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Abstract:
Motivation: Understanding transcriptional regulation is one of the main challenges
in computational biology. An important problem is the identification of transcription
factor binding sites in promoter regions of potential transcription factor target genes.
It is typically approached by position weight matrix-based motif identification algo-
rithms using Gibbs sampling or heuristics for extending seed oligos. Such algorithms
succeed in identifying single, relatively well conserved binding sites, but tend to fail
when it comes to the identification of combinations of several degenerate binding sites
as those often found in cis-regulatory modules.
Results: We propose a new algorithm that combines the benefits of existing motif
finding with the ones of Support Vector Machines (SVMs) to find degenerate motifs in
order to improve the modeling of regulatory modules. In experiments on microarray
data from Arabidopsis thaliana we were able to show that the newly developed strat-
egy significantly improves the recognition of transcription factor targets.
Availability: The PYTHON source code (open source–licensed under GPL), the data
for the experiments and a web-service are available at http://www.fml.mpg.
de/raetsch/projects/kirmes.
Contact: sebi@tuebingen.mpg.de

1 Introduction
One of the most important problems in understanding transcriptional regulation is the pre-
diction of transcription factor target genes based on their promoter sequence. A transcrip-
tion factor binding site (TFBS) is a short sequence segment (≈10 bp) located near a gene’s
transcription start site (TSS) and is recognized by respective transcription factors (TFs) for
gene regulation [GL05]. TFBSs recognized by the same TF usually show a conserved pat-
tern, which is often called a TF binding motif (TFBM) [GL05]. Such TFBMs are typically
identified by considering overrepresented motifs in promoter sequences of a set of genes
that is enriched with targets for a specific transcription factor. The simplest approaches
include the identification of overrepresented oligomers relative to a background model
[BE94]. More sophisticated models include Gibbs-sampling methods [LAB+93] that try
to identify position weight matrices[SSGE86] characterizing binding sites in the candidate
promoter sequences [Sto00].

Although these methods have been very successful for bacterial and yeast genomes, their
success was limited in higher eukaryotes for which TFBMs are often degenerate and the
search space is considerably larger. While some recent techniques have improved the
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state-of-the-art, they all tend to fail if the motif is defined only weakly or in the context of
other motifs. “Despite these challenges, there are two possible redeeming factors: (i) many
eukaryotic genomes have been or are being sequenced, and comparative genomic analysis
can be extremely powerful; and (ii) most eukaryotic genes are controlled by a combination
of factors with the corresponding binding sites forming homotypic or heterotypic clusters
known as ‘cis-regulatory modules’ (CRMs)” [GL05].

In this work we developed novel methods that are able to classify genes as being either
TF targets or not, based on the presence of motifs and features capable of describing
CRMs. This is done by a two-step procedure. We first used de novo motif finding tools
or known motif databases like TRANSFAC [MFG+03] or JASPAR [SAE+04] to identify
a set of potential motifs. Then we used SVMs employing a newly developed kernel that
is capable of capturing information about the motifs and their relative location to classify
promoter sequences. Additionally, we demonstrate the potential of our approach to exploit
conservation information to improve the classification performance.

Most previous approaches for discovering CRMs are based on the identification of motifs
and their co-occurrences (e.g. [FSKB08, ST02]). Other approaches exploit site-clustering
information with de novo motif discovery to build rules discriminating modules that pre-
serve the ordering of motifs (e.g. [SS05]). Finally, [YTI+98] suggested to use Hidden
Markov Models to represent CRMs and [GL05] developed a Monte Carlo method and dy-
namic programming approach to screen motif candidates. The main difference between
our approach and most previous approaches is that we use discriminative methods that
allow us to model the TFBS’ more accurately. In particular, instead of using zeroth-order
inhomogeneous Markov chains, we use Support Vector kernels to model higher order se-
quence information around putative TF binding sites.

The paper is organised as follows: We start Section 2.1 by describing the basic methodol-
ogy of classifying sequences with Support Vector Machines using standard sequence ker-
nels. It is followed by a detailed explanation of the main idea of this work in Section 2.2
for combining de novo motif finders with state-of-the-art motif modeling. In Section 3 we
outline a problem derived from A. thaliana microarray expression experiments where cer-
tain transcription factors are over- or under-expressed. In our experiment we first illustrate
that the straightforward approaches cannot achieve reasonable results, while the newly de-
veloped methods are able to drastically improve the target gene recognition performance.

2 Methods
2.1 Sequence Classification with Support Vector Machines

Support Vector Machine (SVMs) are a well-established machine learning method intro-
duced by Boser, Guyon, and Vapnik [BGV92] to solve classification tasks frequently ap-
pearing in computational biology and many other disciplines. Typical examples are the
classification of tumor images or gene expression measurements, the detection of biologi-
cal signals in DNA, RNA or protein sequences as well as the recognition of hand-written
digits or faces in images. SVMs are widely used in computational biology due to their high
accuracy, their ability to deal with high-dimensional data, and their flexibility in modeling
diverse sources of data [MMR+01, SS02, STV04, Nob06].
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The domain knowledge inherent in the classification task is captured by defining a suitable
kernel function k(x, x ) computing the similarity between two examples x and x . This
strategy has two advantages: the ability to generate non-linear decision boundaries using
methods initially designed for linear classifiers; and the possibility to apply a classifier to
data that have no obvious vector space representation, for example, DNA/RNA or protein
sequences as well as structures [BOS+08].

Spectrum Kernel Given two example sequences x and x over the alphabet Σ, a simple
way to compute the similarity is to count the number of co-occurring oligomers of fixed
length . This idea is realized in the so-called spectrum kernel that was first proposed for
classifying protein sequences [LEN02]: kspec(x, x ) = Φspec(x), Φspec(x ) , where |Σ|
is the number of letters in the alphabet. Φspec is a mapping of the sequence x into a |Σ| -
dimensional feature-space. Each dimension corresponds to one of the |Σ| possible strings
s of length and is the count of the number of occurrences of s in x. This kernel is well-
suited to characterize sequence similarity based on oligos that appear in both sequences–
independent of their position.

If the classification of promoter sequences of genes as transcription factor targets would
be solely based on binding to specific oligos, then the spectrum kernel appears to be a
reasonable choice. If the motif is less conserved, then allowing for mismatches or gaps
can be beneficial [LEWN03]. Note that this kernel is (by design) incapable of recognizing
positional preferences TFs, and thus TFBSs, might have relative to the transcription start
or among each other.

Weighted Degree Kernel Another kernel, the so-called Weighted Degree Kernel (WD)
was proposed in [RS04, SRR07]. It computes the similarity of sequences of fixed length
L by considering the substrings up to length starting at each position l separately:

kwd(x, x ) =
L

l=1 d=1

βd

L
I x[l:l+d] = x[l:l+d] where βd = 2

− d + 1
2 +

, (1)

and x[l:l+d] is the substring of length d of x at position l [RS04, SRR07].

In the WD kernel, only oligos appearing at the same position in the sequence contribute to
the similarity of two sequences. The WD kernel with shifts [RSS05] is an extension of the
WD kernel allowing some positional flexibility of matching oligos:1

kwds
,S (x, x ) =

L

l=1 d=1

S

s=0
s+i≤l

1
2dL(S+1) I x[l+s:l+d+s] = x[l:l+d] + I x[l:l+d] = x[l+s:l+d+s] (2)

It considers oligomers up to length d, and allows them to be shifted up to S positions,
starting from i, in the input sequences. This kernel is better suited for motifs with indels
or at varying positions (see e.g. [RSS05, SSP+07]

1The locality improved and oligo kernel [ZRM+00, MTMM04] achieve a similar goal in a slightly different way.
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2.2 Extensions

In this section we extend the WD kernel in two different ways: First, we consider an exten-
sion to use conservation information. Second, given a list of potential motifs we propose a
new kernel that integrates information on the motif sequences with the information about
their co-occurrence with the aim to characterize regulatory modules.

WD Kernel with Conservation Information To include conservation information, we
extended the WDS kernel with a term to multiply the score of the local matches of an oligo
of length d at position i with a quantity that depends on its conservation. We propose to
use the average conservation of the oligo in pre-generated alignments of sequences from
G other organisms:

γA
d,i,x = 1 +

A

d

G

g=1

d

j=0

I(xi+j = xg
i+j), (3)

where xg is the sequence of the syntenic regions in the genome of organism g = 1, . . . , G
and A < 0 is a parameter allowing one to control the importance of the conservation. The
fact that we add 1 means we only value an existing alignment positively, but do not further
punish the absence of an alignment. All results shown were obtained with the setting of
A = 1. Using this definition of a conservation score we can now define the weighted
degree with shifts and conservation (WDSC):

kwdsc
,S,A(x, x ) =

L

l=1 d=1

S

s=0
s+i≤l

γd,i,xγd,i,x

2d(s + 1)
I x[l+s:l+d+s] = x[l:l+d] + I x[l:l+d] = x[l+s:l+d+s]

A Kernel for Regulatory Modules

Suppose we are given a set of M motifs Mm, m = 1, . . . , M that may either come from
a database or from a de novo motif detection method. Such motifs are often represented
in a way that one can easily scan a given sequence for occurrences of the motif (e.g. as
PWMs). In a preprocessing step we compute the best-matching position pm,x of each
motif Mm in all considered sequences x. In case of PWMs, the PWM score and in case
of oligo-based motifs the Hamming distance may be used to decide which position in the
sequence matches best.2

The main idea of the kernel that we propose is to represent an input sequence x by the set of
sequences xm := x[pm,x−w,pm,x+w] originating from the region of length 2w around the
best motif match pm,x of motif Mm. Each sequence region xm contributes independently
to the similarity between two input sequences: k1(x, x ) = M

m=1 k(xm, xm). This term
characterizes the co-occurrence of a collection of motifs in two sequences x and x . The
similarity is highest if all motifs appear in both sequences (in arbitrary order). We propose
to use a position specific kernel, for instance the WDS kernel, to compute the similarity of
the regions.

2For the kernel functions, all input vectors need to be of the same length. Therefore, in our method we have
to choose the same number of matches per sequence for all motifs (1 in our case), regardless of the quality of the
matches. Biologically, a threshold quality seems more intuitive, then several good matches would be considered
and no match for sequences that don’t contain the motif. However, a soft margin during training allows the
algorithm to ignore some mislabeled data points without effects on generalization.
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For the first part of the kernel, the position of the motif does not influence the similarity at
all. In the second part of the kernel we try to capture the relative position of the best motif
matches to each other and to the transcription start site. This is done by computing all
pairwise distances between match positions of motifs: v(x) = (p1,x − ptss, . . . , pM,x−
ptss, p1,x − p2,x, . . . , pi,x − pj,x, . . . , pM−1,x − pM,x) , for all i = j = 1, . . . , M ,
where ptss is the position of the transcription start site in the sequence. A simple way of
computing the similarity between two such vectors is to use the RBF kernel (e.g. [SS02]):
krbf(v, v ) = exp v−v 2

σ , where σ is a kernel hyper parameter to be found by model
selection.

Having both parts of the kernel defined, the question remains of how to combine them.
We propose to simply add both contributions: k(x, x ) = k1(x, x ) + krbf(v(x), v(x )).
Please note that if we add the two kernels, it amounts to concatenating the two feature
spaces. If one would multiply the contributions of distances and motif-sequence similarity,
then the kernel would be in some sense similar to the previously proposed oligo kernel
[MTMM04].

2.3 KIRMES Pipeline

Below we describe an integrated PYTHON [Pyt07] pipeline, called KIRMES, using the
previously described kernels to classify promoter regions of genes as transcription factor
targets or not.3 It assumes that the sequences of promoter regions are given in two sets: A
set enriched with transcription factor targets (labeled positive) and a second set containing
no or very few targets (labeled negative). Figure 1 shows an outline of the pipeline for the
classification of promoter sequences based on microarray experiments (cf. Section 3.1).

Wrapper
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experiments

Gibbs Sampling
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Figure 1: Workflow of KIRMES: The pre-processing step requires the genomic sequence and a set of
genes that were measured to be coexpressed in microarray experiments. KIRMES extracts the k-mers
and puts them into a vector along with the positional and conservation information and the score, as
described in Section 2.2. The SVM is trained on a labeled data set of positives and negatives and
can then be applied repeatedly on unlabeled testing datasets.

3Sequences considered in the set can be any part of the euchromatin of arbitrary length, e.g. upstream and
downstream regions of a gene, intronic and exonic parts as well as untranslated regions (UTR) in the 3’ or 5’
direction. Good results can be obtained with a combination of upstream, UTR and intronic sequences. We
used 2000 kb upstream of the translation start; in general longer sequences introduce more noise. Therefore, in
organisms with shorter promoters a reduction would be beneficial for the signal to noise ratio.
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Initial Motif Finding In a first step we used one of two methods to identify potential
motifs. Initially, we used a common Gibbs sampling algorithm [LAB+93] called MOTIF-
SAMPLER from the INCLUSIVE package [TMDS+02] that finds overrepresented motifs.
To make sure we do not include motifs that are too common, we use several strategies:
first, a background model for this organism; second, minimum occurrences were set to
15% or three genes of the set, whichever is more; third, one thousand random gene sets
were generated and searched for motifs of the same length and determinacy. This was
measured through the information content of the position frequency matrix of the motif,
an output of the Gibbs sampling program.

Since this last step takes a significant amount of time depending on the length of the
sequences, we searched for alternatives. We settled on one approach, where we count the
occurrence of any oligomer of length six in positive sequences (oligo-counting). We select
a subset of those oligomers that appear in at least 15% of all positive sequences. This
simple strategy certainly leaves room for improvements, but our experiments in Section 3
illustrate that it already works rather well.

SVM Training We use the large scale machine learning toolbox SHOGUN [SRSS06]
through its PYTHON interface. It provides implementations of all kernels described in this
work and allows fast training using several different SVM implementations, e.g. SVMlight

[Joa99].

Galaxy Web Service KIRMES is available publicly on our Galaxy webserver at http:
//www.fml.mpg.de/raetsch/projects/kirmes. Galaxy is an open-source,
scalable framework for tool and data integration [GRH+05]: Users can upload their se-
quence files and KIRMES will classify the input gene set and return the names of the
co-regulated genes in a list. This can be done for any regulatory region like promotors,
introns, or even the whole chromatin of arbitrary length, and for any organism. To suc-
cessfully use the positional information in promotor regions, it is a good idea to select the
sequences in such a way that the translation start site is at the same position in each of
them.

For this web service, the 6-mer enumeration strategy and the weighted degree kernel with
shifts is used. The use of conservation information is not supported as it depends on the
organism from which the sequences were obtained, it may not always be available and
would require a significantly larger infrastructure. There is no upper limit on the amount
of input sequences, but at least 5 sequences should be uploaded.

3 Experiments
We first describe a dataset which has been used to test the presented methods. The goal
is to predict the expression change status of potential target genes for over-expressed tran-
scription factors based on their promoter sequence.
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3.1 Microarray Expression Data

We derive sets of co-expressed genes from microarray experiments performed with the
commercial Affymetrix GeneChip Arabidopsis ATH1 array. This chip is designed to mea-
sure transcript abundance of more than 20 000 genes of the model organism Arabidopsis
thaliana [RHTT04].

The sets are obtained through a stringent analysis of expression change using the software
GeneSpring [Agi06]. We labeled genes as co-expressed when they showed a four-fold
change of expression in the experiment as compared to the control, and considered those
genes not co-expressed if their levels remain the same, compared to the control, within a
margin of 0.2 fold change. Thus we obtained sets of co-expressed genes.4

We used microarray data from two different experimental setups (cf. Appendix A.1 in
the Supplementary Materials). The first setup uses leaves from wild type Arabidopsis
thaliana plants exposed to medium at 38 °C versus leaves exposed to the same medium
at room temperature, expression measurement taken one hour after exposure [BWS05].
The second setup uses inducible over-expression of Arabidopsis meristem regulators with
the AlcR/AlcA system. Plants harboring 35S::AlcR/AlcA::GOI (GUS control, LEAFY,
SHOOTMERISTEMLESS, WUSCHEL) constructs were grown in continuous light for 12 days
and induced with 1% ethanol. After 12 hours of EtOH treatment, seedlings were dissected
and RNA was processed from the shoot apex and from young leaves. Affymetrix ATH1
arrays were hybridized in duplicates for each gene construct and condition [LTB+05]. In
total we considered 14 different gene sets to be discriminated by the methods.

3.2 Experimental Setup

To train and test the method we first split the data into two parts (80%:20%). The first part
is used for motif finding and SVM training. For hyper-parameter tuning we used the first
part with 5-fold cross-validation to find the optimal combinations of hyper-parameters.
(The SVM and the considered kernels have several hyper-parameters to be given in ad-
vance. This includes the regularization parameter C of the SVM, the maximal length of
oligomers and the maximal shift S considered in the WDS kernel.) The second part is
used for estimating the generalization performance. Here we measure the area under the
ROC curve (auROC) as the generalization performance (random guessing corresponds to
50% auROC).

The above procedure is repeated five times for different splits of training and test examples
(outer cross-validation loop). As performance measure we report the average auROC over
the five splits.

4The fold change is computed from the normalized gene expression level p in treatment and respective control,

c: n =

(
−c/p if p/c < 1

p/c if p/c ≥ 1
. In this case the direction of the change is represented by the sign of n, positive

means up and negative means down relative to the control. If several replicates were available, the mean after
normalization is taken for every gene, for all replicates of p and c respectively.
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3.3 Results

In a first experiment we illustrate that simple methods as for instance SVMs with spectrum
or WDS kernel cannot easily solve the considered classification problem. The results are
given in Figure 2. We can observe that essentially for all gene sets SVMs with Spectrum
kernel fails to identify positive genes (auROC close to 50%). The SVM with WDS kernel
is slightly better, but still produces close to random predictions.

Figure 2: Accuracy of the Spectrum
and WDS kernels: The prediction is
rarely better than random guessing for
these kernels. The kernels are not well
suited for the this particular problem.

Figure 3: Accuracy of variations of the KIRMES ap-
proach: This graph shows a comparison of the basic ker-
nels and the conservation kernels (C) combined with two
different motif generation approaches: by oligo-counting
(Oligo) or by Gibbs sampling (Gibbs). The average per-
formance (µ) is given for each kernel variant. The first set
is taken from a control experiment.

In Figure 3, we present results of the proposed methods in four variants: with motif discov-
ery by Gibbs-sampling vs. oligo-counting as well as with and without using conservation
(cf. Appendix A.2). We can make the following observations: (i) All four versions show
a significantly improved performance relative to the base-line methods. (ii) Motif-finding
using oligo-counting seems to work considerably better in combination with SVMs than
Gibbs-sampling. A possible reason may be that the number of considered oligos (100-200)
is higher than the number of motifs generated by the Gibbs-sampler (less than 50). (iii) Us-
ing conservation as weighting for the WDS kernel considerably improves the recognition
performance. It results in an average improvement of 5 percentage points.

These results clearly illustrate the power of our approach in exploiting the relationship
between motifs as well as the conservation to improve the recognition of transcription
factor targets.

The algorithm can be used for any combination of regulatory regions and also any organ-
ism. Use of the web service integrated into Galaxy is straightforward and the resulting
classification can help scientists with experimental microarray data select genes they want
to investigate further.

An integration of protein binding data such as from chromatin immunoprecipitation ex-
periments on a microarray chip is planned for a future extension of this method. Binding
data can for example contribute to the weighting of a certain transcription factor binding
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site and the surrounding sequence, just like conservation information. In that respect, the
normalization scheme for the number of contributing related organisms can be remodeled
to take into account their evolutionary distances and to generalize it further.

The use by experimentalists will ultimately determine the utility of this approach and gov-
ern the direction of further extensions together with technological advances such as Next
Generation Sequencing methods for transcriptome or protein binding data.
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