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Termination is a crucial property of programs. Therefore, techniques to analyze termi-
nation automatically are highly important for program verification. Traditionally, tech-
niques for automated termination analysis were mainly studied for declarative program-
ming paradigms such as logic programming and term rewriting. However, in the last years,
several powerful techniques and tools have been developed which analyze the termination
of programs in many programming languages including Java, C, Haskell, and Prolog.

In order to re-use the wealth of existing tools and techniques developed for termination
analysis of term rewriting (see e.g., [GTSKF06, Zan03]), we developed a transforma-
tional methodology to prove termination of programs in different languages. In a front
end, the program is automatically transformed into a term rewrite system (TRS) such that
termination of the TRS implies termination of the original program. To obtain TRSs which
are suitable for automated termination proofs, the front end proceeds in two steps. In the
first step, the program is executed symbolically to generate a so-called termination graph.
This graph represents all possible evaluations of the program in a finite way. In the second
step, the edges of the graph are transformed to rewrite rules. Finally, existing rewriting
techniques are used in the back end to prove termination of the resulting TRS.
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We developed such approaches to prove termination of Prolog [GSSK+12, SKGS+10],
Haskell [GRSK+11], and Java [BMOG12, BOG11, BOvG10, BSOG12, OBvG10], and
integrated them into our termination tool AProVE [GST06]. As shown at the annual Inter-
national Termination Competition,1 AProVE is currently not only the most powerful tool
for automated termination analysis of TRSs, but also for Prolog, Haskell, and Java. This
shows that the proposed methodology for rewrite-based automated termination analysis
indeed leads to competitive results.
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