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Abstract: Bidirectional model transformation languages are typically declarative, be-
ing able to provide unidirectional operationalizations from a common specification
automatically. Declarative languages have numerous advantages, but ensuring run-
time efficiency, especially without any knowledge of the underlying transformation
engine, is often quite challenging.

Triple Graph Grammars (TGGs) are a prominent example for a completely declar-
ative, bidirectional language and have been successfully used in various application
scenarios. Although an optimization phase based on profiling results is often a neces-
sity to meet runtime requirements, there currently exists no systematic classification
and evaluation of optimization strategies for TGGs, i.e., the optimization process is
typically an ad-hoc process.

In this paper, we investigate the runtime scalability of an exemplary bidirectional
model-to-text transformation. While systematically optimizing the implementation,
we introduce, classify and apply a series of optimization strategies. We provide in each
case a quantitative measurement and qualitative discussion, establishing a catalogue
of current and future optimization techniques for TGGs in particular and declarative
rule-based model transformation languages in general.

1 Introduction and Motivation

In a Model Driven Engineering (MDE) context, the bidirectionality of model transfor-

mations is a crucial requirement for important tasks such as refactoring, evolution, and

supporting the co-existence of different engineering artifacts [CFH+09]. Bidirectional

model transformation languages are typically declarative and enable a high-level specifi-

cation, which is then suitably operationalized for various application scenarios including

forward/backward transformations, and propagation of incremental updates.

∗Supported by the ’Excellence Initiative’ of the German Federal and State Governments and the Graduate

School of Computational Engineering at TU Darmstadt.
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Triple Graph Grammars (TGGs) [KLKS10] are a prominent example for a rule-based

bidirectional language and have been successfully applied in real-world scenarios [GHN10,

HGN+13]. Declarative languages such as TGGs have numerous advantages, but meeting

runtime efficiency requirements can be quite challenging for both TGG tool developers and

transformation designers working with TGGs. Although an optimization phase based on

profiling results is, therefore, often a necessity, there currently exists no systematic classi-

fication and description of optimization techniques for TGGs in particular and declarative

rule-based model transformation languages in general.

In this paper, we investigate the runtime scalability of an exemplary model-to-text round-

trip implemented with TGGs. We take our example from the domain of textual Domain

Specific Language (DSL) development and establish a DSL for describing the persistency

layer of a mobile application.

Our contribution is to establish a catalogue for TGG optimization techniques, useful for

both TGG tool developers and transformation designers, by:

• Identifying the TGG as a bottleneck in our transformation chain. This is an impor-

tant result and motivation for our optimization techniques as a typical model-to-text

transformation consists of several complex components and it is a priori unclear

what exactly must be optimized. We use standard, mature parser and unparser tech-

nology (ANTLR [Par07] and StringTemplate [Par04], respectively) to provide a re-

alistic comparison. This is presented together with our running example in Sect. 2.

• Suggesting a generic format for presenting current and future optimization tech-

niques for TGGs (Sect. 3).

• Systematically applying a series of diverse optimization techniques to our TGG im-

plementation with a quantitative measurement of improvement in runtime and a

qualitative analysis in each case. The optimization techniques are demonstrated in

Sect. 4 – 7 using our suggested presentation format.

We conclude with a brief review of related work in Sect. 8 and future work in Sect. 9.

2 Running Example

Our application scenario is taken from the domain of textual DSL development, and re-

quires a model-to-text round-trip which is implemented with TGGs. The goal is to es-

tablish a compact textual DSL with which an end-user can describe the persistency layer

of a mobile application. The DSL is used to generate Java and Objective-C code for

Android and iOS platforms, respectively, from a common specification increasing pro-

ductivity and maintainability. Our round-trip scenario is part of an industrial coopera-

tion, simplified for presentation purposes, and comprises besides bidirectional transfor-

mations with TGGs, also unidirectional transformations with Story Driven Modelling1

(SDMs) [FNTZ00]. Using our framework2, the transformation chain depicted in Fig. 1 can

1A unidirectional model transformation language via programmed graph transformation.
2http://www.emoflon.org/
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Figure 1: Detailed view of the application scenario with required transformations

be established. The textual specification (Fig. 1::1)3 in form of a file and folder structure

is (un)parsed (from) to a single syntax tree using industrial standard (un)parsing technol-

ogy. The specification consists of a root folder (service app in the concrete example),

which contains a file Database.db, describing the properties of the database (e.g., re-

mote or local) and a subfolder entities, containing a file describing each entity to be

stored as a table in the database. The target model (Fig. 1::2) is an abstraction of this tree,

which is chosen to be maximally suitable for the tasks of validation, refactoring and code

generation. It is conform to the target metamodel (Fig. 1::3), which represents the abstract

syntax of our DSL. After validation and refactorings, the target model is used to generate

platform-specific code (Fig. 1::4,5). The whole transformation chain, therefore, consists

of three different transformations between languages:

(I) The concrete syntax of the textual DSL is transformed to the target model with a TGG.

This transformation is bidirectional, i.e., the target model is obtained from the textual

specification via a forward transformation and, conversely, can be used to generate the

textual specification via a backward transformation.

(II) The target model is transformed via SDM. This unidirectional transformation consti-

tutes an improvement of the model, e.g., validation, refactorings, and creation of derived

attributes and links, e.g., to simplify the task of code generation.

(III) Finally, the platform-specific code artifacts are generated from the (optimized) target

model using StringTemplate.

In the following, we focus on the forward and backward transformation in (I), i.e., the

TGG specification. The forward transformation is crucial for transforming text to model

for platform-specific code generation, whereas the aim of the backward transformation is

to keep the text consistent with the model after applying refactorings in (II).

3Fig. X::Y refers to label Y in Fig. X
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2.1 Implementation with TGGs

TGGs are a rule-based, declarative technique for specifying the simultaneous evolution

of two models, together with an additional correspondence model for traceability. The

set of rules thus describes a language of triples of related models (graphs) in a generative

manner, hence the term triple graph grammar. A TGG can be best viewed as a consistency

relation on triples of source, correspondence and target models in the following manner:

a triple of connected source, correspondence and target models is consistent, if and only

if it can be generated with a sequence of rules of the TGG. The advantage of specifying

such a high-level consistency relation is that numerous operational transformations can

be automatically derived: A forward transformation parses a source model and creates

a correspondence and target model such that the resulting triple is consistent, while a

backward transformation parses a target model and creates a correspondence and source

model. As a single specification is used for the derivation, the forward and backward

transformations are always consistent with each other.

Specifying a TGG starts with declaring the semantic equivalence between the different

concepts of the source and target languages. In practice, this is accomplished with a TGG

schema, a metamodel triple of the source, correspondence and target domains as depicted

in Fig. 2. The source metamodel on the left is a simple tree with concepts for Folders,

Files and Nodes. The target metamodel consists of an abstract Database type, with

Local and Remote as concrete subtypes with additional attributes (not shown explic-

itly). Databases contain arbitrary many Entities (e.g., customer, job, machine),

which in turn contain Properties (e.g., name, address, id). The extends relation

between two Entities is used to enable reuse of entity specifications, i.e., an entity

can extend existing entities and, by doing so, combine and extend their properties. The

correspondence metamodel in the middle, with types depicted as hexagons to differentiate

them visually from source and target types, specifies which source and target elements are

related, e.g., that a File is semantically equivalent to either a Database or an Entity

(both concepts are specified with individual files in the textual DSL, cf. Fig. 1).
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Database
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Remote

Entity

Property

FileToDatabase

FileToLocal FileToRemote
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Figure 2: TGG schema for the model-to-text scenario
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Declarative TGG rules are used to define the actual language of the TGG, i.e., the set

of model triples consisting of connected source, correspondence and target models, which

can be created by using the specified rules. A TGG rule consists of context elements (black

without any markup) stating the pre-condition, which must hold in order to apply the rule,

and created elements (green with a “++” markup) stating the post-condition, which must

hold after the rule is applied. TGGs are declarative as the user does not specify how this

should be achieved (no explicit order of rule application is given).

Figure 3 depicts one of the TGG rules required to implement our scenario. This rule maps

the extends reference between two Entities to a Node (named SUPER TOKEN)

with a child Node representing the name of the extended Entity. This rule requires the

two Entities and their related Files as context. The attribute constraint eq(ex-

tendedName.name, entity2.name) requires that the name of the created node

extendendedName in the tree be equal to the name of the extended entity entity2

in the model. The complete set of TGG rules consists of 5 rules.

entityName1
: Node

extendsNode : Node

name == "EXTENDS_TOKEN"

superNode : Node

name := "SUPER_TOKEN"

++

extendedName : Node

++

entityFile1 :
File

entityFolder :
Folder

entityFile2 :
File

entityName2 :
Node

entity1 :
Entity

fileToEntity1 :
FileToEntity

entity2 :
Entity

fileToEntity2 :
FileToEntity

{eq(extendedName.name, entity2.name)}

name

name

target

source

targetsource

++

extends

rootNode

file

file

folder

folder

file

file
rootNode

parentNode
++ children

parentNode

++ children

parentNode

children

Figure 3: TGG rule creating an extends relationship and corresponding tree structure

2.2 Runtime Measurements

Runtime results for this initial implementation are depicted in Fig. 4. All measurements

were repeated 10 times (the median is shown in the plot) and executed on Windows 7

x64 with an Intel i5-3550 (3.30 GHz) processor and 8 GB memory. The x-axis shows the

number of elements in the target model and ranges from 1000 to 20000. The black vertical

dashed line is used here and in the rest of the paper to indicate a change in step size (a

change from 1000 to 10000 in Fig. 4). The y-axis shows the time required for each single

transformation in seconds using a logarithmic scale. Confidence intervals are not depicted

as there was practically no significant difference between measurements.
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Figure 4: Runtime measurement for the inital implementation with TGGs

Note that the tree structure in the source domain, i.e., the input created by the parser

(Parse) for the forward transformation (TGG FWD V0), contains approximately six

times as many elements as the target model in our round-trip scenario. Furthermore, the

implemented refactoring (SDM) ensures that all entities have a property, which is marked

as being unique in the textual syntax (this influences the generated search methods). For

example, if the entity Job only has a property name, which is not necessarily unique,

the refactoring creates a new unique property id for Jobs. We generate input models

randomly ensuring that a fifth of all model elements are Entities and that from these

Entities, a fourth do not have a unique property and are then corrected by the refac-

toring. This means that 5% of all model elements are manipulated by the SDM transfor-

mation. These changes are transformed back to text by the backward transformation (TGG

BWD V0), recreating the tree from scratch, which is then unparsed to text (Unparse).

These results clearly identify the forward transformation as the bottleneck in the transfor-

mation chain requiring almost 40 minutes for a model with 20000 elements, compared to

less than a second for parsing! Perhaps even more crucial – the forward transformation

runs out of memory for models with more than 20000 elements.

Using a Java profiler, the TGG rule in Fig. 3 is identified as the main cause for runtime

and memory problems in the forward direction, as all pairwise combinations of Files

are collected (memory consumption) and checked for cross references (runtime). This is

especially problematic due to the higher number of elements in the source domain.

Although the TGG rule is certainly “correct” and appropriate from a declarative point of

view, it severly limits the scalability of the derived transformations for large models. In

the following, we systematically apply a series of optimization techniques to the TGG to

reduce (i) the runtime of mainly the forward transformation (and in some cases also the

backward transformation) and (ii) the memory usage to enable a round-trip with models

larger than 20000 elements.
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3 Generic Structure of an Optimization Technique

In this section, we propose a structure for presenting (TGG) optimization techniques, in-

spired by [GHJV95]. This is then used consequently in ensuing Sect. 4 – 7 to present a

series of concrete optimization techniques. As our catalogue is far from complete, this

structure is meant to be used for presenting future techniques and to be extended as neces-

sary, possibly also for specific (TGG) engines.

Each optimization technique is presented in 8 parts:

Name: A descriptive name for the optimization technique used to identify and refer to

it. In the following Sect. 4 - 7, the title of the section states the name of the respective

optimization technique.

Intent: A brief description of the main idea and goal of the technique.

Motivation (forces): Reasons and arguments why a specific optimization technique is

advantageous and particularly effective in the context of TGGs.

Target User: We consider the target user to be either: (i) A TGG tool developer who un-

derstands and has access to the underlying TGG engine, and is able to implement generic,

problem-independent optimizations, or (ii) A transformation designer, who is a domain

expert in the relevant application field and can implement problem-specific optimizations.

Mechanics: A schematic description of how the technique is to be applied.

Example: An exemplary transformation showing how the technique is applied and giving

quantitative measurement results with a qualitative discussion.

Consequences: A discussion of applicability, limitations and scope of the optimization

technique. In what cases is the technique particularly effective and when not.

Extensions: A discussion of possible variations and generalizations of the optimization

technique, and a comparison with other related techniques that are either alternatives or

which can be successfully combined with the presented technique.

4 Progressive, Domain-Driven Determination of Rule Applicability

Intent: The pre-condition of a TGG rule must hold, i.e., all context elements must be

present and all attribute constraints must hold, for the rule to be applied. This is also the

case for the operational rules (forward, backward) derived automatically from the TGG

rule. In case of a forward4 rule, however, the context in the source domain is extended to

cover all source elements in the TGG rule. This is because a forward rule parses a given

source model and creates new elements only in the correspondence and target models.

At runtime, a forward transformation is realized by determining an appropriate sequence

of forward rule applications. This involves the main task of checking if a rule can be

applied to translate a certain element in the source model. To improve efficiency, this rule

4Arguments for backward rules are analogous.
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applicability check can be performed progressively by checking applicability first in the

source domain, and then, only for successful cases, extending the check to all domains.

Motivation (forces): Navigating from input model elements to correspondence and output

model elements involves larger patterns and navigating inter-model references, possibly in

an inverse direction to their actual navigability. This is a costly operation and is per-

formed unnecessarily if input model elements already violate the source domain-specific

pre-conditions of the rule. Filtering out rules as early as possible is, therefore, an important

means of reducing runtime.

Target User: TGG tool developers who should implement a progressive, domain-driven

sequence of rule applicability checks, and transformation designers who should support

this optimization by preferring domain-specific pre-conditions over cross-domain pre-

conditions wherever possible.

Mechanics: According to [KLKS10], an operational rule is said to be appropriate if its

precondition is satisfied with respect to the input domain and applicable, if its complete

precondition (over all domains) is satisfied. In our framework, operational rules derived

from a TGG specification are decomposed into an appropriateness check, an applicability

check, and a perform transformation. In this manner, appropriateness checks are used to

filter all rules before applying applicability checks and finally applying the chosen rule

with the perform transformation.

In the process of this rule decomposition, the attribute constraints of a TGG rule are ana-

lyzed and decomposed analogously, depending on if they can be solved completely in the

input domain, or not. Due to local variables used to link constraints, this is a non-trivial

analysis and must be conservative in some cases.

Example: The sole attribute constraint in the TGG rule depicted in Fig. 3 requires that

the name of the created Node (extendedName) be equal to the name of the extended

Entity (entity2). In case of a forward transformation, this cross-domain constraint

defeats the optimization as all possible pairs of Files (entityFile1 and entity-

File2) fulfill the precondition in the source domain and only the applicability check can

choose the correct match via the attribute constraint. In this case, however, the attribute

constraint can be reformulated and restricted to the source domain without changing the

semantics of the rule. Requiring the name equality already within the tree structure, i.e.,

with eq(extendedName.name, entityName2.name), would filter all pairs of

Files that do not reference each other and eliminate invalid matches already with the ap-

propriateness check before performing further pattern matching in the applicability check.

This is an example for a small change that has a considerable impact on runtime and mem-

ory consumption as can be seen from our measurements depicted in Fig. 5. With identical

axes and experiment setup as for Fig. 4, the runtime for the initial version of the TGG for-

ward transformation is displayed in the plot as TGG FWD V0. The improved version with

the reformulated constraint, which makes the TGG rule conducive for the mentioned op-

timization via decomposition of the rule, is displayed as TGG FWD V1. All other curves

are optimizations discussed in ensuing sections. The results show that, firstly, the runtime

of the transformation has been considerably reduced from about 40 minutes to 37 sec-

onds, and secondly, that the transformation now runs in about 4 minutes for 50000 model
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Figure 5: Runtime measurements for the first three optimizations

elements and a bit more than an hour for 200000 model elements. The main reason for

this improvement is that far fewer partial matches have to be stored, which reduces mem-

ory consumption and avoids memory trashing. As a final remark, note that this change is

problem-specific and requires domain knowledge of the transformation designer to decide

how to reformulate constraints in a semantics-preserving manner.

Consequences: Our results show that it is advantageous to eliminate inappropriate matches

in an early phase of rule application. The overall complexity of the underlying TGG algo-

rithm increases, however, due to the intermediate steps and additional rule decomposition.

This is unnecessary when only cross-domain dependencies play a role in rule applicability,

i.e., it is impossible to reformulate constraints as in our running example. Furthermore,

the optimization technique implies that runtime can actually be improved if the transforma-

tion designer provides additional context information, which is actually redundant from a

declarative point of view. This behaviour is neither intuitive nor expected for users without

prior experience with constraint solvers.

Extensions: As the pattern matching process is separated into two sequential steps, partial

matches from the appropriateness check can be reused in the applicability check to further

improve efficiency (tradeoff of memory for runtime performance). Furthermore, user-

defined costs for attribute constraints together with a unified handling of attribute and

graph constraints can be used to determine an optimal search plan for pattern matching.

5 Caching and Indexing of Derived Graph Properties

Intent: The amount of pattern matching required for performing appropriateness checks

can be substantially reduced by caching derived graph properties in the input model, e.g.,

attribute values or relations between nodes.

Motivation (forces): Caching of derived information in a model is, in general, highly

non-trivial as certain but not all changes to the model require updating the cache. As a

233



TGG forward/backward transformation, however, does not change the input model, cached

information is valid during the entire transformation and does not require complex and

potentially costly bookkeeping.

Target User: The TGG tool developer who must provide a suitable caching/indexing

mechanism in the tool, and the transformation designer who has the required domain

knowledge about which properties to cache/index and how this should be accomplished.

Mechanics: Our framework supports virtual links between nodes in TGG rules, referred

to as binding expressions. Binding expressions represent auxiliary methods that possibly

access a global cache and return candidates for the required model elements. Stubs for

these methods are automatically generated by the tool and must be implemented by the

transformation designer with SDMs or plain Java.

Example: The TGG rule from our previous optimization (TGG FWD V1 in Fig. 5) still

collects all pairs of Files and filters them using the attribute constraint. This can be

made more efficient by caching all root Nodes of all Files in an initial iteration and

using this cache (e.g., a hashtable mapping names of root Nodes to the actual Nodes) as

an index when searching for a root Node with a particular name.

Fig. 6 depicts the adjusted TGG rule, which now uses a binding expression (dashed ar-

row) from extendedName to entityName2. The latter is depicted with a bold frame

to indicate that it is now bound via an auxiliary method that takes extendedName as

parameter (recall that extendedName and entityName2 must have the same name).

Cross-references are now found in constant time with the help of a global cache. The for-

ward transformation with this new version is displayed in Fig. 5 as TGG FWD V2. The

results show that a moderate speed-up with factor of up to 2 can be achieved as compared

to our first optimization TGG FWD V1. Note that, although we apply the optimizations in

the order we present them, TGG FWD V2 does not profit from the first optimization TGG

FWD V1 as the attribute constraint is no longer used for filtering in the forward direction.

entityName1
: Node

extendsNode : Node

name == "EXTENDS_TOKEN"

superNode : Node

name := "SUPER_TOKEN"

++

extendedName : Node
++

entityFile1 :
File

entityFile2 :
File

entityName2 :
Node

entity1 :
Entity

fileToEntity1 :
FileToEntity

entity2 :
Entity

fileToEntity2 :
FileToEntity

{eq(extendedName.name, entityName2.name)}

parentNode

children

parentNode
++

children

parentNode
++ children

filerootNode

rootNode

file

++

extends

source target

name
name

source

target

Figure 6: The new version of the TGG rule using binding expressions
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Compared to TGG FWD V1, the runtime improvement is especially noticeable for mid-

sized models (10000 to 50000 model elements). Apparently, the pairwise matching of

Files is not the critical factor for smaller models. In case of larger models, other issues

such as pattern matching, more specifically navigating to other domains, become more

time consuming and outweigh the positive effects of the optimization.

Consequences: Determining what to cache requires problem-specific knowledge in gen-

eral. In our example for instance, the speed-up provided by the cache depends on the num-

ber of extends relations between entities. In the worst case scenario, using the cache

for very large models can actually be slower if exactly one extends relations is used, i.e.,

the time is spent for lazily filling the cache, which is only used once. It is also important

to remember that a cache represents a trade-off of memory for runtime.

A further issue is that TGG rules get more abstract the more binding expressions are used.

Details are hidden behind virtual links that do not really describe how the search is per-

formed. This can reduce the overall readability of the rules if used excessively.

Extensions: Similar to attribute constraints as discussed in the previous section, binding

expressions can be weighted with a user-defined cost function and uniformly handled as

constraints by the search plan generator. For straightforward cases, the TGG tool could de-

termine if an index should be built over a certain attribute value (e.g., name in our running

example), creating and implementing an appropriate binding expression automatically.

6 Static Analysis of TGG Rules

Intent: A static analysis of the TGG rules can be performed to extract information about

the dependencies and structure of the rules. This can be exploited to improve performance.

Motivation (forces): Results and techniques from the mature field of graph transforma-

tions can be used to analyze the structure of and dependencies between TGG rules.

Target User: TGG tool developers who must provide a static analysis at compile time to

generate additional artifacts to support the transformation process.

Mechanics: A concrete technique is to obtain a global view of dependencies between

rules and types via a precedence analysis [LAVS12a], which can be used to optimize the

order in which elements of the source model are processed. The goal is to avoid arbitrary

choices by the algorithm and a consequent recursion stack.

Another strategy is to construct rule filter tables using the types of created elements in

TGG rules and attribute constraints that compare attributes of nodes to constant values.

These tables can be used at runtime to filter rule candidates in constant time before running

the appropriateness checks.

Example: Applying a rule filter table for our running example, we were able to speed-

up the translation by about 10% as depicted in Fig. 5 (TGG FWD V3). Although this is

moderate compared to the previous optimizations, note that this optimization is “free-of-

charge” at transformation time and is applicable for all TGGs, i.e., is a generic optimization
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and is not problem-specific. Furthermore, depending on the concrete example, the speed-

up obtained by using filter tables can be much more, especially for rules with large patterns

and models with few types and many attribute constraints.

Consequences: Generating additional information from a TGG specification prolongs the

compilation process, hindering an agile development/test/debug workflow especially for

large TGGs. A more critical issue is that the table lookup must be much faster than the

saved effort of pattern matching. Especially if the filters are not able to exclude any rules,

this might actually slow down the translation process if too much computation is involved.

Extensions: The goal of reducing the effort of checking rule applicability for a large

number of rules is closely related to incrementally updating matches in the context of

incremental pattern matching. Existing results and techniques [VD13] show that a Rete

network can be constructed from all rules and used to avoid redundant pattern matching

completely. This can be seen as a generalization of our rule filter tables and is future work.

A related approach is using model sensitive search plans [VDWS13] to exploit information

collected from the models (especially the input model) during the transformation process.

A final approach is using static analysis techniques from graph transformations to paral-

lelize (i) the rule applicability checks, and (ii) independent transformation steps [IM12].

7 Incremental Updates

Intent: In case of an existing triple of relatively large source, correspondence and target

models, a “small” update to the source model (target analogously) typically affects only

a “small” subset of the correspondence and target models. Propagating these changes by

incrementally adapting the existing models can be potentially much more efficient than

recreating the models from scratch.

Motivation (forces): The consistency relation described by a TGG can be used not only to

derive forward and backward transformations, which create output models from scratch,

but also to realize incremental updates. Changes to the source model can be propagated

incrementally to an existing target model in this case. Only the relevant parts of the triple

are traversed and manipulated as required to restore consistency.

Target User: TGG tool developers who must implement an appropriate incremental TGG

algorithm, and the transformation designer who must decide if an incremental propagation

of changes is necessary and feasible in a certain application scenario.

Mechanics: Given the changes applied to the input model, a TGG incremental algorithm

has to (i) compute the complete set of input model elements S that must be re-transformed

as they depend on, e.g., deleted elements, (ii) revoke the rule applications used to transform

S, i.e., delete related elements in the correspondence and output domains, and (iii) re-

transform all elements in S by invoking the forward transformation on the existing triple.

This is typically achieved by exploiting additional information such as dependencies be-

tween the correspondence links, or transformation protocols recorded during the transfor-
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mation. The crucial point is that all steps must be independent of the total size of the

models involved and only depend on the size of the change and transitively affected ele-

ments. The latter is typically a much smaller set than the total number of elements.

In practice, a critical component for realizing incremental updates is a change recognition

mechanism, which can either be a model diff that compares two versions of a model, or an

online change detector that records all changes in a notification-based environment.

Example: With the same setup and environment as for the measurement in Fig. 5, the

runtime measurement results for our incremental TGG algorithm [LAVS12b] are depicted

in Fig. 7. In the plot on the left, the refactoring described in Sect. 2 (recall that 5% of all

model elements are manipulated) was performed directly in the textual syntax and prop-

agated with our incremental forward TGG transformation TGG FWD V4. To provide a

comparison, the optimized batch (non-incremental) forward transformation is displayed

in the plot as TGG FWD V3. To simulate a situation where offline change recognition is

necessary, the textual syntax was changed offline and re-parsed to yield a new tree with the

refactoring applied. This is then compared to the old version of the tree via a diff mech-

anism, to identify the differences which are then propagated incrementally to the existing

correspondence and target models. To show the actual cost of offline change recognition,

the sum of diff and incremental algorithm is displayed in the plot as Diff + TGG FWD

V4. Note that we had to implement a specialized tree diff as generic model diffs such as

EMF compare were much too inefficient. Our results show that the incremental algorithm

is considerably faster than the optimized batch transformation with less than half a second

compared to almost three seconds for 5000 model elements.5 A speed-up factor of about 7

- 13 remains constant for all model sizes. For a model size of up to 10000, the total cost of

diff plus synchronization is less than for the batch transformation with 1.3s as compared to

2.6s for 5000 model elements. This, however, reduces progressively and the advantage of

the incremental algorithm is defeated by the cost of calculating the changes with the diff

algorithm. This is to be expected as the tree diff is not incremental and does not exploit

information from previous runs.
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Figure 7: Runtime measurements for the incremental TGG implementation

5Recall that the elements in the tree are roughly 6 times as many as in the model.
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The plot on the right compares the batch and incremental modes for the backward trans-

formation. In this case, the refactoring is applied with SDMs on the model and propagated

back to the tree and textual syntax using our incremental TGG algorithm TGG BWD V4.

To simulate a situation where an online change recognition is possible, the SDM refactor-

ing transformation additionally creates the appropriate deltas for the incremental propaga-

tion, i.e., there is no need for a model diff. The backward batch transformation is displayed

in the plot as TGG BWD V3. The results show that both modes are much more efficient

in the backward direction. This is to be expected as the model is smaller, better typed,

and suitably connected, i.e., it is easier to create the larger, weakly typed tree structure

than to parse it. Nonetheless, the incremental algorithm enables a moderate speed-up with

0,5s compared to 1,5s (a factor of 3) for 10000 model elements and slightly less for larger

models with 81s compared to 137s (a factor of 1.7) for 200000 model elements.

Consequences: Although online change recognition is more efficient and less error-prone,

an application scenario might require offline changes to be handled.6 In such a case,

naı̈ve diff algorithms might not scale and it can be quite challenging to deal with change

recognition correctly and efficiently. We have focussed with our experiments on efficiency

arguments for incremental updates. A further, possibly even more important argument is

infomation loss. In many application scenarios, there is irrelevant information in one or

both domains, which cannot be reconstructed from the model in the other domain. In such

cases, updates must be handled incrementally to ensure correct results.

Extensions: Handling a set of concurrent changes, i.e., changes to both source and target

models requires conflict resolution and is currently not supported by our incremental TGG

algorithm. This is, however, often the case in practice and is important future work. Fi-

nally, our current incremental TGG algorithm is rather conservative and can be improved

by further analyses to accurately determine the exact set of transitively affected elements.

8 Related Work

There exist various bidirectional transformation languages. For a survey and a detailed

discussion, we refer to [Ste08, CFH+09]. In this context, efficiency has, however, not yet

received as much attention as, e.g., formal properties, although it is crucial for the prac-

tical feasibility of a bidirectional language as certain minimal runtime requirements often

must be met. Depending on the application scenario, this might even outweigh all other

advantages that a bidirectional, declarative language has to offer. With our contribution

we try to close this gap for TGGs and demonstrate that it is indeed possible to optimize

the derived transformations as required. Our results are TGG specific but the core ideas

and techniques can be transferred to other (especially rule-based) languages.

Giese et. al [GH09] and Lauder et. al [LAVS12b] both lay emphasis on efficiency as the

main argument for an incremental TGG algorithm. In practice, however, especially when

changes have transitive effects (e.g., a root element is changed), or change recognition is

particularly difficult, supporting incrementality is not the sole way of improving efficiency.

6This is currently the case in an ongoing industrial application.
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In such cases, other optimization techniques as presented in this paper are necessary.

The numerous optimization techniques in the mature field of graph transformations mostly

concern the pattern matching process [VAS04, VDWS13, GSR05], and discuss diverse

strategies for optimal search plan generation. These results have served as a major source

of inspiration, and we have already adapted ideas that are especially effective for TGGs.

Finally, the parallel execution of independent transformation steps as proposed in [IM12]

is an optimization technique that is currently rarely used in practice, but can be potentially

very powerful for TGGs when combined with a suitable dependency analysis.

9 Conclusion and Future Work

In this paper, we have proposed a format for presenting current and future TGG optimiza-

tion techniques. We have used this format to discuss four concrete optimization tech-

niques, demonstrating each of them on our running example, which is part of an industrial

application where a textual DSL requiring a model-to-text round-trip is used to specify

the persistency layer of mobile applications for different target platforms. Our runtime

measurements show that an optimization factor of about 300 (complete transformation) to

500 (incremental with 5% change size) can be achieved in the bottleneck of our scenario,

namely the forward, i.e., text-to-model, transformation with TGGs. More crucially, the

optimizations have enabled round-trips with larger model sizes by reducing memory con-

sumption. Our proposed catalogue of optimization techniques should serve as a guideline

for both TGG tool developers and transformation designers when efficiency issues threaten

to outweigh the advantages of TGGs.

As future work, we plan to implement and investigate the various extensions to each tech-

nique as already discussed in the paper. To improve the validity of our measurement

results, we plan to establish a transformation zoo of diverse TGG examples, which can

serve as a benchmark that covers important aspects of various application scenarios.
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