
A Perfomance Study of Parallel Cauchy
Reed/Solomon Coding

Peter Sobe and Peter Schumann
Faculty of Informatics/Mathematics

University of Applied Sciences Dresden, Germany
Contact: sobe@htw-dresden.de

Abstract—Cauchy-Reed/Solomon coding is applied to tolerate
failures of memories and data storage devices in computer
systems. In order to obtain a high data access bandwidth,
the calculations for coding must be fast and it is required
to utilize parallelism. For a software-based system, the most
promising approach is data parallelism which can be easily
implemented with OpenMP on a multicore or multiprocessor
computer. A beneficial aspect is the clear mathematical nature
of coding operations that supports functional parallelism as well.
We report on a storage system application that generates the
encoder and decoder as C-code automatically from a parametric
description of the system and inserts OpenMP directives in the
code automatically.
We compare the performance in terms of achieved data through-
put for data parallelism and for functional parallelism that is
generated using OpenMP.

I. INTRODUCTION

Nowadays, a computer typically owns a number of proces-
sor cores that can be utilizes to accelerate computation-intense
applications by exploiting parallelism. Such an application is
data en- and decoding which is a necessary operation for fault-
tolerant memory and storage systems. Every block of data
that is stored is involved in calculations that produce a high
computational load. This computations normally slow down
data access, but this can be mitigated by processing the data for
coding in parallel. Such coding algorithms allow data-parallel
calculations on independent blocks of data. A closer look on
the en- and decoding algorithms reveals that calculations can
be separated from another and functional parallelism can be
applied as well. The question is whether data parallelism,
function parallelism or a combination of both is the best
choice.

The contribution of the paper is a performance evalua-
tion of a failure-tolerant coding application that exploits the
potentials of data parallelism and of functional parallelism.
These different approaches to parallelism are implemented
using OpenMP [1], a multiprocessing library with compiler
support. Due to the clear mathematical concept of coding, the
algorithms can be generated automatically with specification
of code parameters. In addition, the OpenMP parallelism
extensions are included automatically.

The rest of the paper is organized as follows. The technical
background and related work are described in Section II,
particularly the Cauchy-Reed/Solomon code that is selected for
the coding algorithm. The method of automatic code genera-
tion including to organize the workload in different functions
and to insert OpenMP directives is described in Section III.

In Section IV we report on the achieved acceleration by
parallelism and draw conclusions for further optimizations.

II. BACKGROUND AND RELATED WORK

In the first part of this section the coding algorithm is
described, together with the structure of data that is distributed
accross the system. A second part is dedicated to the OpenMP
approach to parallel programming and runtime support. In a
third part, a selection of related work is addressed.

A. The application: Cauchy Reed/Solomon coding

This work is based on the Reed/Solomon code [2],
particularly on the XOR-based variant introduced in [3] that
is denoted by Cauchy-Reed/Solomon code (CRS). CRS is a so
called erasure-tolerating code that allows to recalculate parts
of the original data that got lost (or got erased) as result of
hardware failures or unreachability of data in networks. In
practice, CRS can be applied as well for correcting failures.
For this, it is combined with error detecting codes that validate
blocks as correct or corrupted, and CRS replaces the corrupted
blocks by recalculated content.

The CRS coding works as follows: For encoding, data must
be split in k parts that have to be assigned independent storage
devices (or memory modules). A number of m additional
blocks are calculated from the k original blocks. The m blocks
are redundancy and used solely for decoding to recalculate
lost blocks. The redundant m blocks are placed on additional
storage devices.

The CRS code shows several beneficial properties.

• It is a so called regular code that separates original
data and redundant data. This property allows to read
the data without execution of decoding calculations
in failure-free situations. When data is written (or
changed) the encoding calculation have to be executed
always.

• The code is optimal w.r.t. the amount of redundant
data and the number of failures that can be tolerated.
With m redundant blocks, every situation with up to
m lost blocks among the original and redundant ones
can be tolerated.

• The code uses XOR operations that are available as
machine instructions. In addition, XOR is included
in the MMX and SSE instruction set extensions for
parallel computations on wide registers (128 Byte) of
x86 processors.

50

• A specific coding and decoding algorithm can be
generated for every combination of k and m (k >
0,m > 0). CRS can be applied for every distribution
factor (k) and every number of additional blocks (m),
where the latter parameter scales number of failures
that can be tolerated.

The coding algorithm handles every block as split in ω
fragments. From k×ω fragments taken from the original data,
m × ω redundant fragments are calculated. CRS constrains
the value of ω by the relation 2ω > k + m. The original
and redundant data fragments are distributed block-wise across
the devices (memory modules, storage devices, computers).
The data layout is depicted in Fig. 1 for the example of a
k = 3,m = 2, ω = 3 code. In this case, every block is split
in three fragments that are differentiated for the encoding and
decoding calculations.

The calculation can be seen as a linear equation system
A · o = r, with o as a vector of original data fragments and r
as the redundant fragments. The coding matrix A consists of
elements ∈ {0, 1} and is constructed under mathematical con-
straints in order to allow a decoding using the inverse matrix.
The elements of A are factors and normally would require a
multiplication with the data fragments. Due to the factors 0
and 1, solely a selection takes place whether a fragment is
included in the equation or not. Every equation is reduced
to a sum of selected fragments that is expressed by bitwise
XOR-ing the fragments. The XOR operation is expressed by
the symbol ⊕. The equations for encoding are shown in (1)
with fragments that are numbered by u0, u1, . . . , u8. The two
redundant blocks contain the fragments u9, u10 . . . , u14.

original data
for example k=3

block

fragment

fragment

fragment

u0

u1

u2

block

u3

u4

u5

u6

u7

u8

block block

u9

u10

u11

block

u12

u13

u14

redundant data
for example m=2

Fig. 1. Data layout for a system that distributes data across 3 devices and
adds 2 redundant devices to store redundant data.

u9 = u1⊕ u2⊕ u3⊕ u4⊕ u6 , (1)
u10 = u0⊕ u1⊕ u5⊕ u7 ,

u11 = u0⊕ u1⊕ u2⊕ u3⊕ u8,

u12 = u0⊕ u1⊕ u2⊕ u5⊕ u6⊕ u8 ,

u13 = u0⊕ u3⊕ u5⊕ u6⊕ u7⊕ u8 ,

u14 = u0⊕ u1⊕ u4⊕ u7⊕ u8

The equations can be optimized by elimination of common
subexpressions. As a result, encoding can be expressed by
equations that do not contain redundant calculations, but show
data dependencies among them. The t-fragments are temporary
and have to be calculated before being used in other equations.

We denote this coding as an iterative style (see (2)), and the
non-optimized variant as the direct style (see (1)) .

t15 = u1⊕ u2 , t16 = u3⊕ u6 , (2)
t17 = u0⊕ u1 , t18 = u5⊕ u7 ,

t19 = u0⊕ u8 , t20 = t15⊕ t19 ,

u9 = u4⊕ t15⊕ t16 , u10 = t17⊕ t18 ,

u11 = u3⊕ t20 , u12 = u5⊕ u6⊕ t20 ,

u13 = t16⊕ t18⊕ t19 , u14 = u4⊕ u7⊕ u8⊕ t17

The principle of generating XOR-equations for en- and de-
coding is described in detail in [4]. A tool, called cauchyrs [5]
is applied to prepare XOR equations from the code parameters.
It creates XOR-based equations according to a given number
of data storage resources (k) and redundancy storage resources
(m). Additional parameters for the equations are the block
length, as well as, whether the tool should generate equations
in a direct style or in an iterative style. The equations are
generated independently from the actual data storage operation
(Write, read, update) in the storage or memory system.

As a preliminary analysis, coding equations allow to assess
the cost of coding by the number of XOR operations in relation
to the number of original blocks that have to be written.
The number of XOR operations directly follows from the
equations that were generated by the cauchyrs tool. The more
XOR operations, the more compute-intense the coding is. This
normally would cause reduced data access rates with a negative
influence on the write rate and with an influence on the read
rate, in case of failures. The result show that the variation
of the distribution factor k has only a little impact. However,
increasing the failure tolerance by the number of redundant
blocks m influences the costs noticeably as can be seen in
Fig. 2. Seen roughly, encoding requires m+1 XOR operations
per block for every single block that is written. For instance,
when 1kByte is written and m is 2, 384 XOR operations have
to be executed that combine two 8 Byte operands (1024 Byte/
8 Byte × 3). In addition to the 384 instructions, 3072 Bytes
must be moved through the processor for calculation. As a
result of this high effort, only a few hundred MByte/s remain
as data rate for sequential encoding, even when the storage
system offers higher data access rates.

B. OpenMP for Multicore

OpenMP [1] is a multi processing library with compiler
support that was first published in 1997 and is now avail-
able for all major compilers (C,C++, Fortran). OpenMP is
supported for instance by the Gnu gcc compiler and MS
Visual Studio. OpenMP leads to a multithreaded program
execution and is suitable for shared memory multiprocessing
platforms. The typical way to use OpenMP is to add a few
compiler directives and library calls to the original sequential
code. These so called pragma directives give hints to create
thread pools in the way of fork-join-parallelism with a master
thread and a number of worker threads. It allows to gradually
add parallelism to a sequential program without changing the
program marginally.

51

m=2
m=3
m=4

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 5 10 15 20

n
o

rm
al

iz
ed

 c
o

st
:

X
O

R
 o

p
.

/
d

at
a

u
n
it

k (distribution factor)

Fig. 2. Analysis of computational cost: number of XOR operations per data
unit that is stored.

A common directive is #pragma omp parallel that marks a
block to be executed by several threads. It creates a thread pool
where every thread executes the program. The programmer
distributes the workload among threads, particularly the work
that is done within loops. A typical form is the combination
of a parallel block and a for-loop (#pragma omp parallel for)
that is illustrated in the C-program in listing 3. In a sequential
program, the for-loops are the origin of data parallelism.

Another way to express parallelism are sections of different
code blocks as illustrated in listing 4. These sections are used
to express function parallelism, where threads execute different
parts of the program code (i.e. functions).

i n c l u d e <omp . h>
d e f i n e N VALUES 10000

main ()
{

double a [N VALUES] , b [N VALUES] , d [N VALUES] ;
double c = 3 . 1 4 ;
i n t i , n t =8 ;

omp se t num threads (n t) ; / / s e t number o f t h r e a d s

#pragma omp p a r a l l e l f o r
f o r (i =0 ; i<N VALUES; i ++)

d [i] = a [i]+ c∗b [i] ;
}

Fig. 3. OpenMP example of data parallelism

void c a l c (i n , o u t) {
pragma omp p a r a l l e l s e c t i o n s {
pragma omp s e c t i o n {

f1 (i n , o u t) ;
}

pragma omp s e c t i o n {
f2 (i n , o u t) ;

}
.
}}
}

Fig. 4. OpenMP example of parallel sections for function parallelism

Besides sections, explicit tasks (#pragma omp task) are

another way to assign code blocks and functions to threads.
This can be used to implement function parallelism as well.

OpenMP allows to add clauses in order to control, whether
variables are shared among threads or have to be thread-private
ones. Serialization and synchronization of threads is supported
by additional directives, such as #pragma omp critical or
#pragma omp single.

C. Related Work

For long time, research is directed to fast data en- and de-
coding for failure-tolerating systems, especially for compute-
intense codes that flexible tolerate multiple failures. Around
ten years ago, there was the need for specific hardware
accelerated solutions, mostly implemented by FPGAs, e.g. [6].
Besides RAID controllers with a function-specific hardware,
it is common to implement coding by software and using
the GPU or multicore capabilities. The concept of multicore
Reed/Solomon coding is described in [7]. An introduction of
the translation concept to OpenMP and OpenCL is published
in [8] that applies the concept of equations to multicore and to
GPU-architectures. A purely GPU-directed work can be found
in [9], [10].

Another way to implement software-based erasure-tolerant
codes is to use flexible libraries, such as the jerasure library
[11], a C/C++ library for matrix-based erasure-tolerant coding.
At the time of publication (2007) this library contained sequen-
tial code. Meanwhile, several sources report on usage of this
library in the context of GPU acceleration and multithreading.

A way between implementing the coding algorithms by
oneself and the application of ready-to-use libraries is to
develop the own functionality on base of code skeletons. These
skeletons are pre-defined, reusable code components that can
be applied to several algorithms and encapsulate parallelism.
The most common example is Map-Reduce, but also other
patterns of parallelism can be included in skeletons, such as a
farm (master worker) or pipelined execution. An example for
a skeleton programming library is [12] that supports parallel
programming models like OpenMP, OpenCL and CUDA.

Even though it would be possible, in this work we do
neither utilize a library nor build on skeletons. The parallel
coding is implemented by pure C code that is automatically
generated.

III. EQUATIONS, PROGRAM CODE AND OPENMP

In this section, we explain how the coding algorithm is
transformed from an symbolic description (using equations)
to C program functions, including the control statements for
OpenMP parallelism.

Initially, data encoding and decoding is expressed by
equations that have to be applied to data. For encoding, the
equations do not change over time. Thus, encoding equations
can be translated to C functions and included in the system
before operations start.

Decoding equations change with the specific failure situa-
tion. Thus, these equations are generated on on demand and
JIT compilation techniques have to be applied to produce a
specifically optimized decoder for a failure situation. For small

52

system configurations, it is possible to calculate all sets of
decoding equations in advance and to provide C functions for
all failure cases that can be tolerated.

We follow the approach of decoupling the equation gener-
ation and the coding operations that are related to data. Fig. 5
shows the system components that are involved into en- and
decoding. The cauchyrs tool generates equations, as well as
C source code. The C functions are later used in the storage
system to provide write and read operations with application
data.

encoder decoder

storage / memory system

cauchyrs

tool

failure
description

decoding

equations

C−code

for

decoding
for

encoding

C−code

equations

encoding

Fig. 5. Automatic C-code generation for the system that executes the coding
algorithm.

From the internal representation of the coding equations,
C functions can be generated that take an array of bytes as the
first input parameter and an array of calculated redundancy
bytes as the second parameter. Fig. 6 shows an encoding
function, according to the previously given example with
k = 3, m = 2 and ω = 3 as parameters. The unit numbers
can be recognized as the macro parameters of Of() and Rf().
The redundant units u9, . . . , u14 are expressed by the array r,
with macro parameters 0 to 5.

Typically, data that is written is longer than a single code
word. Thus, fragments contain a number of Bytes (for instance
1024, or 2048), denoted by blocklen. A complete input data
set covers k × ω × blocklen Bytes and is taken to produce
m × k × blocklen Bytes redundancy. The coding is repeated
blocklen times, which is expressed by a for-loop. This for-
loop is the block that is distributed across several threads in
the way of data parallelism. The inner block of the for-loop
does not contain data dependencies to other iterations and
therefore it can be easily handled by OpenMP. The directive
omp parallel for precedes the for-statement. This instructs
the compiler to introduce functionality that distributes the
work across the threads in the thread pool. Special care must
be taken for the local variables that store the values of the
common subexpressions. These variables must be declared as
thread-local and have to be assigned to every thread as private
variables (see the private clause in Fig. 6)

The generated code for functional parallelism can be seen
in Fig. 7 for a k = 3, m = 2, ω = 3 system. The result of
the computation is the same as of the data-parallel variant (see
Fig. 6).

Depending on the number of cores (which is a parameter
of the automatic code generation), a number of functions
are created to cover different equations. The calculation of

d e f i n e UNIT LEN 1024
d e f i n e Rf (a) a∗UNIT LEN+ i
d e f i n e Of (a) a∗UNIT LEN+ i

i n l i n e void encode (c o n s t char ∗ , char ∗) ;

void encode (c o n s t char ∗n , char ∗ r)
{

i n t i ;
char t15 , t16 , t17 , t18 , t19 , t 2 0 ;

#pragma omp p a r a l l e l f o r \
p r i v a t e (t15 , t16 , t17 , t18 , t19 , t 2 0)

f o r (i = 0 ; i < UNIT LEN ; i ++)
{

t 1 5 = n [Of (1)] ˆ n [Of (2)] ;
t 1 6 = n [Of (3)] ˆ n [Of (6)] ;
t 1 7 = n [Of (0)] ˆ n [Of (1)] ;
t 1 8 = n [Of (5)] ˆ n [Of (7)] ;
t 1 9 = n [Of (0)] ˆ n [Of (8)] ;
t 2 0 = t 1 5 ˆ t 1 9 ;

r [Rf (0)] = n [Of (4)] ˆ t 1 5 ˆ t 1 6 ;
r [Rf (1)] = t 1 7 ˆ t 1 8 ;
r [Rf (2)] = n [Of (3)] ˆ t 2 0 ;
r [Rf (3)] = n [Of (5)] ˆ n [Of (6)] ˆ t 2 0 ;
r [Rf (4)] = t 1 6 ˆ t 1 8 ˆ t 1 9 ;
r [Rf (5)] = n [Of (4)] ˆ n [Of (7)] ˆ n [Of (8)] ˆ t 1 7 ;

}
}

Fig. 6. Automatically generated C-code that supports data parallelism

the equations within a function follows a direct coding style
without data parallelism.

Equations are assigned to the individual coding functions
(calc1, calc2, . . .) as follows: First, equations are sorted
according to the number of XOR operations. A number of
calculation functions is created that are initially empty. Starting
with the equation with the most XOR operations, the equations
are assigned to the calculation functions, translated to C
statements and placed in the function bodies. As long as there
are empty coding functions, this is a round-robin assignment.
When all calc-functions contain at least one equation, the next
equation is assigned to the coding function with the least
number of XOR operations.

In the example given in Fig. 7 it is not possible to
generate an optimal balanced distribution. The 6 equations
are distributed across 4 functions in the best way as possible,
but with a slight imbalance. This effect disappears with larger
system configurations that require more equations (due to
higher values of m and/or ω).

IV. PERFORMANCE EVALUATION

The performance of the encoding operation was studied on
two different systems, a 4-core AMD-Phenom II-X4, 3.2 GHz
system and a 2× Opteron 6128, 2GHz (2×4 cores) system.
The second system is slightly slower clocked, but offers the
double number of processor cores.
We measured the data throughput in terms of the amount of
original data (MByte) that was encoded during a fixed quantity
of time (seconds). Fig. 8 shows data throughput under a varied
number of threads on a 4-core system. All measurements
show a clear advantage of the iterative encoder over the direct

53

void c a l c 0 (c o n s t char ∗n , char ∗ r)
{

f o r (i n t i = 0 ; i < UNIT LEN ; i ++)
{

r [Rf (3)] = n [Of (0)] ˆ n [Of (1)] ˆ n [Of (2)] ˆ
n [Of (5)] ˆ n [Of (6)] ˆ n [Of (8)] ;

}
}
void c a l c 1 (c o n s t char ∗n , char ∗ r)
{

f o r (i n t i = 0 ; i < UNIT LEN ; i ++)
{

r [Rf (4)] = n [Of (0)] ˆ n [Of (3)] ˆ n [Of (5)] ˆ
n [Of (6)] ˆ n [Of (7)] ˆ n [Of (8)] ;

}
}
void c a l c 2 (c o n s t char ∗n , char ∗ r)
{

f o r (i n t i = 0 ; i < UNIT LEN ; i ++)
{

r [Rf (0)] = n [Of (1)] ˆ n [Of (2)] ˆ n [Of (3)] ˆ
n [Of (4)] ˆ n [Of (6)] ;

r [Rf (5)] = n [Of (0)] ˆ n [Of (1)] ˆ n [Of (4)] ˆ
n [Of (7)] ˆ n [Of (8)] ;

}
}
void c a l c 3 (c o n s t char ∗n , char ∗ r)
{

f o r (i n t i = 0 ; i < UNIT LEN ; i ++)
{

r [Rf (2)] = n [Of (0)] ˆ n [Of (1)] ˆ n [Of (2)] ˆ
n [Of (3)] ˆ n [Of (8)] ;

r [Rf (1)] = n [Of (0)] ˆ n [Of (1)] ˆ n [Of (5)] ˆ
n [Of (7)] ;

}
}

void c a l c (c o n s t char ∗n , char ∗ r)
{
#pragma omp p a r a l l e l s e c t i o n s
{

pragma omp s e c t i o n
{

c a l c 0 (n , r) ;
}
pragma omp s e c t i o n
{

c a l c 1 (n , r) ;
}
pragma omp s e c t i o n
{

c a l c 2 (n , r) ;
}
pragma omp s e c t i o n
{

c a l c 3 (n , r) ;
}

}
}

Fig. 7. Automatically generated C-code with function parallelism

encoder. The variants of data parallelism scale with the number
of threads used for encoding until the number of processor
cores is reached. Unfortunately, the function-parallel encoder
did not produce a higher throughput and is ranked on the level
of direct data-parallel encoding. This can be explained by the
same number of XOR operations as the direct encoder.

Surprisingly, measurements on smaller system configu-
rations showed an up to three times better throughput of

the function-parallel encoder in comparison to the best data-
parallel variant. This effect motivated a deeper analysis of
the generated assembler code through an inspection using
objdump. We found that the gcc compiler generated SSE
instructions for XOR operations on consecutive Bytes for the
function-parallel encoder version, but only for small config-
urations (e.g. k = 5, m = 2) The compiler creates single
Byte accesses for longer blocks and for higher values of k
and m in the function-parallel version. The reason for this
disadvantageous choice are runtime checks that have to be
added for SSE acceleration that check that data in the arrays
n and r do not overlap. We assume a compiler strategy that
stops SSE vectorization when these runtime checks become too
costly. A small hint to the compiler by declaring the pointers
n and r as restrict allowed to use SSE vectorization for
longer blocks and bigger system configurations.

k=16, m=4, blocksize=2048 Bytes

 0

 100

 200

 300

 400

 500

 600

 700

d
at

a
th

ro
u
g

h
p
u
t

in
 M

B
/s

number of threads

 1 2 3 4 5 6 7 8

iterative eqn. data parallelism
direct eqn. data parallelism

function parallelism

Fig. 8. Data throughput on a 4-core system

 0

 500

 1000

 1500

 2000

 2500

 3000
k=16, m=4, blocksize=2048 Bytes

number of threads

iterative eqn. data parallelism

direct eqn. data parallelism

 14 16 12 10 8 6 2 4

d
at

a
th

ro
u
g
h
p
u
t

in
 M

B
/s

function parallelism

function parallelism optimized

Fig. 9. Data throughput on a 8-core system, including the optimized version
for SSE vectorization

After optimizing the function-parallel encoding function
by restricted pointer parameters, the measurements were
repeated on a 8-core system (see Fig. 9). Besides the two
data-parallel coding functions that scale well up to 8 cores,
the function-parallel coding variant showed a beneficial
performance over the data-parallel versions.

54

At the current status, the performance analysis revealed that
without optimizations the function-parallel does not perform
better than the data parallel variant. In the best case, one
can achieve a near optimal distribution of the computational
load that is comparable to the best possible load distribution
of data-parallel coding. Regardless, it is beneficial to provide
variants for function-parallel coding when there is a chance for
compiler-based optimizations. We could show that gcc gener-
ates faster code from the function-parallel variant, compared
to the data-parallel variant.

Further investigations are directed to use iterative equa-
tions for the functional parallelism as well and to distribute
the equations in a way that common subexpressions within
the functions are taken into account for the distribution of
equations. When there are more cores than equations, a com-
bination of function parallelism and data parallelism should
offer additional room for performance improvements.

V. SUMMARY

Coding for failure-tolerant storage can be significantly
accelerated by multithreading on multicore computer systems.
We demonstrated the automated program code generation that
includes the placement of OpenMP directives for data-parallel
processing. Function-parallel processing is possible as well,
but requires a slightly more code-modifying technique to
assign operations to threads. With the current optimizations,
the function-parallel variant reaches the best performance of
2.5 GByte/s on 8 cores.
Data en- and decoding is an example of applications that
base on relatively complex mathematical principles but show
a simple and regular code structure. In such a case, automatic
generation of program code including the control statements
for parallel execution is a feasible technique, compared to
flexible and high-optimized code libraries.

REFERENCES

[1] “OpenMP Application Program Interface, Version 3.1,” 2011,
The OpenMP Architecture Review Board. [Online]. Available:
http://www.openmp.org/mp-documents/OpenMP3.1.pdf

[2] I. S. Reed and G. Solomon, “Polynomial Codes Over Certain Finite
Fields,” Journal of the Society for Industrial and Applied Mathematics,
vol. 8, no. 2, p. 300, 1960.

[3] J. Bloemer, M. Kalfane, R. Karp, M. Karpinski, M. Luby, and
D. Zuckerman, “An XOR-Based Erasure-Resilient Coding Scheme,”
International Computer Science Institute, Technical Report TR-95-048,
Aug. 1995.

[4] P. Sobe and K. Peter, “Flexible Parameterization of XOR
based Codes for Distributed Storage,” in 2008 Seventh IEEE
International Symposium on Network Computing and Applications,
Cambridge, MA, USA, Jul. 2008, pp. 101–110. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4579645

[5] P. Sobe, “cauchyrs Documentation,” University of Luebeck, Institute of
Computer Engineering, Tech. Rep., Sep. 2009.

[6] A. Wiebalck, P. Breuer, V. Lindenstruth, and T. Steinbeck, “Fault-
Tolerant Distributed Mass Storage for LHC Computing,” in CCGrid
2003, 2003.

[7] P. Sobe, “Parallel Reed/Solomon Coding on Multicore Processors,” in
International Workshop on Storage Network Architecture and Parallel
I/Os. IEEE Computer Society, 2010, pp. 71–80.

[8] P. Sobe, “Parallel Coding for Storage Systems - An OpenMP and
OpenCL-capable Framework,” in PASA- Workshop, GI Proceedings on
ARCS (Workshops), 2012.

[9] M. L. Curry, A. Skejellum, H. L. Ward, and R. Brightwell, “Acellerating
Reed-Solomon Coding in RAID Systems with GPUs,” in Proceedings
of the 22nd IEEE Int. Parallel and Distributed Processing Symposium.
IEEE Computer Society, 2008.

[10] M. L. Curry, H. L. Ward, A. Skjellum, and R. Brightwell, “A
lightweight, gpu-based software raid system,” 2012 41st International
Conference on Parallel Processing, vol. 0, pp. 565–572, 2010.

[11] J. S. Plank, “Jerasure: A Library in C/C++ Fasciliating Erasure Coding
to Storage Applications,” University of Tennessee, Tech. Rep. CS-07-
603, September 2007.

[12] U. Dastgeer, J. Enmyren, and C. Kessler, “Auto-tuning SkePU: A Multi-
Backend Skeleton Programming Framework for Multi GPU Systems,”
in Proceedings of the 4th International Workshop on Multicore Software
Engineering. ACM, 2011.

55

