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Weighted Aggregation in the Domain of Crowd-Based Road

Condition Monitoring

Kevin Laubis1, Viliam Simko2, Christof Weinhardt3

Abstract: This paper focuses on crowd-based road condition monitoring using smart devices, such
as smartphones and evaluates different strategies for aggregating multiple measurements (arithmetic
mean and weighted means using R2 and RMSE) for predicting the longitudinal road roughness. The
results con®rm that aggregating predictions from single drives leads to a higher model performance.
This has been expected and con®rms the intuition. The overall R2 could be increased from 0.69 to
0.75 on average and the NRMSE could be decreased from 9% to 8% on average. However, contrary
to the intuition, the results show that weighted aggregations of single predictions should be avoided,
which is consistent with previous ®ndings in other domains, such as ®nancial forecasting.
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1 Introduction

Road roughness is one of the most important attributes that gives valuable insights into

road condition and driving comfort. Thus, metrics such as the International Roughness

Index (IRI) [SGQ86] are considered in most pavement management systems for planning

cost ef®cient road maintenance actions. Nowadays, road authorities relay on measurements

from special-purpose vehicles equipped with lasers and further highly precise sensors for

sensing the road’s pro®le. Furthermore, specially-trained technicians are required for per-

forming these measurements. A bottleneck in assets and human resources leads to mea-

surements performed on a coarse granular temporal basis. In case of the German’s federal

road network, this results in monitoring intervals of four years. With regard to road main-

tenance, this leads to a reactive approach, which directs resources towards road segments

that already reached a critical condition.

Using smart devices from drivers and passengers, it is possible to measure and analyze

vehicle’s vibration and thus, to estimate the road’s roughness magnitude. This is a promis-

ing alternative to the current way of monitoring the road condition. The inertial measure-

ment units (IMUs) in smart devices allows for a near-real-time assessment of road condi-

tion. However, the low accuracy of such sensors, versatile suspension systems, different
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Fig. 1: Outline of aggregating crowd-based road condition measurements from multiple cars

placements of smart devices in the car and other factors lead to a lower prediction accuracy

compared to well-calibrated laser-based measurements. For overcoming this decrease in

accuracy, multiple approaches for aggregating measurements from several cars are com-

pared in this paper. The outline of this idea is depicted in Fig. 1.

Assuming uncorrelated prediction errors of the single car’s predictions, the unweighted

mean is expected to reduce the variance component of the errors and thus, increase the

prediction accuracy. However, it is not clear to what extent the accuracy can be increased.

While it might seem plausible to use weighting schemas based on the model perfor-

mance when aggregating the results instead of applying a simple arithmetic mean, it has

been shown that the arithmetical mean often outperforms a more sophisticated weight-

ing [SW09]. This is true, since a weighted aggregation could increase the prediction error

because of increasing the variance component of the error. On the other hand, weighting

could reduce the bias component of the prediction error. Thus, it has to be investigated

empirically, how weighted aggregation functions perform against the unweighted mean.

For determining, to what extent aggregation of single car predictions can increase the

model’s accuracy and whether weighting of the single car’s prediction is worth an im-

plementation, the focus of this work is to develop and evaluate the extent to increase the

performance of crowd-based road roughness estimations by aggregating estimations from

multiple cars. We apply unweighted and weighted aggregation methods to a dataset gath-

ered by multiple car drives and laser-based road pro®le measurements as a ground truth to

answer the following research questions:

1. To what extent does the aggregation of crowd-based road roughness measurements

from multiple cars increase the model performance?

2. How does the application of weighted aggregation methods instead of unweighted

mean affect the model performance?

The paper is structured as follows: The next section 2 summarizes related work. Section 3

describes the data gathered and analyzed from a single car point-of-view followed by the

sections 4 and 5, which compare the results from three different aggregation methods.

Finally, a conclusion is provided in section 6 and future work is discussed in section 7.
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2 Related Work

Investigating road conditions with smart wearable devices or other devices attached to

the vehicle, which are able to determine the vehicle’s vibrations was goal of several stud-

ies [Bh12, Du14, Er08, MPR08, Ni14, Pe11]. They mainly rely on machine learning ap-

proaches and on physical models representing a car together with its suspension system

([Ja14]).

The authors of the study [Ni14] show a way of applying supervised machine learning

algorithms for predicting the road roughness based on the vertical acceleration provided

by high precision sensors. They built models for different road roughness metrics, but did

not aggregate multiple measurements.

In [MPR08], the fact that the smart devices could be placed at different locations in the

car and with different orientations is considered in addition. This is handled by applying a

virtual reorientation of the device’s axes. Nevertheless, predictions from single cars were

just considered separately.

An approach for determining road segments with single anomalies, such as potholes and

bumps was developed in [Pe11]. The authors also applied machine learning algorithms and

indicated the single car’s performances. An aggregation of multiple measurements was not

performed.

A prominent paper in this ®eld is [Er08]. It describes a machine learning approach for

also detecting potholes with a ¯eet of smartphone-equipped taxis. For getting robust re-

sults, the pothole candidates from single cars were geo-spatially clustered. However, the

performance increase by applying this aggregation function was not investigated.

In none of these studies, the effect of considering measurements from multiple vehicles

was investigated. Some of them considered multiple measurements in terms of geo-spatial

clustering of singular road anomalies [Er08], but the effect on the overall model perfor-

mance compared to single measurements was not examined. Since the effect of multiple

measurements was not determined yet, likewise the performance of different aggregation

functions was not determined in the road condition monitoring domain.

3 Single Car Models

For applying and evaluating different aggregation functions, a set of single-car road rough-

ness prediction models4 is considered in this study. Each model, predicts the IRI of road

segments based on the built-in IMU sensors in a smartphone attached to the dashboard of

a car.

The models consider speed of the car as measured by the GPS module (∼ 1 Hz), the

3-axis accelerometer (∼ 50 Hz) and the 3-axis gyroscope sensors (∼ 50 Hz) of the smart-

phones. The minimum, maximum, standard deviation, variance and the root mean square

4 Prediction models based on random forests [Br01] are considered in this study.
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sensor aggregation number of features

GPS velocity min., max., SD, var., RMS 5

accelerometer (3-axis) min., max., SD, var., RMS, CWT for 5 bands 30

gyroscope (3-axis) min., max., SD, var., RMS, CWT for 5 bands 30

Tab. 1: Features extracted from the smartphone’s IMU sensors

of each 100 m road segment are extracted and considered as features of the prediction

model. From the acceleration and gyroscope measurements, the continuous wavelet trans-

formation (CWT) [TC98] is computed using the biwavelet R package [GGS16]. From the

bias-corrected wavelet power spectrum, the wavelengths of 5.5 m, 31 m, 124 m, 351 m and

703 m are selected as additional features. As shown in Tab. 1 this results in a set of 65

features in total.

The car models are trained and evaluated on a 4.8 km road link for which the actual road

pro®le is provided by the Institute of Highway and Railroad Engineering at the Karlsruhe

Institute of Technology (ISE / KIT). Seven independent car drives are performed and their

measurements are matched to the ground truth road roughness for training and testing the

corresponding seven prediction models. The models are tuned separately for increasing

the coef®cient of determination R2. Next to this performance metric, the root mean square

error (RMSE) and its normalization to the spread of all IRI values measured in this study

(NRMSE) are determined. The NRMSE is de®ned as follows:

Def. 1 (Normalized root mean square error). Let RMSE ∈ R
+ be the root mean square

error of a prediction model. Let ymax ∈ R
+ and ymin ∈ R

+ be the maximum and minimum

of the actual laser-based measured IRI values of the considered road link.

The normalization of the RMSE is defined as follows:

NRMSE =
RMSE

ymax − ymin

The NRMSE was chosen in addition to the RMSE for better interpretability of the results

with regard to its implications. Since both values are proportional, a particular weighting

leads to the same performance of the aggregation functions. Thus, the RMSE is chosen as

the weight in section 4 and the NRMSE values are considered for discussing the results in

section 5.

The performance metrics of the single car models considered in this study are shown in

Tab. 2. The last four rows provide summary statistics of the performance metrics for an

easy comparison with the performances of the aggregated methods described in the fol-

lowing section.



Aggregation in Crowd-Based Road Condition Monitoring 389

drive R2 RMSE NRMSE

1 0.6296 0.2063 0.0975

2 0.5947 0.2184 0.1022

3 0.6604 0.2089 0.0977

4 0.7607 0.1697 0.0794

5 0.7899 0.1601 0.0749

6 0.6967 0.1931 0.0903

7 0.7240 0.1924 0.0900

max. 0.7899 0.2184 0.1022

mean 0.6937 0.1927 0.0902

median 0.6967 0.1931 0.0903

min. 0.5947 0.1601 0.0749

Tab. 2: Out of sample performance of single predictions

4 Aggregation Methods

The aggregation of multiple single car predictions is performed in basically two different

ways. The baseline aggregation function is an unweighted arithmetic mean of the single

predictions. It is formally de®ned in the following Def. 2.

Def. 2 (Aggregation by unweighted mean). Let M1, . . . ,Mn be prediction models. Each

model Mi is a function that maps an n-dimensional feature vector x∈R
n to a real outcome,

i.e. Mi : Rn 8→ R.

The predictions ∀i = 1, . . . ,n : Mi(x) = ŷi can be combined using a simple arithmetic mean

M(x) as follows:

M(x) =
∑

n
i=1 ŷi

n

Def. 3 (Aggregation by weighted mean). Let M1, . . . ,Mn be prediction models with cor-

responding weights W = {w1, . . . ,wn}. Each model Mi is a function that maps an n-

dimensional feature vector x ∈ R
n to a real outcome, i.e. Mi : Rn 8→ R.

The predictions ∀i = 1, . . . ,n : Mi(x) = ŷi can be combined using a weighted mean MW (x)
as follows:

MW (x) =
∑

n
i=1 ŷiwi

∑
n
i=1 wi

Now, as weights, the R2 and RMSE can be used for car models M1, . . . ,Mn which yields

aggregation functions: MR2 and MRMSE . The weighted aggregation functions are applied to

determine whether attaching importance to more performant models has a positive effect

on the prediction performance of the aggregate.
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Fig. 2: Out of sample R2 of aggregated predictions

5 Evaluation

For determining the effect of the aggregation functions and for comparing the performance

of the different aggregation functions empirically, they are applied to the models resulting

from the drives described in section 3. Since there were n = 7 separate drives performed,

the combinations from k = 2, . . . ,7 drives are considered. This leads to sample sizes of:
(

n
k

)

= {21,35,35,21,7,1}

The distributions of R2 over the driving combinations are shown in Fig. 2. For each aggre-

gation function (M, MR2 and MRMSE ) a separate boxplot is shown.

The median R2 of single drive’s predictions (see also Tab. 2) is indicated by a horizontal

line. Even for combining two drives, all aggregation functions achieve a signi®cantly better

median performance (R2 and RMSE) compared to its single drive baseline at a signi®cance

level of at least 5 %. Increasing the number of considered drives likewise increases the

coef®cient of determination constantly for each aggregation function. Comparing the per-

formance of the aggregation functions shows that there is just a minor difference between

them. However, while considering four and more drives, the unweighted mean outperforms

the weighted ones.

A comparison regarding the NRMSE is given in Fig. 3. Similar to the R2 scenario, a con-

stant decrease of the NRMSE is achieved by considering more drives. Furthermore, the

unweighted mean aggregation has a lower median NRMSE than the weighted aggrega-

tions except for the case of two drives.
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Fig. 3: Out of sample NRMSE of aggregated predictions

The mean R2 and mean NRMSE over all aggregation combinations for the considered ag-

gregation functions and for the considered number of drives are given in Tab. 3. If there

was a signi®cant performance decrease (decrease in R2 or increase in NRMSE) of using a

weighted mean aggregation instead of using the unweighted mean aggregation, it is indi-

cated at the corresponding mean performance of the weighted aggregation. Since the ®rst

row indicates the baseline with no aggregation, there is no difference between the aggrega-

tion functions. Likewise, referring to the number of possible combinations, the seventh row

does not contain tests on signi®cant differences in performance. Except for combinations

of drives less or equal to three, the mean performance of the R2 weighted aggregations are

worse than the unweighted aggregations. Regarding the mean performance of the NRMSE

the unweighted aggregation outperforms the weighted ones for all considered numbers of

drives. Even thought the absolute differences are minor, the decreases compared to the un-

weighted mean function are mostly statistically signi®cant even for the small sample sizes.

This indicates that applying a weighted aggregation increases the variance error compo-

nent to a higher extent than decreasing the bias error component. A vertical comparison of

the performance metrics provided in Tab. 3 was discussed based on Fig. 2 and Fig. 3.

6 Conclusion

For answering the research questions (1) to what extent the aggregation of crowd-based

road roughness measurements from multiple cars does increase the model performance

and (2) how the application of weighted aggregation methods instead of unweighted mean

does affect the overall performance, three different aggregation methods (arithmetic mean
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mean mean weighted by R2 mean weighted by RMSE

drives R2 NRMSE R2 NRMSE R2 NRMSE

1 0.6937 0.0902 0.6937 0.0902 0.6937 0.0902

2 0.7234 0.0846 0.7227 0.0846 0.7223* 0.0849***

3 0.7338 0.0827 0.7327** 0.0828 0.7320*** 0.0831***

4 0.7391 0.0817 0.7379*** 0.0819** 0.7369*** 0.0822***

5 0.7423 0.0811 0.7409*** 0.0813** 0.7399*** 0.0816***

6 0.7444 0.0808 0.7430** 0.0809* 0.7419*** 0.0813***

7 0.7460 0.0805 0.7445 0.0807 0.7434 0.0810

*** p < 0.01, ** p < 0.05, * p < 0.1

Tab. 3: Means of R2 and NRMSE over aggregation combinations for considered aggregation func-

tions (unweighted mean, mean weighted by R2 and mean weighted by RMSE) and for considered

number of drives. Signi®cant performance decreases compared to unweighted mean aggregations

are indicated.

and weighted means using R2 and RMSE) are applied to seven single car models. Each

of the car models is a random forest trained on sensor data collected using a smartphone

while driving a distance of 4.8km.

The results con®rm that aggregating predictions from single drives leads to a higher model

performance. This has been expected and con®rms the intuition. Thus, the R2 could be

increased from 0.69 to 0.75 on average and the NRMSE could be decreased from 9%

to 8% on average. In other words, real-time predictive road maintenance gets better with

increasing number of participants.

Contrary to the intuition, our results also show that weighting aggregations of single pre-

dictions should be avoided. This is consistent with the results of the study [SW09], which

describes similar ®ndings in the ®nancial forecasting domain. From a technical point-of-

view, this allows a simpler and thus, more ef®cient implementation.

7 Outlook

It has to be mentioned that all measurements are performed on a homogeneous and re-

cently paved road link. Thus, it is not clear whether the results are valid for other road

types and for a wider IRI range. Beside extending the analysis by a broader set of road

segments and by further car and sensor types, a steps will be to investigate whether the re-

sults are reasonable for road conditions other than IRI as well. Furthermore, it is intended

to determine how the real-time road condition monitoring affects the road maintenance

from a managerial point of view. It has to be investigated to what amount less accurate

models could be applied, while still being economically bene®cial for road authorities. It

should be determined whether single car predictions are already suf®ciently accurate for

planning maintenance actions and if not, it is going to be determined whether the accuracy

increase achieved by aggregation reaches a suf®cient accuracy level.
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Knowing this economic value of a crowd-based road roughness monitoring for road au-

thorities and for road users a business model can be tailored. Such a model should also

encompass incentive mechanisms for motivating drivers to participate in the crowd-based

system.
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