
Ontology-Driven Sub-Query Extraction for Distributed
Autonomous Information Resources in UnIT-Net IEDI

Vadim Ermolayev, Natalya Keberle, Vladimir Shapar, Vladimir Vladimirov

Dept. of IT
Zaporozhye State Univ.

Zhukovskogo 66, 69063, Zaporozhye, Ukraine
{eva, kenga, wws, vvlad}@zsu.zp.ua

Abstract: The paper reports on the development of UnIT-Net1 Infrastructure for
Electronic Data Interchange (IEDI). The main task of IEDI is to provide a uniform
framework for authorized and secure information retrieval from heterogeneous,
distributed, autonomous Information Resources (IRs) among the higher
educational establishments and state bodies in Ukraine. The focus of the paper is
the algorithm for ontology-driven sub-query extraction. The algorithm performs
terminological mapping of an initial query in terms of domain ontology to the set
of the sub-queries to different IRs in terms of respective IR ontologies. Mapping
procedure is based on the raw mappings knowledge taken from mediator mapping
ontology and the so called Late Binding technique for determining concepts.
Finally, sub-queries are refined to become correct RDQL queries with respect to
the specific IR. This algorithm will be used by IEDI mediator to decompose the
user queries. Sub-queries will then be executed by the wrappers of the respective
IRs. Initial proof-of-concept evaluation and the semi-formal proofs of ontology-
driven sub-query extraction algorithm correctness are provided in the discussion
part of the paper.

1 Introduction

To achieve and sustain dynamic improvement, service-oriented organizations like
Universities, need an infrastructure that underpins flexible and robust management of
their activities and decision making support. To a large extent the activities within
Universities as well as their coordination and control at National level involve the
processing of enterprise data and knowledge. As far as the organizations involved in the
educational framework are legally independent, they own and maintain their data and
knowledge sources autonomously – i.e. independently from each other and, to a high
degree, from the coordination body, like a National Ministry. The fact that these
information resources are autonomous implies serious complications for their
integration: they might be provided by different hardware and software using various
notations and protocols; they might be disparately structured or even have different data
models behind them; they are semantically heterogeneous.

1 UnIT-Net: IT in University Management Network. TEMPUS/TACIS MP JEP 23010-2003.

137

The task of the IEDI, which is developed within UnIT-Net project, is to attempt to
overcome some of these complications by providing a uniform framework for authorized
and secure information retrieval from heterogeneous, distributed, autonomous IRs. One
of the central points of IEDI is the homogeneous and coherent representation of the
Domain and IR semantics by means of the family of ontologies. Therefore, the processes
of querying IEDI IRs are ontology-driven and cannot be arranged entirely automatically.
Preparing an IR to become available for querying requires intensive ontology
engineering by human administrators with different roles.

Another aspect to be mentioned with respect to IEDI functional processes is the state of
the system distribution. A query may demand to retrieve data from several physically
distributed IRs which belong to different legal owners and are physically stored in
different places. This is why IEDI processes are composed of a number of tasks and
activities performed at distributed nodes. These tasks should of course be executed in a
controlled and ordered way. A process normally involves both automated activities
performed by the IEDI software and human activities, like ontology harmonization,
supplied with appropriate methodologies and software tools. Human activities are
performed by various user roles: Authorized User (AU), Mediator Ontologies Engineer
(MOE), IR Ontology Engineer (IROE), IR Provider (IRP). Please refer to [Er04] for
more details.

The paper presents the mechanism for ontology-driven sub-query extraction by IEDI
mediator. The reminder of it is structured as follows. Section 2 presents the related work
in the field of distributed information retrieval with special emphasis to the approaches
to query decomposition. Section 3 sketches out the architecture of IEDI and outlines the
principles on which the architecture was designed. Section 4 presents our algorithm for
ontology-driven sub-query extraction. Section 5 and 6 provide the initial proof-of-
concept evaluation example and the discussion of the algorithm. Section 7 gives the
conclusions and the prospects for future work.

2 Related Work

The genre of the IEDI belongs to the distributed Intelligent Information Retrieval (I2R)
domain within the broader area of Intelligent Information Integration (I3). The research
activities within this domain have been intense in the past decade. Examples of R&D
projects developing formal, algorithmic, architectural frameworks, deploying software
prototypes for I2R from distributed, heterogeneous IR-s and Intelligent Information
Integration (I3) are BUSTER [St00], DOME ([CJO01], [CJO02]), InfoSleuth [Ba97],
KRAFT [Gr97], MOMIS [Be98], OBSERVER [Me00], Ontobroker [De99], PICSEL
[LR00], SIMS [AKS96], TSIMMIS [Ga95], and others. A good survey of ontology-
based approaches to I2R and I3 may be found in [Wa01].

Although all these projects use different techniques, approaches, and software paradigms
for the task they identify similar pitfalls for the domain. The first group of possible
pitfalls is the way in which semantic heterogeneity is resolved in the processes of
ontology-based information integration. As outlined in [CJO01], this includes the aspects
of developing ontologies (bottom-up and top-down approaches), mapping between
ontologies, and relationships between ontologies and IRs.

138

Most projects adopt one of the following approaches to using ontologies [Wa01]: single
ontology (SIMS), multiple ontology (OBSERVER), hybrid approach (BUSTER,
DOME). Mapping between ontologies is necessary when a system uses several
ontologies either “horizontally” (as in multiple ontologies approach) or “vertically” (as
in hybrid approach). Mappings between ontologies within the system provide links
between equivalent or related elements of ontologies, thus ensuring ontology re-use.
Mappings between ontologies and IR schemas maintain correspondences between
ontology elements and the elements of data schemas. As stated in [CJO01], mapping
between ontology elements and data schema elements makes for transparent execution
of user queries within the system as a whole.

The second group of possible pitfalls concerns the aspects of supplying autonomy and
dynamic nature of the open system elements. The solutions here advocate one of the
mediator architectures: centralized and decentralized. Centralized mediator architecture
provides for one centre (e.g., TSIMMIS), which stores all the information about
ontologies, IRs, mappings between them, and controls the query formulation and
execution. A decentralized mediator architecture provides a separate agent/wrapper for
each IR, which stores mappings between global/shared ontology(-ies) and the underlying
IR (e.g., RACING [Er03]). The resource broker communicates with resource
agents/wrappers and determines relevant and accessible resources for every query
personally (e.g., InfoSleuth, SIMS, KRAFT).

The third group of possible pitfalls is formed by the tasks of query formulation, effective
query decomposition without loss of information and query results merging and
refinement. Known approaches to solving these tasks are: use of ontologies
(hypernym/hyponym relationships) to reformulate queries containing terms which do not
exist in the ontology(-ies) thus constructing query plans with no loss of information
(OBSERVER); use of rewriting techniques together with mappings to produce queries
on IRs that most effectively satisfy the input query (PICSEL).

Some of the mentioned problems have received only partial solutions. For example, the
problem of semantic interoperability is typically partially solved by committing the
participating nodes to a kind of a convention, providing the framework for semantic
representations. These partial solutions evidently constrain the application domain and
the functionality of the deployed software prototypes for I2R. The constraints for IEDI
are as follows:

– IEDI is built on the principles of the mediator-wrapper architecture [Wi92] with the
centralized mediator

– IEDI exploits the hybrid approach [Wa01] to knowledge representation
– IEDI uses information resource registration to allow an IR to become available for

querying
– IEDI does not provide full automation of ontologies’ mapping and alignment
– IEDI components use rewriting techniques with mappings to produce, process, and

perform queries

The concept and the architecture of IEDI use some novelties which, in their
combination, distinguish IEDI from the predecessors. IEDI Ontologies are specified in

139

W3C emerging de facto standard language OWL DL [Ow03]. Ontology-driven query
formulation and transformation (RACING) is used for query processing. The semantics
of a structured IR (e.g., RDB) is formalized by means of a semi-structured Ontology
Specification Language (OWL DL), but not by specifications like, e.g., ODMI3+ODLI3
[Be98]. Web Service technology is used for IR wrappers implementation.

IEDI mediator query language is RDQL [Rd04]. RDQL queries are formulated in terms
of IEDI Mediator Domain Ontology (MDO). RDQL query denotes a connected RDF-
graph comprising involved MDO concepts and properties. This initial query is then
mapped onto the collection of IR Ontologies (IRO). This mapping procedure produces
the set of sub-queries to respective IRs. Sub-queries are finally translated to the query
languages of particular IRs (e.g., SQL) by their wrappers. This approach to query
processing is generally similar to the one of OntoSeek [GMV99]. In OntoSeek a user
query is also presented in the form of lexical conceptual graph (LCG), and then
compared to the underlying OntoSeek ontology (LCG as well) to find matching
elements. However, OntoSeek doesn’t solve query decomposition problem – all the
knowledge (both concepts and their instances) is stored in one ontology, and queries
need not be decomposed.

OBSERVER project uses the family of several related ontologies and underlying
resources satisfying particular ontology from the family. It uses special technique to
query decomposition without loss of information, based on exploiting semantic
relationships (“hyponimy-hypernimy” and other types) described between the concepts
in one ontology. Similar technique based on the notion of upward “cotopies” (members
of concepts’ hierarchy which are equal to the given concept or are its nearest neighbors)
is used in SEAL – Semantic Portal [St01] created within Ontobroker project. PICSEL
uses rewriting technique for constructing the queries over particular resources. PICSEL
uses knowledge about possible transformations between concepts in the form of
deductive rules presented in a special language (CARIN).

3 IEDI Architecture in a Nutshell

The main purpose of IEDI is to provide for performing queries over the set of pre-
registered, but independent, distributed and semantically heterogeneous IRs. This
implies that IEDI is naturally a distributed system.

An important factor which seriously influenced the design of IEDI architecture is
semantic heterogeneity of the IRs which are registered to IEDI mediator. This implied
the use of the hierarchy of ontologies which actually drive the performance of distributed
queries to different IRs. The tasks of merging and alignment of the ontologies describing
the semantics of the IRs and the common ontology of the mediator (MDO) are
performed manually. IEDI provides reference ontologies and tools for this ontology
engineering activities. However, this thorough preparation work allows to further
perform query formulation, sub-query extraction, sub-query execution tasks in a
straightforward manner and almost automatically. The diagrams of IEDI query
performance, IR Registration, and Ontology Coherence Maintenance scenarios are given
and described in details in [Er04].

140

IEDI Architectural layering is defined according to the analysis of the IEDI processes
and tasks and reflects the mediator-wrapper type of IEDI architecture (Fig. 1). The
layering represents the overall IEDI organization and is outlined according to the
following points of view:
– What are the Components, the Tools and the User Roles at the specific IEDI layers?
– How do IEDI Clients and Servers interoperate across the layers of its architecture?

IEDI User Layer is the environment for AUs and AU Clients. IEDI IR Wrapper and IR
Layers represent autonomous, heterogeneous, and distributed IR holders. IEDI Mediator
Layer is the holder for the components and the tools providing the means for mediation
between the AU-s formulating queries and retrieving the results from the registered IR-s
and respective IR Wrappers to provide the relevant information.

IEDI software components are split into two categories of Clients and Servers according
to their functionality. IEDI Clients are related to IEDI AU-s and provide the interfaces
for their activities. AU client provides IEDI interfaces for an AU. It functions in generic
Web Browser environment (+ Java Virtual Machine) at the User Layer of IEDI
Architecture (Fig. 1) and provides the interfaces for the tasks of: User Query
Formulation, User Query Approval, Browsing Query Results. AU Client interoperates
with the IEDI Query Formulation Tool and with the following IEDI components: IEDI
Mediator Access Server and Query Formulation Server (the component of IEDI
Mediator Server). MOE Client provides IEDI interfaces for the MOE. It functions in
Java Virtual Machine (JVM) environment at the Mediator Layer of IEDI Architecture

Query Formulation
Server

Sub-Query
Extraction Server

Sub-Query
Execution

Server

Results
Mark-Up

Translation
Server

IRKB

AUPO

MDO

IRDMO

MKB

IR Wrapper Web
Service

IR
Wrapper

IRO

IR1

IR Wrapper Web
Service

IR
Wrapper

IRO

IRm

…

AURequest
to formulate

a query
Q-ry Results
in terms
of MDO

IE
DI

 M
ed

iat
or

Figure 1: Sub-query extraction in IEDI reference architecture.

1. Preliminary grouping

2. Finding Determining Concepts

3. Concept mapping

4. Slot mapping

Sub-queries clarification

6. Forming RDQL SELECT sections

7. Forming RDQL AND sections

5. Ensuring that sub-query results
will be correct RDF graphs

SQ1 SQ2 SQm

.

Sub-queries
– one per relevant IR

in terms of respective IRO-s

IQ
Initial Query
to IEDI Mediator
in terms of MDO

141

and provides the interfaces for the
tasks of IEDI Ontologies
Discussion, Merge, Alignment,
Editing and Repair. IROE Client
provides IEDI interfaces for an
IROE and is similar to MOE Client.
It operates at the Mediator and the
IR Wrapper Layers of IEDI
Architecture and provides the
interfaces for the tasks of IRO
Ontology Discussion, Editing and
Repair as well as for the
Negotiation on IRO – MDO Merge
within the IR Registration Process.
MOE and IROE Clients
interoperate with the following
IEDI tools: Ontology Discussion
and Alignment (under development

in UnIT-NET), Ontology Editor (Protégé [Fn01]). MOE and IROE Clients interoperate
with the following IEDI components: IEDI Mediator Access Server. In full detail IEDI
reference architecture is specified in [Er04].

Ontologies play an important role in IEDI architecture as they drive its mainstream
functionality – distributed query performance. The hierarchy of IEDI ontologies (Fig. 2)
reflects the type of IEDI architecture. The following four types of ontologies are used:
Upper-Level Ontology (ULO), domain ontology, IR ontology and reference ontology.
ULO defines basic upper-level concepts and, by that, allows comparing any two of IEDI
ontologies. ULO also serves as the foundation for discussion on concepts semantics
between a MOE and any of IROEs. MDO is the domain ontology of IEDI. Its main
utility is to represent the domain knowledge and to provide domain concepts to
formulate queries. MDO is also the common mediator ontology by the procedure of its
incremental design through IR registration. IROs are IEDI IR ontologies. An IRO
presents the vision of IROE on the domain. IRO is used in the process of IR registration
to IEDI mediator. Each registered IR should have its own IRO because it is used by the
IR wrapper to perform queries. IEDI reference ontologies are AU Profile Ontology
(AUPO) and IR-Domain Mapping Ontology (IRDMO). These ontologies store the
knowledge on concept/slot mappings. AUPO is used for AU profiling and initial AU
query formulation [Er03]. IRDMO provides for mapping of MDO concepts and slots to
the concepts and the slots of the IROs of registered IRs. IRDMO is extensively used in
the process of sub-query extraction.

4 Algorithm for Ontology-Driven Sub-Query Extraction (ODSQE)

One of the important steps in distributed query processing in IEDI is the extraction of the
sub-queries from the initial query. Extracted sub-queries are then routed to the respective
IR-s for execution by the IR wrappers. Basic idea of the extraction algorithm is to
attempt to map MDO concepts/slots used in the initial query to the elements of IRO of

Upper
Level

Ontology

Mediator
Domain Ontology

MDO
Core

AU
Profile

Ontology

IR-D
Mapping
Ontology

IR
Ontology

IR
Ontology

IR
Ontology.

Figure 2: IEDI ontologies hierarchy.

142

each registered IR. The resulting mappings to certain IROs will be not empty.
Corresponding partial queries will be considered as the extracted sub-queries. Obviously
the subset of the IRs with empty mappings to their IROs will not be used in the
subsequent query processing steps.

Algorithm performs terminological mapping of MDO query to the set of IRO[m]
queries. This mapping is based on the raw mappings taken from IRDMO and Late
Binding procedure. Final refinement of the resulting sub-queries is then performed.

ODSQE starts with grouping the triples related to the same MDO concept – a
determining concept. Then, it maps each determining concept to one or more
corresponding concepts in IRO[i] as proscribed by IRDMO (Step 3). The algorithm then
maps the slots from the initial query to corresponding (one or more) slots in IRO[i] (Step
4). Obtained Billet Sub-Queries (BSQ) are then refined (Steps 5,6,7) to get correct
RDQL notation. This refinement procedure first removes the “hanging” triples which
link mapped concepts/slots to unmapped ones. It then removes the variables (SELECT
clause) and the conditions (AND clause) related to these “hanging” triples. High-level
schema of ODSQE has been given in Fig. 1.

ODSQE input: one correct RDQL query (here and below – MDO query) satisfying
current MDO state (all mentioned concepts/slots exist in MDO)

ODSQE output: set of m correct RDQL queries (here and below – IRO[m] queries)
satisfying current IRO[m] states, where: m – the number of IROs currently possessing
the mappings of the terms from the MDO query; m ≤ n, where n – the number of IRs,
currently registered to IEDI mediator; IRO[i] stands for i-th IRO possessing the terms
from the input query (mi ≤≤1).

Step 1. Preliminary grouping
Group all the triples from WHERE clause of MDO query with the same <subj>-part by
reordering.

Step 2. Finding Determining Concepts (DC)
For each triple group (Step 1) get corresponding slot names from the <predicate>-part
and find a determining concept (from MDO) – the highest concept in the hierarchy, to
which all these slots are attached by means of the domain property (OWL). These triple
groups are hereafter referred to as DC Triple Groups (DCTG)2.

Step 3. Concept mapping
Let m:=0, flag:=false
For ni ,...,1=
 For each DCTG
 Use IRDMO to find all concepts, equivalent to the DC in the IRO[i]
 Compute k – the number of such concepts (the value of k may be 0, 1 or more)
 If k>0 and flag=false
 Then flag:=true;
 End For
 If flag = true

2 Comments on the existence and the uniqueness of the determining concept are given at the end of the Section.

143

 Then m:=m+1, flag = false
End For

Step 4. Slot mapping
Make m (nm ≤ , m is defined at Step 3) copies of the MDO query. Hereafter these
copies are referred to as Billet Sub-Queries (BSQs).
For mi ,...,1=
 For each DCTG in BSQ[i]
 If k =0 (i.e. in the IRO[i] there are no concepts equivalent to the DC)
 Then delete this DCTG from BSQ[i]

End For
End For
Copies obtained will also be referred to as BSQ[i].
For mi ,...,1=
 For each remaining DCTG (see above in step 4)
 If k>1 Then
 Make k-1 copies of BSQ[i]
 For j = 1,…,k
 For each triple in the DCTG under analysis
 Replace slot name in the <predicate>-part by its IRDMO mapping3
 End For

End For
Else

 For each triple in a DCTG under analysis
 Replace slot name in the <predicate>-part by its IRDMO mapping3
 End For

End If
End For

End For

Step 5. IRO[m] query clarification – making the query result a correct RDF graph
For mi ,...,1=
 For each DCTG in BSQ[i]
 For each <obj>-part in DCTG
 Let x:=<obj>-part
 If no triples with <subj>-part = x in the WHERE-section of the BSQ[i]
 Then remove all triples with such <obj>-part

End For
End For

End For

Step 6. IRO[m] query clarification – forming RDQL SELECT-section
For mi ,...,1=
 For each variable in the SELECT-section of the BSQ[i]

3 It is assumed in IEDI that MDO-IRO[i] slot mapppings are unique for each MDO concept.

144

 If in WHERE-section of BSQ[i] no triples with this variable in any part
 of a triple
 Then remove the variable from the SELECT-section of the BSQ[i]
 End For
End For

Step 7. IRO[m] Query clarification – forming RDQL AND-section
For mi ,...,1=
 For each variable in the AND-section of the BSQ[i]
 If in WHERE-section of BSQ[i] there are no triples with this variable
 in any part of a triple
 Then remove all logical conditions comprising the variable
 from the AND-section of the BSQ[i]
 End For
End For

At the second step of the algorithm it is assumed that there exists the unique DC for each
DCTG. The reasons are as follows. First – the DC exists for each DCTG by definition.
Otherwise there will be a slot in MDO query, which is not an MDO slot. Second – the
determining concept should be unique for each triples group (Section 1). In the cases
when there are several concepts possessing the same slot sets (it is possible for
subconcepts and superconcepts) ODSQE will take the highest concept in the concepts
hierarchy, which has all the slots from the mentioned set.

ODSQE algorithm returns
pDCDCDC kkk *...**

21
 sub-queries for the same IRO[i], where

p shows how many DC-s have mapping(-s) in the IR[i], and
pDCk shows how many

mappings the same DC has in the IR[i].

5 Evaluation Example

Initial proof-of-concept implementation has been done to evaluate ODSQE by the
typical analytical query example from University Management Domain. Example query
in natural language was formulated as follows:

Retrieve the list of the 1-st year students who have received maximum grade (5)
in Mathematics at the University entrance examinations and have failed to pass
the 1-st semester examination in any basic course in Mathematics (got
unsatisfactory grade - 2). Display Student’s Name, Given Name, Surname,
Speciality Name, and the Name of the Course.

It was supposed in the example that IEDI grants access to two IR-s: “University
Entrants” IR implemented as MS SQL database and a “University Students” IR
implemented as MS Access database. The fragments of MDO and respective IROs are
given in Fig. 3. The specificity of this example is:

145

– Involved IRs possess only partial information with respect to the query. “University
Entrants” doesn’t provide the 1-st semester examination marks. “University
Students” lacks entrance examination marks.

– The semantics of “Mathematics” concept is different for the used IRs. “University
Entrants” IRO says that “Mathematics” is the single subject at secondary school and
is the instance of “Discipline” class. “University Students” IRO doesn’t provide the
concept which has “Mathematics” as its instance. It provides courses like
“Mathematical Analysis“, “Linear Algebra“, etc. as the instances of “Exams” class
“Mathematics” is related to the family of University courses only in MDO as the
instance of the “Discipline” class which “includes” the mentioned subjects as the
other “Discipline” instances.

Initial RDQL query in terms of MDO for the given example is as follows:

SELECT ?firstName, ?secondName, ?lastName, ?specialityName,
?sessionExTitle
WHERE
(?x, stud:first_name, ?firstName), (?x, stud:second_name, ?secondName),
(?x, stud:last_name, ?lastName), (?x, stud:exams_passes, ?y),
(?x, stud:exams_passes, ?z), (?x, stud:on_spec, ?a),
(?y, stud:exam_title,?entrantExTitle), (?y, stud:exam_type, ?examType1),
(?y, stud:entrant_grade, ?entrantGrade), (?y, stud:examOnDiscipline,?r1),
(?z, stud:exam_title,?sessionExTitle), (?z, stud:exam_type, ?examType2),
(?z, stud:session_grade, ?sessionGrade),
(?z, stud:semesterNum,?semesterNum),
(?z, stud:examOnDiscipline,?r2),
(?a, stud:specialityName, ?specialityName)
(?r1,stud:disciplineName,?entrDiscName), (?r1,stud:includes, ?i1),
(?r2,stud:disciplineName,?sessionDiscName), (?r2,stud:includes, ?i2),
(?i1,stud:disciplineName,?discName1),
(?i2,stud:disciplineName,?discName2)
AND (?examType1 eq "Exam"), (?examType2 eq "Exam")
AND (?entrDiscName eq "Mathematics"), (?sessionDiscName eq "Mathematics")
AND ((?entrantExTitle eq ? discName1) || (?sessionExTitle eq ?discName2))
AND ((?sessionExTitle eq "Linear Algebra") ||

(?sessionExTitle eq "Mathematical Analysis"))
AND (?entrantGrade eq "5")
AND (?sessionGrade eq "2")
AND (?semesterNum eq "1")
USING stud FOR <MDO-URL#>

The result of sub-query extraction for the example is given it Table 1.

Initial proof-of-concept evaluation showed that ODSQE worked correctly for the chosen
example. Detailed evaluation results may be retrieved from [Er04].

6 Algorithm Discussion

The environment in which ODSQE is used has the following peculiarities.

Peculiarity 1. IRs’ autonomy implies that not every MDO concept/slot must have
correspondences in every registered IRO. Reaching such autonomy is beyond the scope
of the IEDI mediator. Instead, one of the main requirements to IEDI is the ability of the
system to answer queries on a limited set of concepts which were presented in the core
part of the MDO – the so called Mediator Core Ontology (MCO). IR providers are hence
committed to ensure that their IROs possess the concepts/slots correspondent to MCO
concepts/slots. Appearance of other concepts (with their respective slots) “mappable” to
MDO\MCO is only the desired option.

146

147

Results of sub-query extraction by ODSQE Table 1.

Sub-query to “University Entrants IR Sub-query to “University Students” IR
SELECT ?firstName, ?secondName, ?lastName,
?specialityName
WHERE
(?x, abo:aboName, ?firstName),
(?x, abo:secondName, ?secondName),
(?x, abo:surname, ?lastName),
(?x, abo:passes, ?y),
(?x, abo:AboSpec, ?a),
(?y, abo:EntrantExamName, ?entrantExTitle),
(?y, abo:examType, ?examType1),
(?y, abo:grade, ?entrantGrade),
(?y, abo:examOnDiscipline,?r1),
(?a, abo:specialityName, ?specialityName)
(?r1,abo:disciplineName,?entrDiscName),
(?r1,abo:includes, ?i1),
(?i1,abo:disciplineName,?discName1),
AND (?examType1 eq "Exam")
AND (?entrDiscName eq "Mathematics")
AND ((?entrantExTitle eq ? discName1)
AND (?entrantGrade eq "5")
USING abo FOR <IRO Entrant-URL#>

SELECT ?firstName, ?secondName, ?lastName,
?specialityName, ?sessionExTitle
WHERE
(?x, stud:name, ?firstName),
(?x, stud:secondName, ?secondName),
(?x, stud:surName, ?lastName),
(?x, stud:examPasses, ?z),
(?x, stud:onSpec, ?a),
(?z, stud:examName,?sessionExTitle),
(?z, stud:examType, ?examType2),
(?z, stud:grade, ?sessionGrade),
(?z, stud:semesterNum,?semesterNum),
(?a, stud:specialityName,?specialityName)
AND (?examType2 eq "Exam")
AND ((?sessionExTitle eq "Linear Algebra") ||

(?sessionExTitle eq "Mathematical Analysis"))
AND (?sessionGrade eq "2")
AND (?semesterNum eq "1")
USING stud FOR <IRO-Faculty URL#>

Which means in English: Which means in English:
Retrieve the list of the 1-st year students who
have received maximum grade (5) in
Mathematics at the University entrance
examinations.
Display Student’s Name, Given Name, Surname,
Speciality Name.

Retrieve the list of the 1-st year students who
have failed to pass the 1-st semester
examination in any basic course in
Mathematics (grades 2 and 1).
Display Student’s Name, Given Name,
Surname, Speciality Name, and the Name of
the Course.

Peculiarity 2. IRDMO is constructed in a way to contain the minimally necessary
mappings for the MDO-IRO[i] pairs. Hence, IRDMO provides the mappings only for
non-inherited (the ones defined for this very class, but not inherited from its superclass)
slots of each MDO concept.

Peculiarity 3. Construction of IRDMO does not require the bijective mapping between
MDO concept/slot and IRO concept/slot. Each MDO concept may have several
correspondents within the same IRO. For our example (Section 5) MDO concept
“Exam” has the correspondences “EntrantExam” and “CertificationExam” in
“University Entrants” IRO (multiple horizontal correspondence). The same concept
“Exam” has the correspondences “SessionExam” and “Exams” in “University Students”
IRO (multiple vertical correspondence through concepts hierarchy). Graphical
representation of the example ontologies is given in [Er04].

Mentioned peculiarities imply the usage of a kind of a Late Binding technique to find
correspondences between IRO-s and MDO concepts. Late Binding here means that the
decision on the choice of relevant MDO concepts used in the query is not necessarily
determined by IRDMO mapping (see peculiarity 2). It is elaborated by ODSQE “lately”
at run time. Of course, ODSQE uses MDO to get the knowledge on class-superclass
relationships to generate proper MDO-IRO[i] concept “bindings”.

Multiple concepts mapping problem may arise at ODSQE Step 3. A concept from MDO
query may have several mappings to IRO[i] concepts. E.g., given the query “Find all
titles of exams to be passed to enter the speciality “Applied Mathematics”. If the user has
no intention to get the titles of entrant exams only (i.e. user does not choose
“EntrantExam” at the query formulation stage), then query decomposition algorithm will
take the concept “Exam” as the only concept with the slot “exam_title”. However

148

IRDMO contains two mappings for the concept “Exam” – “EntrantExam” and
“SertificationExam”. The solution used in ODSQE is to get all mappings of the
“problem” concept by making k copies of billet sub-queries at Step 4, produce all slot
mappings and further to add correspondent queries to the resulting set of IRO[i] sub-
queries.

It may be stated that ODSQE:

(i) Will build the only set of IRO[i] queries for a specific MDO (existence and
uniqueness) and

(ii) The hypothetic result of the MDO query will be completely covered by the set of the
results of produced IRO[i] queries (complete coverage).

The following Statements 1 and 2 prove (i).

Statement 1. For each DCTG there exists the only DC.

Statement 2. For each DC∈MCO there exists one or more mappings to each IRO[i] and
for each DC∈MDO\MCO there exist zero or more mappings to each IRO[i].

The proofs are based on the principles of MDO construction.

The proof of (ii) is based on the idea that in the set of produced IRO[i] queries there
should be all requested MCO DC mappings and in at least one IRO[i] query per
MDO\MCO DC there will be the mapping of this very DC. Hence the recall of the set of
the results of IRO[i] queries will not be less than the recall of the hypothetical result of
the MDO query.

7 Concluding Remarks

The paper reports on the development of UnIT-Net IEDI. The main task of IEDI is to
provide a uniform framework for authorized and secure information retrieval from
heterogeneous, distributed, autonomous Information Resources (IR) among the higher
educational establishments and state bodies in Ukraine. The focus of the paper is the
algorithm for ontology-driven sub-query extraction. This algorithm will be used by IEDI
mediator to decompose the user queries in terms of the MDO. Sub-queries will then be
executed by the wrappers of the respective IRs. Initial proof-of-concept evaluation and
the proofs of ODSQE correctness are provided in the discussion part of the paper. The
future work with respect to ODSQE is planned in the following directions: research
prototype implementation as the part of IEDI mediator; prototype evaluation
experiments for different IRs and IROs provided by the members of UnIT-Net
consortium.

Bibliography

[AKS96] Arens, Y.; Knoblock, C.A.; Shen, W.: Query Reformulation for Dynamic Information
Integration. J. of Intelligent Information Systems. 1996.

149

[Ba97] Bayardo et al.: InfoSleuth: Semantic Integration of Information in Open and Dynamic
Environment. In Proceedings of the 1997 ACM International Conference on the
Management of Data (SIGMOD), Tucson, Arizona, May 1997.

[Be98] Bergamaschi, S. et al.: An Intelligent Approach to Information Integration. In: Proc. of
Formal Ontology in Information Systems (FOIS-98), June, 1998.

[CJO01] Cui, Z.; Jones, D.; O’Brien, P.: Issues in Ontology-based Information Integration. In: (A.
Gomez-Perez, M. Gruninger, H. Stuckenschmidt, M. Uschold) Proceedings of the
IJCAI-01 Workshop on Ontologies and Information Sharing, Seattle, USA, August 4-5,
2001, 141-146.

[CJO02] Cui, Z.; Jones, D.; O’Brien, P.: Semantic B2B Integration: Issues in Ontology-based
Applications. SIGMOD Record, 31(1), March 2002. 43-48

[De99] Decker, S. et al.: Ontobroker: Ontology Based Access to Distributed and Semi-
Structured Information. In R. Meersman et al. (eds.): Semantic Issues in Multimedia
Systems. Proceedings of DS-8. Kluwer Academic Publisher, Boston, 1999, 351-369.

 [Er03] Ermolayev, V. et al.: Capturing Semantics from Search Phrases: Incremental User
Personification and Ontology-Driven Query Transformation. In: Proc. of the 2-nd Int.
Conf. on Information Systems Technology and its Applications (ISTA'2003), Kharkiv,
Ukraine, June 19-21, 2003, 9-20

[Er04] Ermolayev, V., et al.: The Infrastructure for Electronic Data Interchange. Reference
Architecture Specification. Version 1.0. UNIT-NET Deliverable No D2.2.D.1. URL:
http://www.compscipreprints.com/comp/Preprint/eva/20040228/1

[Ga95] Garcia-Molino, H. et. al.: The TSIMMIS Approach to Mediation: Data Models and
Languages. In: Proc. Next Generation Information Technologies and Systems (NGITS),
June 1995.

[Fn01] Fridman-Noy, N. et al.: Creating Semantic Web Contents with Protege-2000. IEEE
Intelligent Systems 16(2):60-71, 2001.

[GMV99] Guarino, N.; Masolo, C.; Vetere, G: Content-Based Access to the Web. IEEE Intelligent
Systems, May/June 1999, 70-80.

[Gr97] Gray. P. et al.: KRAFT: Knowledge Fusion From Distributed Databases and Knowledge
Bases. In: Proc. 8th Intl. Workshop on Database and Expert System Applications
(DEXA-97), IEEE Press, 1997, 682-691.

 [LR00] Lattes V.; Rousset M.-C.: The Use of CARIN Language and Algorithms for Information
Integration: The PICSEL System. Int J. of Cooperative Information Systems, 9(4), 2000,
383-401.

[Me00] Mena, E. et al.: OBSERVER: An Approach for Query Processing in Global Information
Systems Based on Interoperation Across Pre-Existing Ontologies. Distributed and
Parallel Databases 8(2), 2000, 223-271

[Ow03] OWL Web Ontology Language Reference. W3C Proposed Recommendation. 15
December 2003. URL: http://www.w3.org/TR/owl-ref/

[Rd04] RDQL – A Query Language for RDF. W3C Member Submission, 9 January 2004,
URL: http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/

[St00] Stuckenschmidt H. et al.: Enabling technologies for interoperability. In: Visser, U.,
Pundt H. (Eds.): Workshop on the 14th International Symposium of Computer Science
for Environmental Protection, Bonn, Germany, 2000, 35-46.

[St01] Stojanovic, N., et al.: SEAL: a Framework for Developing SEmantic PortALs. Proc.
Int.Conf. on Knowledge Capture, 2001.

[Wa01] Wache, H. et al.: Ontology-Based Integration of Information - A Survey of Existing
Approaches. In: (A. Gomez-Perez, M. Gruninger, H. Stuckenschmidt, M. Uschold)
Proceedings of the IJCAI-01 Workshop on Ontologies and Information Sharing, Seattle,
USA, August 4-5, 2001, 108-118

[Wi92] Wiederhold, G.: Mediators in the Architecture of Future Information Systems. IEEE
Computer, 25, 3 (March), 1992, 38–49.

150

