Approaching a Methodology for Designing Composite
Applications Integrating Legacy Applications Using an
Architectural Framework

Helge Hofmeister*
ecoware Gesellschaft fiir Informatik mbH
Bamberg, Germany
Email: hofmeister @ecoware.de

and

Guido Wirtz
Distributed and Mobile Systems Group
Otto-Friedrich Universitdt Bamberg
Bamberg, Germany
Email: guido.wirtz@wiai.uni-bamberg.de

Abstract: In this paper, an approach toward a problem-oriented design methodology
for building composite applications is proposed. This methodology allows for a busi-
ness process based design that focuses on re-using both existent enterprise services
and legacy functionality. The methodology takes a reference architecture into account
that describes how composite applications can be structured by means of layers and
which analysis and design patterns can be identified and applied on these layers. The
presented methodology aligns its phases on the architecture’s single layers and on the
dependencies that do exist between the patterns of the single layers. These patterns are
described as well.

Introduction

Service oriented architecture (SOA) is an emerging spirit that promises to allow agile soft-
ware development by re-using existent functionality. The software applications that re-use

functionality are called composite applications.

Inherent aspects of a SOA that should allow for such a re-assembling of functionality are
transparent distribution of functional entities, modularization and facilitated (re-)ordering
of functions. In this world, distributed functions are called services. Transparent distrib-
ution and modularization are of course existent and exploited for quite a time — even if

*Contact

49

the modularization of services in terms of granularity is different e.g. to object orientation.
So the promise of this approach lies in the facilitated composition of services that comes
with arising standards as [ACH"05] or [OAS03] that are orchestration mechanisms for
web services. Together with the SOA and the first service orchestration languages, peo-
ple started thinking of applying some sort of business oriented protocol (such as business
processes) to basic services and having automated support for the business process right
away. We believe that it requires more than technical standards to make this dream come
true. Furthermore, requirement analysis as well as the development should be structured
by reference architectures and development methodologies.

The quality of a system’s design is partially determined by the quality of the basic com-
ponents’ design. Thus, it is important not only to compose services but also to com-
pose well-designed services. This is why there do exist already sophisticated definition
processes (such as [Feu05]) or quality metrics (such as [Rei03]) that support the grouping
of functionality into services. But despite of the advantages of these approaches, services
are, no matter how good they are designed in terms of functional or informational cohe-
sion or the degree of inter-service coupling, by definition distributed across organizational
borders, defined by different people and executed by different agents. So it is not realistic
to expect well-designed services that are easily to be orchestrated by a business process
that is translated into a service orchestration language. Although we consider the SOA ap-
proach and all the benefits of its agility as promising, we believe that business requirements
that are expressed by business processes should not be restrained by the incompatibility of
services. As we derived our initial principles from the analysis of case studies, we con-
sider the heterogenity of application landscapes as a crucial point — even if the landscape
is wrapped using services. Hence, our aim is to provide mechanisms that allow for a re-
quirement engineering that is not constrained by the definition of existing services.

After an overview of related work in section 2, the reference architecture and its relevant
patterns are outlined in section 3. Afterwards the design phases of the design methodology
are presenteded.

2 Related Work

There do exist a lot of software development methodologies, such as the Rational Uni-
fied Process [JBR99] or — still notably — the waterfall model [Roy87]. However, these
methodologies describe software development methodologies while we focus here only on
the aspect of designing the blueprint for the software.

The workflow patterns presented by van der Aalst et al. [vdAtHKBO3], the workflow data
patterns by Russel at al. [RtHEvdAOQS], the service interaction patterns by Barrows et
al. [BDtHO5] as well as the enterprise integration patterns by Hohpe and Woolf [HW04]
are the patterns that can identified at the architecture’s layers.

Although not working with patterns but in terms service design, the work of Reijers
[Rei03] and Feuerlicht [Feu05] provide means for constructing services. The main dif-

50

ference between the presented work and these service definition methodologies is that the
presented methodology focuses on re-using functionality of an existent application land-
scape rather than adding new services.

A comprehensive introduction to service oriented architectures is given in [PG03].
Multi-layered reference architectures are of course used as well in the area of service ori-
ented design. Notably is the work of Decker [Dec05] who also describes an intermediate
layer between business processes and application services that align process and IT. Whilst
this work focuses on the semantical gap between processes and services, this is one among
several aspects one of the reference architecture used here.

In the area of mapping workflow descriptions to each other Dehnert and van der Aalst
developed an approach to map business process descriptions onto workflow descriptions
using petri-nets [DvdA04]. This work is complementary to our work as they describe how
to derive the fourth level of business processes that are executable by means of workflows.
A methodology for migrating legacy applications is given in [WLB 797]. The butterfly
methodology is not focusing on integrating legacy systems but on migrating them while
operating the two worlds in parallel. Anyway, some aspects of this approach such as the
Chrysaliser for data migration decribe similar concepts as the propsed reference architec-
ture.

3 Architectural Framework for Composite Applications

According to Linthicum, Business Process Integration Oriented Application Integration
(BPIOAI) provides another layer on-top of existent system integration concepts such as
information oriented application integration (IOAI) or service-oriented application inte-
gration (SOAI) (cf. [Lin04]). This means, that system-integration focused technologies
such as e.g. JMS messaging (for IOAI) or HTTP-based web services (for SOAI) are con-
trolled by a top-level orchestration layer that implements the business logic. Often, to
this business-process implementation, it is referred to as composite application. While the
composite application implements the business logic, the used integration technologies
solely provide the means for calling application systems that in turn provide the logic that
is orchestrated by the composite application. To this part, not implementing any business
logic, it is referred to as coupling system.

In this chapter we present a reference architecture for composite applications that leverages
the development methodology. The framework is structured by five layers that provide
different abstraction levels for composite applications. An overview of the architecture is
given in figure 1.

3.1 Layer Zero - Legacy Application Systems

Composite applications reorganize services as they are provided by application systems in
order to meet specific requirements. The application system’s services are often predefined

51

{ |
IV. Business Process Execution @-fi}-= -2 =

III. Service Composition

II. Data Exchange and
Transformation

I. Connectivity io ﬁr

Figure 1: Architectural Layers

Data Repository

by the system’s vendor. Alternatively, it might be required to define new services of an
application system or to develop new agents that provide new services. As a prerequisite,
service oriented architectures need to rely on a common protocol that is shared both by
service consumers and providers (cf. eg [Lin04][p. 218]). How application services are
technically connected to service consumers, is described at the subsequent layer.

3.2 Layer One - Connectivity

In order to allow the usage of application system functionality in composite applications,
this functionality needs to be exposed in a common way. This exposure is described at
this layer of connectivity. Here, multiple state transitions of the connected application
system are exposed as services. So this layer provides connectivity in between the legacy
application system and the composite application by homogenizing the protocol that is
used to call functions. From the composite application point of view, this layer provides
the application services. Since this layer solely assures connectivity, the actual data format
at this layer is still dependent to the connected systems. The exchange and conversion of
data is provided at the subsequent layer.

3.3 Layer Two - Data Exchange and Data Transformation

This layer is dedicated to deal with technical complexity by integrating heterogeneous ap-
plication systems and providing homogeneous interfaces to more high-level functionality.
Since we do not mix up business logic with data exchange and transformation function-
ality here, the probability for re-using functionality from this layer is higher. In turn,
subsequent layers do not need to deal with this sort of technical issues. Additionally this

52

layer unifies the data format of the connected application systems to a canonical data for-
mat (cf. [HWO04][pp. 355-360] or [Kau90]). After unification of the data, the data is stored
into a data repository that is part of our reference architecture as well. This data repository
provides the context to the processes that are defined at this and higher layers. Using this
context, all services of a composite application can access and exchange data. Additionally
this layer provides means for validity checking of data in terms of syntax and semantics
as well as error handling procedures that need to be invoked whenever errors occur on this
layer'. Hence, it provides the functionality that encapsulates the actual communication
semantics with the connected systems. This means for instance that acknowledgements
for asynchronous calls are transparently handled by this layer. The technical routing is
performed here as well.

All the functionality that is provided by this layer is encapsulated in so-called integration
services (IS). These services are in turn orchestrated to two different integration processes.
One providing data to the upper layers — the integration in-flow (IIF) — and one for pub-
lishing data from upper layers to the connected legacy systems. The latter process is called
integration out-flow (IOF).

For a more detailed description of the integration services, integration flows and patterns
at this layer you might consider [HWO06].

3.4 Layer Three - Service Coordination

From a top-down perspective the integration flows provide together with the connectiv-
ity services at layer one two standardized services for calling services at or consuming
services from underlying application systems. This is irrespectively of communication or
computational semantics and provides homogeneous data access as well.

The functionality that is provided by these services is nevertheless determined by the func-
tionality offered by the application systems. It might be necessary to aggregate the appli-
cation services to more problem-oriented services (enterprise services). At this layer we
see the coordination of two to n application services with a flow in order to form the en-
terprise services out of application services.

Conceptually, this coordination layer is recursive. This means that an aggregated service
that is composed at this layer might be orchestrated together with services from this or
lower layers to form other high-level services at this layer.

Besides for the sake of bringing together requirements and application services, coordina-
tion at this layer can also be applied to integrate relevant choreographies into the imple-
mentation of a business task.

Ensuring proper state transitions is also matter to this layer’s coordination. Rather short-
term transactions fulfilling the ACID properties as well as long-running transactions might
be required by a composite application.

According to Grefen [GVAO1], the transactional coordination consists in the so-called /o-
cal transactions with ACID properties and one the global transactions with relaxed trans-

I"The error handling at this layer basically covers support procedures that need to be initiated whenever errors
occur (mostly human errors are the cause for this sort of errors).

53

actional properties. The latter one uses ACID transactions as black-boxed functionality to
form long-term global transactions.

In our framework we meet these ideas by assigning local transactions as being encapsu-
lated at this layer into the compositions of the enterprise services that are exposed by this
layer to the business process layer. So the local transaction layer is completely located at
our coordination layer and the coordination protocol (such as the 2-phase commit) is fully
implemented here.

Meeting the long-term characteristics of global transaction, according to Grefen et al. iso-
lation is relaxed by publishing intermediated results to the global context. Atomicity is
relaxed by introducing compensation transactions. Both context publication and compen-
sation transactions are local transactions. Safepoints are local transactions that are marked
by this special property of being a safepoint. Thus, the fundamental support for global
transactions is formed by local transactions.

[GVAO1] proposes as well a way of specifying transactional properties (such as the safe
point properties for local transactions) and an execution model that supports global trans-
actions based on these specifications.

The service choreography that is incorporated into this layer, describes how the external
services and the service that is formed by the layer interact. In order to analyze the inter-
actions we used the service interaction patterns by Barrows et al. [BDtHO5].

Decker introduces a so-called process support layer that deals with various aspects of
incompatibility between business process tasks and application services [Dec05]. To a
certain extent some of these ideas are supportive in terms of designing the third layer.
Anyway, the process support layer cannot be mapped directly to our layer of service co-
ordination but most of the referenced patterns are relevant here as well. These are the
patterns for granularity problems as well as the patterns for interdependency problems.

The third purpose of the service coordination layer is to leverage transactions between
multiple application services. As transactional interaction is a requirement, these require-
ments have to be included into the design at this layer. In order to capture this design
knowledge as well by the means of patterns we introduce two design patterns as they are
informally included in Grefen’s work [GVAO1]: Local Transaction Composition (LTC)
and Global Transaction Composition (GTC).

In order to support these two transactional patterns, we require three properties for ser-
vices or transactional compositions as mandatory. These are: Safepoint, Idempotent and
Compensation. Note that the Safepoint property is unary whilst Idempotent and Compen-
sation are binary properties between transaction compositions. These properties need to
be assigned to the single services of a GTC in order to allow the calculation of GTCs’
compensations.

While an LTC is a black box and commits changes to the context of a workflow after a
successful completion, GTCs are more interactive in terms of context updates. In order to
describe the interactions with the context, the workflow data patterns from [RtHEvdAOS]
are referenced as design patterns at this layer as well.

In this context the data visibility patterns are used to determine how single services of one
transaction compositions share their data. The data exchange between transaction compo-
sitions is described by data interaction patterns. The data transfer patterns can describe the

54

mechanism of how contexts that are only accessible by a transaction composition can be
made available to other services.

3.5 Layer Four - Business Processes

The 5th layer is the layer where business processes are to be executed using workflow mod-
els. The actual functions of the according business processes are realized as services that
are exposed by the lower layers. At this layer it is of importance important how process
branching based on certain indicators (like states) might be performed. Thus, the process
environment needs to have access to the actual context of the process. The data transfer
between application services and the actual context is realized by the Data Exchange and
Data Transformation Layer. The visibility of data is controlled by the Service Coordina-
tion layer and transactional properties are incorporated into the process environment this
way. Access to the process context is realized by the services that are provided by the
coordination layer.

In order to analyze, design and automate business processes with regards to compos-
ite applications, the control as well as the data perspective are important at this layer
(cf. [vdAtHKBO3]). This is because the sequence of underlying tasks that are represented
by services is determined at this layer.

For the perspective of control flows there exist a catalogue of so-called workflow patterns.
The work of van der Aalst et al. consists in a set of patterns that are distinguished into
basic control flow patterns, advanced branching and synchronization patterns, patterns in-
volving multiple instances, state-based patterns and cancellation patterns.

For the data perspective there exists a broad set of patterns as well. [RtHEvdAOQS] dis-
tinguishes the data patterns into patterns for data visibility, data interaction, data transfer
mechanisms and data based routing. Solely the category of data based routing pattern is
relevant for this layer as these patterns describe how data needs to be accessed in order to
guarantee the execution of workflows. As other aspects are not covered by this layer, are
the related patterns also relevant for other layers.

All these patterns are artifacts that can be identified within a workflow description?. Thus,
we consider the mentioned sets of patterns as analysis patterns that can be used in later
phases on lower layers in order to support the design ibidem.

4 A Methodology to Design Composite Applications

The methodology is closely related with the layers and patterns that have been introduced
in the previous section. Thus, describing the methodology basically consists of discussing
the phases that are required to step through that reference architecture.

20f course, they are also useful for designing engine-specific workflow descriptions out of business process
descriptions.

55

4.1 Business Process Modelling and Requirements Engineering

First of all, our approach is very business process centered. Thus, it is absolutely required
to model the relevant business process using a methodology of choice. Important is that the
modelled business process describes not only the control flow perspective. Furthermore, it
is required to also describe the data, organizational and operational perspective 3. Having
this process description as an input, the phases that are described below can be applied.

4.1.1 Enterprise Service Matching

Having described the functional requirements of a to-be built composite application by
expressing the control and data flow perspective of an business process, the single process
steps — usually referred to as functions — need to be matched with services. In order to
support the execution of these functions, the operational perspective needs to be checked in
terms of finding application systems that might already expose suitable services. Suitable
in that case means that the service offers operations that match the functional requirement.
This requirement is usually expressed in a non-formal (usually verbal) way in terms of
required functionality, and in terms of the process’s data perspective. The data perspective
here describes which input and output format are to be sent/received by the identified ser-
vice.*

Whenever there is no suitable service in the organization’s service repository, but the oper-
ational perspective of the business process refers to one or more application services, the
functionality of these application systems need to be analyzed in terms of finding func-
tional areas that might be appropriate for realizing the required functionality. In large
organizations, usually a fraction of the required functionality is already existent in legacy
systems.

Anyway, sometimes there might not exist any application system at all, and the business
process function needs to be implemented from scratch.

The artifact of this phase is either the enterprise service identified in the repository, the
functional areas of relevant application systems that might be used to implement the en-
terprise service or the information that a new service is required to be developed.

4.1.2 Data Interaction Analysis

The next step is to analyze the data interaction as it is roughly described in the data per-
spective and in the control flow perspective of the business process. This can be done
by identifying data interaction patterns’ (cf. [RtHEvdAQS]) data-based routing patterns
within the process. This information is required in order to identify which data needs to

3Note that the operational perspective is — especially for new systems — often incomplete at the time of
requirements engineering.

4Even if a lot of work has provided means for matching services, even dynamically at runtime, we do not
consider these possibilities yet, since large organizations usually lack a formal description of their legacy systems’
functionality. The same is currently true for more recently built service repositories.

56

be accessed by the process execution layer in order to determine the appropriate process
branch.

The artifacts of this phase are the identified patterns as well as the relevant part of the data-
model the pattern operates on as well as specific attributed of the patterns such as target
values or branching conditions.

4.1.3 Transactional Property Identification

Identifying transactional requirements in the business process is a rather difficult task.
Therefore, several iterations are required to gather a complete picture. As a first step, it is
required to express the already known transactional spheres in the business process. These
might either be a set of functions® that need to be grouped into one ACID transaction,
or more probable, sets of functions that need to be grouped into global transactions with
relaxed ACID properties.

The artifacts of this phase are the subgraphs of the business process and the information
they should be handled as local or global transactions.

4.1.4 Definition of Non-Functional Requirements

In the next phase, non-functional requirements such as required response times have to be
collected for the single functions of the business process. An artifact of this phase could
be e.g. a catalogue as it is described in [BSDLO06].

4.1.5 Service Composition

This phase marks the transition from the business process layer to the service composition
layer. Here it is identified whether certain business protocols are required to be respected
while supporting single business process functions. The part of the protocol that is required
to be implemented by the actual organization has to be expressed by service interaction
patterns (cf. [BDtHOS5]). Eventually, other services than the already identified are involved
in such a protocol. This phase finalizes the description of the service coordination layer’s
interactions.

The artifacts of this phase are the references to the involved services as well as the descrip-
tion of their interactions by the means of the service interaction patterns.

4.1.6 Application Service Determination

At this stage the design decision is made how the (eventually) identified lack of enterprise
service can be overcome. For that sake the application systems that have been identified

5This set might also solely contain a single function.

57

during the enterprise service matching-phase needs to be refined in terms what functional-
ity can be combined in order to form the required enterprise service. For that sake, poten-
tial functions of legacy systems, service interaction patterns and the patterns of [Dec05],
need to be used in order to describe the interaction between the legacy systems. In order
to not modify standard software, also functions from the same legacy system might be
required to (re-)composed by the interaction described in this phase.

The artifact of this phase are the detailed description of the legacy functions as well as the
description of their composition by means of the named patterns.

4.1.7 Transactional Composition Analysis

Taking the information from the first transactional analysis phase into account, this phase
uses this information together with the complete description of the service coordination
layer in order to complete the picture of transactional properties.

Again, this involves the identification of workflow sub-graphs in terms of them being local
or global transactions. Additionally, single steps or complete transactions need to be cat-
egorized. This involves assigning the properties Safepoint, Idempotent and Compensation.
The Safepoint property is unary and therefore only to be assigned to a single transaction,
whilst Idempotent and Compensation are binary properties between transactions. These
properties can later on support the runtime to calculate compensations which is necessary
to allow for long-running transactions with relaxed ACID properties.

The artifacts of this phase are both the identification of transactions in terms of their
composition sub-graph as well as their properties.

4.1.8 Top-Down Data Repository Design

With the yet produced artifacts, it is possible to determine which data in the data repository
has to be accessed when and by which component. Additionally, it is determined, how
these accesses need to be protected in terms of transactional properties. As a result, in this
phase it is possible to describe the interaction with the data repository that establishes the
context for the composite applications from a top-down perspective.

The artifacts of this phase is the description of operations that need to be performed against
the data repository. This includes the description of the interaction as well as the possibly
necessary design of new interfaces and wrappers (especially facades for the transactional
access to data entities might be required.

4.1.9 Data Exchange and Data Transformation Definition

Having described the service coordination layer in total, the produced artifacts can be used
in order to design the layer of data exchange and data interaction. For that sake the service
interaction patterns can be applied in order to constrain the patterns that can be used in the
design of this layer. Tables 1 and 2 describe how the service interaction patterns constrain

58

JEre [Crmem O [Eabo Cosie P bing Coie o e [P s, [l | i [Prweioms (S0 allms o [S [l [[el] T

s

"

B
)
1

= | vw Tanod 3

Table 1: Pattern Mapping Concerning the IIF

this design. Crosses (X) indicate mapping between patterns, swung dashes (7) indicate that
the according pattern cannot be used.

Applying these dependencies leads to a pre-selection respectively to discarding of several
patterns of the data exchange and transformation layer.

In order to complete the design, the integration flows that have been identified as being
relevant have to be checked in terms of which of its patterns is required. Additionally,
all parameters coming along with these patterns have to be described as well. The non-
functional requirements are used for some decisions at this point as they further constrain
the decisions.

The artifact of this phase is the complete description of the required integration in-flows
as well as the description of the integration outflows. Note, that this also defines in detail
which legacy systems are integrated into the composite application by which means.

4.1.10 Final Design of the Data Repository with Bottom-Up Aspects

Having specified the second layer — especially the data that flows into/out of the Store/Fetch
Canonical Data integration services (cf. [HWO06]), allows for finalizing the data reposito-
ries design from a bottom-up point of view.

As for the top-down iteration, the artifacts of this phase is the description of operations
that need to be performed against the data repository. This includes the description of
the interaction as well as the possibly necessary design of new interfaces and wrappers
(especially facades for the transactional access to data entities might be required.

59

| — s BT T e e e e Fogrgat]
1. X

"G Wisg] Doc Wsg | Event W=y | Ak ITSuoc | Ret. On Fail] Error Fanding]

e
=

| [l4
=
e
=

Table 2: Pattern Mapping Concerning the IOF
4.1.11 Connectivity Check

In order to connect the identified legacy systems to the composite applications, this phase
checks whether the connectivity (layer one of our reference architecture) is sufficient. This
is quite straight-forward since only the idioms for the Event, the Receiver as well as for
the Updater service need to be supported.

The artifacts of this phase is the information whether the supplied connectors are sufficient
in terms of these services and idioms. If the support for the identified idioms by means
of connectors is not sufficient, a dedicated project might be launched that addresses the
identified issues.

4.1.12 Service Design

As this methodology focuses on re-using legacy application systems, we do not detail
the phase(s) that are required whenever functionality can not be built by (re-)assembling
existent functionality. Due to the immense complexity of this topic, only as an place-holder
this methodology incorporates a design-phase that has to design missing services.

The artifact of this phase(s) are the design for the implementation of new enterprise or
application services.

5 Summary and Outlook

We have presented an approach how a reference architecture can be used to formulate a
design methodology that builds on-top of legacy applications. As we strongly incorporate
both analysis and design patterns, the outlined methodology allows for a business problem
oriented design. Additionally, the reference architecture separates different architectural

60

aspects into different layers.

Since re-use is crucial here, we plan to focus in future work on improving the process of
determining appropriate services/legacy functionality.

Additionally, we need to specify a framework for our reference architecture that provides
an execution environment for the designed composite applications. This will include the
specification of interfaces between the single architectural layers as well as formalizing
the access to the data repository. The latter will provide similar mechanisms as the Service
Data Objects (SDO) specification [BBBT05] proposes with their Data Access Service.
Since the framework is not existent yet we can only map some aspects of the refernce
architecture to existing solutions. Anyway, in order to gain experience we are currently
applying the methodology for itself in a industry case study. After completion of the design
we are going to realize the design using the SAP Netweaver [SAP] product stack.

References

[ACH™05] Tony Andrews, Francisco Curbera, Dholakia Hitesh, Yaron Goland, Johannes Klein,
and Frank Leymann. Web Service Business Process Execution Language for Web
Services Version 2.0 - Draft. Technical Report 2.0, OASIS, December 21 2005.

[BBBT05] John Beatty, Henning Blohm, Christophe Boutard, Stephen Brodsky, Michael Carey,
and Jean-Jacques Dubray. Service Data Objects For Java Specification. Technical
report, BEA and SAP and IBM, 2005.

[BDtHO5] Alistair P. Barros, Marlon Dumas, and Arthur H. M. ter Hofstede. Service Inter-
action Patterns. In Wil M. P. van der Aalst, Boualem Benatallah, Fabio Casati,

and Francisco Curbera, editors, Business Process Management, volume 3649, pages
302-318, 2005.

[BSDLO06] Taiseera Hazeem Al Balushi, Pdro R. Falcone Sampaio, Divyesh Dabhi, and Pericles
Loucopoulos. Performing Requirements Elicitation Activities Supported by Quality
Ontologies. In The 2006 International Conference on Software Engineering and
Knowledge Engineering (SEKE’06), July 5-7 2006.

[Dec05] Gero Decker. Bridging the Gap between Business Processes and existing IT Func-
tionality. In Proceedings of the First International Workshop on Design of Service-
Oriented Applications (WDSOA’05), 2005.

[DvdA04] Juliane Dehnert and Wil M. P. van der Aalst. Bridging The Gap Between Business
Models And Workflow Specifications. Int. J. Cooperative Inf. Syst., 13(3):289-332,
2004.

[Feu05] George Feuerlicht. Application of Data Engineering Techniques to Design of Mes-
sage Structures for Web Services. In Proceedings of the First International Workshop
on Design of Service-Oriented Applications (WDSOA’05), 2005.

[GVAO1] Paul Grefen, Jochem Vonk, and Peter Apers. Global transaction support for work-
flow management systems: from formal specification to practical implementation.
The VLDB Journal, 10(4):316-333, 2001.

[HWO04] Gregor Hohpe and Bobby Woolf. Enterprise Integration Patterns. The Addison
Wesley Signature Series. Pearson Education Inc., 2004.

61

[HWO06]

[JBR99]

[Kau90]

[Lin04]

[OASO03]
[PGO3]

[Rei03]

[Roy87]

[RtHEVdAO05]

[SAP]
[vdAtHKB03]

[WLBT97]

Helge Hofmeister and Guido Wirtz. A Pattern Taxonomy for Business Process Inte-
gration Oriented Application Integration. In The 2006 International Conference on
Software Engineering and Knowledge Engineering (SEKE’06), July 5-7 2006.

Ivar Jacobson, Grady Booch, and James Rumbaugh. The unified software develop-
ment process. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1999.

G. Kaufman. Pragmatic ECAD Data Integration. Technical Report 1, New York,
NY, USA, 1990.

David S. Linthicum. Next Generation Application Integration. Addison-Wesley,
Boston, MA USA, 2004.

OASIS Open. Web Services Composite Application Framework (WS-CAF), 2003.

M. P. Papazoglou and D. Georgakopoulos. Introduction to Special Issue on SOC.
Commun. ACM, 46(10):24-28, 2003.

Hajo Reijers. A Cohesion Metric for the Definition of Activities in a Workflow
Process. In CaiSE/IFIPS. 1 International Workshop on Evaluation of Modeling Meth-
ods in Systems Analysis and Desing (EMMSAD, 03). Velden, Austria., 2003.

W. W. Royce. Managing the Development of Large Software Systems: Concepts
and Techniques. In ICSE, pages 328-339, 1987.

Nick Russell, Arthur H. M. ter Hofstede, David Edmond, and Wil M. P. van der
Aalst. Workflow Data Patterns: Identification, Representation and Tool Support.
pages 353-368, 2005.

SAP. SAP Netweaver.

Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, Bartek Kiepuszewski, and Alis-
tair P. Barros. Workflow Patterns. Distributed and Parallel Databases, 14(1):5-51,
2003.

Bing Wu, Deirdre Lawless, Jesus Bisbal, Ray Richardson, Jane Grimson, Vincent
Wade, and Donie O’Sullivan. The Butterfly Methodology : A Gateway-free Ap-
proach for Migrating Legacy Information Systems. In ICECCS, pages 200-205.
IEEE Computer Society, 1997.

62

