which results in
much greater sharing and also reduced aggregation effort. The consequence is a runtime
reduction by 70% compared to the tree variant. DB2 performs better than the tree plan
(again due to materializing intermediate results), but worse than both DAG plans.

sort sort sort
| | |

el X X
T T N
X r X I LF
—— T | N |
el X X X X
/N /N /N e — T
supplier X nation o Mpartsupp X X X X
/N | /N e /N /N
o partsupp region supplier X o partsupp X supplier o nation X supplier
| /N | /N | /N
part nation o part o nation region o partsupp
| | |
region region part
tree DAG DAG (magic sets)

Figure 7: Execution plans for TPC-H Query 2

6.2 Conclusion

The experiments have shown that by considering sharing intermediate results, the compile
time is mainly unaffected. It is somewhat affected when additionally magic sets are used
(Query 2). Still, the compile time is negligible and clearly dominated by the runtime.
The runtime effect of DAG support is non-negligible, as sharing can drastically reduce the
runtime of many queries. Further, the real benefit comes from sharing intermediate results.
Simply sharing scans as proposed in [CDCTO08] improves runtimes a bit, but not nearly as
much as full DAG support.

7 Conclusion

We presented the first plan generator which exploits the full potential of shared subplans
by being able to explore the complete search space in a fashion that integrates reasoning
about sharing and plan generation.

As we have seen, generating DAG-structured query evaluation plans is not easy. To solve
the problem, we introduced the novel notion of share equivalence and saw that it is or-
thogonal to the standard notion of equivalence. Rules to reason about share equivalence
made this hard to decide notion manageable for the plan generator.
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In order to be able to build upon well-known algebraic equivalences, we separated regu-
lar equivalence and share equivalence. The former notion is applied only to logical plans
which thus remain tree-structured. Reasoning about sharing is moved exclusively to the
physical level. The central idea here was to annotate sharing possibilities explicitly and let
the plan generator reason about them. To make this more efficient, plans are grouped into
equivalence classes where those plans leading to the same sharing possibilities find them-
selves in the same class. Thereby, the reasoning step was reduced to a simple and efficient
rewrite of the optimization goal. The resulting plan generator is the first one that guaran-
tees two important features: (1) all sharing possibilities are detected and considered, and
(2) the resulting plan is guaranteed to be optimal. Finally, experiments demonstrated that
compared to generating tree-structured plans, the plan generation overhead is negligible,
while the gains during query execution are tremendous.

There is plenty of room for future research. Let us mention just two important areas. The
first is to develop and explore more optimization techniques that inherently require DAG
support. With bypass plans, we have already seen an example of them. The second area
where DAGs play a crucial role is stream processing.
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