Automated Decision Support for Recurring Design
Decisions Considering Non-Functional Requirements

Axel Busch
Karlsruhe Institute of Technology
busch@kit.edu

Abstract: Planning high quality software means more than regarding functionality.
Considering non-functional requirements, implementing them and understanding their
effects on the software architecture remain often an open question. Therefore, in this
paper, we present an approach that provides decision support in a software develop-
ment process for recurring design decisions in the field of non-functional requirements.
The approach defines a design decision model that allows to encapsulate the reasoning
of design decisions, make them reusable and use them to enable automated feedback
in a decision making process. At the end, this approach increases the developer’s pro-
ductivity by reusing design decisions and therefore allows to implement requirements
with lower overhead and to improve the architecture quality by a tool assisted decision
support process.

1 Motivation and Introduction

Despite of many improvements in software engineering processes, in recent years even
high budget software projects delayed or even failed. The increasing size and complexity
of these software projects requires an explicit consideration of quality attributes. Other-
wise, the software will not fulfill the stakeholders expectations in terms of non-functional
attributes like security, usability or reliability. Considering quality attributes in a software
architecture design is one major task when making architecture design desicions. Due to
missing quantification methodologies for many considered quality attributes, the influence
of a decision on other quality attributes remains unclear. Therefore, it is often difficult to
estimate in advance which attributes an architectural decision would affect. This means
that if a developer has made a decision that improves one specific attribute, the influence
on other quality attributes, e.g. performance, remains an open question.

Our approach addresses these issues when considering recurring design decisions, follow-
ing the concept of the component-based software engineering (CBSE) paradigm. Recur-
ring design decisions are decisions that are applicable in many projects and organizations.
Examples for recurring design decisions may be introducing an Intrusion Detection Sys-
tem or selecting a messaging middleware. In our approach, we encapsulate the reasoning
of such a recurring design decision in one entity to make it reusable and model the ef-
fects on the quality attributes on a software architecture to allow automated requirements
trade-off decisions.

A design decision comprises a generic part that is architecture independent (e.g. com-
ponent interaction) and a part that is specific for a particular architecture (e.g. concrete
components). Such a design decision could be implemented in different ways by differ-
ent components to be used and different deployment configurations of these components.
Each configuration may have its own quality attributes, e.g. different levels of security

291

or different performance properties. These characteristics of design decisions could be
encapsulated to one entity, a design decision model entity. This approach provides a de-
sign decision repository that contains these entities representing solutions for recurring
design decisions, in order to fulfill certain quality requirements. An automated decision
support system uses these design decision model entities to support developers at trade-off
decisions to select the best suitable solution in an existing architecture according to the
project’s non-functional requirements.

2 Related Work

Svahnberg et al. showed in [SWO05] a six-step decision support approach to evaluate dif-
ferent architecture candidates according to the considered quality requirements using the
multi-criteria decision method Analytic Hierarchy Process (AHP). The approach needs
a fully manual definition of the effects on the quality attributes for each design alterna-
tive. Kazman et al. propose in [KKCCOO] their Architecture Tradeoff Analysis Method
(ATAM) that considers the architecture’s degree of fulfilment of quality requirements and
how they interact and influence each other. ATAM allows to think systematically about
quality requirements and the impact of architecture design decisions on quality attributes
of the system. The resulting questions are informally specified and are therefore not con-
venient to be used in automated processes. Manteuffel et al. developed in [MTK ™ 14] an
add-in for Sparx Systems’ Enterprise Architect allowing to model and document archi-
tecture decisions. Their add-in allows to document the link between a design decision
and other model elements. Their approach focuses on documenting design decisions in
software architectures, but omits capturing the effects on the quality attributes or mecha-
nisms to use the results in a decision support process. Horcas et al. showed in [HPF14]
a Software Product Line approach to model functional quality attributes separated from
the base software architecture to modularize them and to make them reusable. They use
the Common Variability Language to inject elements into the architecture. The approach
focuses on variability but does not consider trade-off decisions or providing feedback for
architecture improvements.

3 Goals and Questions

The proposed approach aims to provide automated feedback in a decision making process
allowing to select the best suitable solution for recurring design decisions when imple-
menting non-functional requirements. It includes a design decision repository with design
decision model entities to be used in an automated process to support a user to select archi-
tecture design decisions that are best suiting for the project’s non-functional requirements.

The following goals lead the development of the main goal: GI: Encapsulate and reuse
of design decisions to be implemented in a late architecture design process. G2: Explor-
ing design decision degrees of freedom to give tool-supported feedback for requirements-
driven architecture adaptation, requirements prioritization and refinement.

The following research questions will be answered to reach these goals: RQ I: How to rep-
resent design decisions and their degrees of freedom to be used in an automated decision
support process? RQ2: How to use such a design decision representation in a feedback
process for requirements and architecture improvements?

292

These questions are divided in the subquestions as follows: RQ 1.1: Which attributes
of non-functional requirements have to be modeled in which way? RQ 1.2: Which mea-
sure is adequate for non-quantifiable requirements for the purpose of an automated deci-
sion support? RQ 1.3: How can a general model to represent design decisions look like?
How can architecture generic and architecture specific parts be described and resolved?
RQ 1.4: How can the influence of a design decision on the quality attributes be repre-
sented? RQ 1.5: Which design decision degrees of freedom can be derived and how can
they be represented in a formalized model to be used for an automated design space explo-
ration? RQ 2.1: How to set up a feedback process to support selecting and implementing
suitable solutions in the software architecture? RQ 2.2: How to extend the feedback pro-
cess to refine and prioritize the list of requirements? RQ 2.3: What tool-to-user interaction
is needed to support the feedback process?

suitable solution (7)

software architecture

Quantifiable / Non- :
quantifiable T o.El_(
—> | Reas Requirements :
=
N :

@1

Stakeholders [\ ghawvses) (Reposiory o) el

\
\
\ analyses
|
I

’r)e:lf:)r:ﬁlr;;?éé / Select(s' .|~ resolve architecture
72)) | w dependent part(AJ

<e®
%(2,2)
e

Requirements engineer/ -
Software architect Categories &
Design Decision

Models

h

Pareto-
optimal
candidates

Figure 1: Main steps of our approach

4 Approach

Figure 1 shows an overview of the approach described in this paper. A design decision
support process needs to understand the requirements and implement them in the most
suitable way. The approach focuses on a decision support for selecting and implementing
non-functional requirements that are potentially to be solved by recurring design decisions.

Requirements elicitation typically results in an initial, not prioritized and imprecise defined
list of requirements (1) that might be project relevant. The requirements engineer analyzes
this first sketch of requirements (2.1) and classifies (2.2) them into main categories, e.g. se-
curity or usability. Then he selects (3) for each requirement the potentially suitable design
decision model entities from the repository or adds a newly implemented entity. Each
design decision model entity contains an architecture dependent part that needs to be re-
solved by the software architect for the particular architecture (4). The selected models
are used with the software architecture to calculate (5) pareto-optimal architecture candi-
dates for all considered quality requirements and their properties. The feedback system of
the approach can now use the resulting candidates (6) to provide the requirements engi-
neer and the software architect pareto-optimal solutions according to their focused quality

293

attributes as well as their achievable level of fulfillment. At this point the requirements
engineer has two options: If he agrees with the achieved level of fulfillment of a solution,
this is forwarded to the software architect (7.1) to be used in production. If the anticipated
level of fulfillment may not be achieved, the requirements engineer can now decide to ei-
ther improve the requirements definitions or to refine their prioritization (7.2). In the latter
cases, the process would be iteratively performed as long as the anticipated level of fulfill-
ment is achieved. At the end, the resulting architecture conforms to a suitable trade-off in
order to fulfill the requirements suggested by the stakeholders.

5 Evaluation

Our approach will be evaluated in an empirical study. We plan to assess the benefits of the
approach with respect to the following two main evaluation goals: EG I: Improving the
quality of architecture design decisions. EG 2: Reducing the time to assess the different
design alternatives to fulfill a certain requirement according to its reasoning.

To assess our EGs, we plan to perform two quasi-experiments, one with doctoral re-
searchers and one with graduate students. Each group will be divided into two subgroups:
One experimental group that performs the experiment with tool-support and one control
group that performs the task without tool-support. To evaluate our approach, we will an-
alyze the results to identify the benefits in terms of achieved software quality and used
time. We will use the architecture and documentation of an open source software project
that would provide a strong basis for a representative evaluation. The project should con-
tain a representative software architecture and documented non-functional requirements
implementations. These artifacts provide us a real-world initial software architecture and
software requirements to be implemented with our approach. Both groups will be asked
to make architectural decisions to implement these requirements. We are interested in an-
swering two questions to evaluate our EG 1: Can our approach improve the quality for each
group compared to the control group? Can less experienced users that use our approach
achieve similar quality as more experienced users without support? The goal of EG2 is
to analyze the time that a developer spends on assessing the different design alternatives
to improve the non-functional requirements fulfillment. Again, we use the results of both
groups to derive two kinds of results: First, we evaluate the development time grouped by
the developer’s experience. Second, we compare the results of the lower and higher expe-
rienced developers to analyze if the lower experienced group may close up to the higher
experienced group in terms of development time and resulting quality.

References

[HPF14] Jose-Miguel Horcas, Monica Pinto, and Lidia Fuentes. Injecting Quality Attributes into
SW Architectures with the Common Variability Language. CBSE ’14. ACM, 2014.

[KKCCO00] R. Kazman, M. Klein, P. Clements, and N. Compton. ATAM: Method for Architecture
Evaluation, 2000.

[MTK'14] C. Manteuffel, D. Tofan, H. Koziolek, T. Goldschmidt, and P. Avgeriou. Industrial
Implementation of a Documentation Framework for Arch. Decisions. WICSA, 2014.

[SWO05] M. Svahnberg and C. Wohlin. An Investigation of a Method for Identifying a Software
Arch. Cand. with Respect to Quality Attributes. Empirical Software Engineering, 2005.

294

