
Automated Termination Analysis:
From Term Rewriting to Programming Languages

Jürgen Giesl

LuFG Informatik 2
RWTH Aachen

Ahornstr. 55
52074 Aachen, Germany

giesl@informatik.rwth-aachen.de

Termination is a crucial property of programs. Therefore, techniques to analyze termi-
nation automatically are highly important for program verification. Traditionally, tech-
niques for automated termination analysis were mainly studied for declarative program-
ming paradigms such as logic programming and term rewriting. However, in the last years,
several powerful techniques and tools have been developed which analyze the termination
of programs in many programming languages including Java, C, Haskell, and Prolog.

In order to re-use the wealth of existing tools and techniques developed for termination
analysis of term rewriting (see e.g., [GTSKF06, Zan03]), we developed a transforma-
tional methodology to prove termination of programs in different languages. In a front
end, the program is automatically transformed into a term rewrite system (TRS) such that
termination of the TRS implies termination of the original program. To obtain TRSs which
are suitable for automated termination proofs, the front end proceeds in two steps. In the
first step, the program is executed symbolically to generate a so-called termination graph.
This graph represents all possible evaluations of the program in a finite way. In the second
step, the edges of the graph are transformed to rewrite rules. Finally, existing rewriting
techniques are used in the back end to prove termination of the resulting TRS.

Prolog
Program

""""""

Haskell
Program

Termination
Graph

TRS ## Termination Tool
(AProVE)

Java
Program

!!!!!!

︸ ︷︷ ︸
front end

︸ ︷︷ ︸
back end

21

We developed such approaches to prove termination of Prolog [GSSK+12, SKGS+10],
Haskell [GRSK+11], and Java [BMOG12, BOG11, BOvG10, BSOG12, OBvG10], and
integrated them into our termination tool AProVE [GST06]. As shown at the annual Inter-
national Termination Competition,1 AProVE is currently not only the most powerful tool
for automated termination analysis of TRSs, but also for Prolog, Haskell, and Java. This
shows that the proposed methodology for rewrite-based automated termination analysis
indeed leads to competitive results.

References

[BMOG12] M. Brockschmidt, R. Musiol, C. Otto, and J. Giesl. Automated Termination Proofs
for Java Programs with Cyclic Data. In Proc. CAV ’12, LNCS 7358, pages 105–122,
2012.

[BOG11] M. Brockschmidt, C. Otto, and J. Giesl. Modular Termination Proofs of Recursive
Java Bytecode Programs by Term Rewriting. In Proc. RTA ’11, LIPIcs 10, pages
155–170, 2011.

[BOvG10] M. Brockschmidt, C. Otto, C. von Essen, and J. Giesl. Termination Graphs for Java
Bytecode. In Verification, Induction, Termination Analysis, LNCS 6463, pages 17–37,
2010.

[BSOG12] M. Brockschmidt, T. Ströder, C. Otto, and J. Giesl. Automated Detection of
Non-Termination and NullPointerExceptions for Java Bytecode. In Proc.
FoVeOOS ’11, LNCS 7421, pages 123–141, 2012.

[GRSK+11] J. Giesl, M. Raffelsieper, P. Schneider-Kamp, S. Swiderski, and R. Thiemann. Auto-
mated Termination Proofs for Haskell by Term Rewriting. ACM TOPLAS, 33(2):7:1–
7:39, 2011.

[GSSK+12] J. Giesl, T. Ströder, P. Schneider-Kamp, F. Emmes, and C. Fuhs. Symbolic Evaluation
Graphs and Term Rewriting – A General Methodology for Analyzing Logic Programs.
In Proc. PPDP ’12, pages 1–12. ACM Press, 2012.

[GST06] J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic Termination
Proofs in the Dependency Pair Framework. In Proc. IJCAR ’06, LNAI 4130, pages
281–286, 2006.

[GTSKF06] J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and Improving
Dependency Pairs. Journal of Automated Reasoning, 37(3):155–203, 2006.

[OBvG10] C. Otto, M. Brockschmidt, C. von Essen, and J. Giesl. Automated Termination Anal-
ysis of Java Bytecode by Term Rewriting. In Proc. RTA ’10, LIPIcs 6, pages 259–276,
2010.

[SKGS+10] P. Schneider-Kamp, J. Giesl, T. Ströder, A. Serebrenik, and R. Thiemann. Automated
Termination Analysis for Logic Programs with Cut. Theory and Practice of Logic
Programming, 10(4-6):365–381, 2010.

[Zan03] H. Zantema. Termination. In Terese, editor, Term Rewriting Systems, pages 181–259.
Cambridge University Press, 2003.

1See http://termination-portal.org/wiki/Termination_Competition

22

