
I-Pattern for Gap Analysis

Philipp Gringel, Matthias Postina

Software Engineering for Business Information Systems
OFFIS - Institute for Information Technology

Escherweg 2
26121 Oldenburg, Germany

{philipp.gringel, matthias.postina}@offis.de

Abstract: Patterns are an effective way to express solutions to constantly occur-
ring problems in software engineering. Books like Erich Gamma’s Design Patterns
([Gam94]) or Martin Fowler’s Analysis Pattern ([Fow96]) helped to develop a com-
mon understanding of problem solving in this field. The pattern catalog developed
by members of the chair Software Engineering for Business Information Systems (se-
bis) of TU-Munich ([BELM08]) addresses patterns related to reoccurring problems in
enterprise architecture management (EAM) and the authors are still working on this
catalog. [BELM08] mentions several concerns related to SOA but is missing patterns
concerning the initiation of SOA. This contribution will elaborate on an I-Pattern re-
lated to SOA-initiation on the basis of [EHH+08]. The focus lies on the problem
of gap analysis on application landscapes as stated in [PSS09] and will further add
metrics for gap analysis to this I-Pattern.

1 Introduction

The paradigm of service-oriented architecture (SOA) has undergone a remarkable change.
Considered as a technical solution for a long time, SOA is today regarded as a conceptual
approach able to align enterprise IT systems with the business strategies and processes
they are supposed to support. SOA success stories in large enterprises indicate that service
orientation is an effective way to integrate legacy systems as reusable building blocks
into a flexible enterprise architecture. However, especially for small and medium sized
enterprises, SOA is a far cry from being already implemented as mainstream. So strategies
for initiating SOA in enterprises (like [EHH+08], [AGA+08]) are still subject of interest.
The pattern catalog ([BELM08]) addresses concerns related to SOA (C-51, C-61, C-62, C-
64, C-65, C-66, C-67, C-71 for example) but is missing patterns concerning the initiation
of SOA. Our contribution will elaborate on an I-Pattern supporting a specific aspect of the
process of SOA-initiation on the basis of Quasar Enterprise ([EHH+08]). We focus on the
problem of gap analysis on application landscapes as stated in [PSS09] and will further
add metrics for gap analysis to the I-Pattern.

281



1.1 Intended Audience

This article about I-Pattern for Gap Analysis is intended for people concerned with plan-
ning the enterprise evolution - like an enterprise architect for instance. The described
pattern focuses on the problem of performing a gap analysis between two states of the ap-
plication landscape, where the current state has a pre-SOA status and the envisioned state
should be designed according to the principles of Quasar Enterprise.

2 Gap Analysis Concern

The term gap analysis is used in context of enterprise architecture as a name for the com-
parison between two architectures or strictly speaking two states of the same architecture.
The Open Group Architecture Framework (TOGAF) uses the terms of baseline- and target-
architecture for these two states ([The09]).

In our case we follow the methodology of [EHH+08] and focus on SOA initiation, so
we compare the current (non-SOA) landscape of an organization to an envisioned land-
scape (Ideal-SOA). The concern of gap analysis in this context means to understand the
architectural differences between current and ideal landscape in order to get an idea of the
characteristics which have to be improved on the way towards an ideal service-oriented
landscape. When we use the term ideal, we mean ideal in terms of being designed corre-
sponding to the principles of Quasar Enterprise.

Component B Component C Component E

Domain I Domain II

Application Landscape

Interface Operation

Component DComponent A

Operation Calls

Figure 1: Ideal Application Landscape - Schematic Overview

Figure 1 provides a schematic overview of an ideal application landscape designed in ac-

282



cordance to [EHH+08]. Thereafter, service capabilities of an organization are provided by
application components as operations encapsulated by services and described by interface
descriptions. Application components are grouped by domains and domains are designed
by functional decomposition of the enterprise. This means that [EHH+08] consider SOA
initiation as a business driven process. Concerning gap analysis, we are observing the
structural deviation between the current and ideal state of the application landscape.

To establish this understanding, we define in section 3 the data-structures describing the re-
lationship between current and envisioned landscape as an I-Pattern. Based on this pattern,
we present structural metrics which are used to quantify the differences between landscape
states. Basically, we follow the definitions of [EHH+08] and partially extend the metrics
defined there.

2.1 Forces

The problem of gap analysis on application landscapes described in this pattern could be
summarized by the following question:

How do I need to restructure the current application landscape to converge towards
an ideal application landscape designed according to the principles of Quasar Enter-
prise?

The following forces influence gap analysis on application landscapes:

1. Qualitative assessment and quantitative assessment The outcome of the gap anal-
ysis is an action list for possible measures to overcome the structural deviation be-
tween current and ideal application landscape. It deserves mentioning that this list
reflects the quantitative assessment only and qualitative assessment could possibly
complement this.

2. Considering entire application landscape or focus on selective components The
gap analysis focuses on operations as atomic building blocks to detect structural
deviations between current and ideal application landscapes. This is a detailed level
of description when it comes to modeling both landscapes. The amount of needed
data has to be considered carefully.

3. Regarding state snapshots for gap analysis or monitor the distance over time
When performing gap analysis, two states - current and ideal application landscapes
- are compared. Measures of the action list correspond to the outcome of this com-
parison. The architect needs to consider the circumstances of architectural work. Is
the gap analysis part of a strategic enterprise architecture initiative or is it executed
for a single comparison only?

283



3 I-Pattern

”An I-Pattern contains an information model fragment including the definitions and de-
scriptions of the used information objects” ([BELM08]). According to this definition we
wrote down an I-Pattern to support the gap analysis concern.

Following TOGAF and Quasar Enterprise, the ideal application landscape (ideal AL)
should be designed according to the future / ideal business architecture. So the top level
of an ideal AL is organized by domains grouping business functionality. Domains are
nestable and are hosting application landscape components. These components can be re-
garded as - possibly only logically existing - application systems. A component provides
public interfaces bundling a number of operations in order to implement a number of appli-
cation services which are used by business services inside a business process dealing with
business objects. Furthermore, operations are assigned to categories, which are ordered as
follows:

1. Interaction services dealing with user interaction or interaction with other ALs.

2. Process services supporting business processes.

3. Function services supporting business processes and having an algorithmic charac-
ter.

4. Data services accessing stored data.

This categorization is a typical means for structuring service-oriented landscapes and can
also be found in other service-oriented approaches (see e.g. [KBS06]). Over the applica-
tion service interfaces, the categorization can also be propagated down to the operations’
level and is, by definition of the term ideal AL in [EHH+08], also applicable for compo-
nents. The ideal AL includes only components which are constructed in a way that they
solely bundle services of a certain category. Quasar Enterprise postulates that interfaces
of a specific category are only callable by components of the same category-level or by
components of higher categories, with ”interaction” being the highest and ”data” being the
lowest category. So, a component categorized as function component, hosting only appli-
cation services of the function category, can legally call function services or data services
for instance.

The current application landscape (current AL) is also divided into application com-
ponents which in practice usually means that these are tantamount to existing physical
applications. In contrast to the ideal AL, current ALs are usually not structured in the
sense of business domains. Instead, they are either structured by organizational units (e.g.
corresponding to departments) or are not structured at all. Due to this absence of a do-
main structure, we refrain from modeling domains in current ALs. Just like ideal compo-
nents, current components bundle functionality organized as operations, which are again
the atomic functional building blocks. Since service is a term used in the context of the
ideal AL only, we will further focus on operations as least common comparable units when
developing metrics to perform the gap analysis.

284



At a certain point in planning the evolution of the current AL, the architect needs to define
intermediate states of the AL as steps of the migration road map. Being in between the
current AL and the ideal AL, such an intermediate state is referred to as target application
landscape (target AL).

Figure 2: I-Pattern for Gap Analysis (according to [Sec09]).

The corresponding I-Pattern to perform gap analysis consists of the following entities (see
also Figure 2):

Ideal AL:

1. Domain - Domains are grouping high level business functionality of an ideal AL.
They describe the top level work performed by an organization or an organizational
unit and - when nested - also high level functionality. Typically enterprises organi-
zational structures are organized by domains. Examples for domains include: Cus-
tomer Relationship Management, Partner Relationship Management, Sales, Mar-
keting, Product Management. The set of all domains builds the ideal application
landscape.

2. Ideal Component - Ideal components belong to a specific domain and are hosting
the atomic building blocks of an AL - operations. Hence, ideal components do also
group business functionality but on a more fine grained basis than domains. Com-
ponents are often considered as logical applications which reflects their granularity
quite well. Ideal components only bundle operations of a specific category (inter-
action, process, function, data) and are classified corresponding to the category of

285



their contained operations.

3. Ideal Interface - Ideal interfaces describe services offered by ideal components on
a logical level. Synonymously to web-services on the physical level, interfaces offer
a public description of one or multiple operations.

4. Ideal Operation - An ideal operation is the atomic entity of an ideal AL. It is the fine
grained logical description of business functionality on a method or function level
(CRUD operations for instance). An operation is classified according to a specific
category (interaction, process, function, data).

Current AL:

1. Current Component - Current components describe the business functionality of
the current AL. In practice, this means they describe the functionality provided
by existing applications. In contrast to the ideal AL, current components are not
grouped by domains, since domain is a term to express the future (ideal) high level
functionality of an enterprise.

2. Current Interface - Current interfaces describe services offered by current compo-
nents on a logical level.

3. Current Operation - Like ideal operations, a current operation is the atomic entity
of the current AL and is also the fine grained logical description of business func-
tionality on a method or function level. A current operation is classified according
to a specific category (interaction, process, function, data).

4. Business Object - Business objects represent the entities relevant in the business
domain. Examples for business objects include: customer, contract, order, invoice.
Only current operations of category data should have writable access to business ob-
jects - ideally exactly one operation per business object (see metric Data Sovereignty
for details).

4 Metrics

We identified metrics to measure the distance between the current application landscape
and the ideal landscape. We subdivide metrics into quantitative and qualitative metrics.
Quantitative metrics consider structural differences and lead to concrete recommendations
for restructuring the current application landscape towards the ideal landscape. Qualitative
metrics complement quantitative metrics and highlight critical components of the current
application landscape. In a nutshell, quantitative metrics show what needs to be restruc-
tured, whereas qualitative metrics focus on what needs to be given special attention to
by the architect when the restructuring takes place. Qualitative metrics are important but
they are predominantly expressed by attributes (see [PSS09] for more details) and are not
directly connected to the I-Pattern, so we discard them here. The following quantitative
metrics are based on [EHH+08] and directly applicable to the I-Pattern.

286



• Completeness means, that the functionality provided by the current application land-
scape is measured and compared to the functionality provided by the ideal applica-
tion landscape. Such comparison is performed regarding operations of both, current
and ideal landscape. Thus, the ratio is used as a key indicator for completeness
calculated as follows:

#OPtALnotImpl

#OPtAL
,

in which #OPtALnotImpl describes the number of ideal landscape operations not
implemented in the current landscape, and #OPtAL describes the overall number of
ideal AL operations

• Purity of the Domain enunciates the degree of unambiguousness of the mapping of
current AL components to ideal AL domains. The performance indicator is:

#cCompgtOneDom

#cComp
,

in which #cCompgtOneDom describes the number of current AL components host-
ing AL operations mapped to more than one ideal domain. The overall number of
current AL components is summarized by #cComp.

• Purity of Categories describes the degree of unambiguousness of the mapping of
current AL operations to a certain service category. The corresponding performance
indicator is:

#cCompOPdiffCat

#cComp
,

in which the number of current AL components hosting AL operations of different
categories is described by #cCompOPdiffCat and the overall number of current AL
components is decribed by #cComp respectively.

• Data Sovereignty measures the degree of unambiguousness of the mapping of busi-
ness objects to current AL components having writable access to their data repre-
sentation. The performance indicator is:

#BOnw + #BOw

#cComp
,

in which the number of business objects being writable by non data components is
described by #BOnw. The number of business objects being writable by more than
one component is summarized by #BOw. #cComp represents the overall number
of current AL components.

• Correct Category Dependencies measures the relative amount of illegal service calls
between components of different categories according to the definition of callable
as stated in [PSS09]. A metric is indicated by:

#ISCcComp

#SCcComp
,

287



in which the number of illegal service calls between current AL components is rep-
resented by #ISCcComp. The overall number of service calls between current AL
components is described by #SCcComp.

Quantitative metrics can be used to quantify violations described by violation patterns of
structural deviation between current and ideal AL. Each violation pattern implies measures
to solve the deviation. To give an example, we refer to Figure 3.

Ideal Landscape

Domain I Domain II

Current Landscape

Component C

Interface OperationOperation Mapping

Component A Component B

Figure 3: Purity of the Domain Violation.

It shows the violation of domain-purity quantified by the the metric Purity of the Domain.
As part of the design phase of the ideal AL, the functional decomposition of operations
from Component C of the current AL leads to a situation, where existing service function-
ality should be split in order to separate functional concerns for instance. In the planning
phase of the ideal AL, both operations of Component C are assigned to new components
of different domains. The I-Pattern allows a mapping of operations between two states of
the application landscape. So this structural deviation between current and ideal AL can
automatically be detected by algorithms on data having the structure of the I-Pattern, when
gap analysis is performed. The metric Purity of the Domain is able to quantify the domain
purity violations and can be used as indicator for this aspect of structural deviation. The
suggested measure to overcome the deviation in this case would lead to the suggestion to
initiate a project to split Component C.

5 Example

To clarify the abstract I-Pattern of gap analysis, we would like to give brief inside into
the case study this pattern stems from. We would like to introduce our prototype for

288



gap analysis and the underlying data structure. For more information about the entire
methodology and the actual case study we refer to [PGS09].

The case study is taken from the utility domain, where the current AL needed to be com-
pared to an ideal AL. To manage such complex task, a prototype was developed to support
the architect. This prototype is able to read a formalized representation of both, ideal
AL and corresponding current AL (see Figure 4) to allow a manual semantic mapping of
operations and to perform a gap analysis on these data structures.

Figure 4: Prototype to support gap analysis.

After importing the current and the ideal AL, the enterprise architect can see a graphical
representation of the ALs inside the tool, and he is able to start the gap analysis by weight-
ing the quantitative metrics according to enterprise specific preferences (Figure 4 shows
the visualization of both ALs inside our prototype). These preferences can be stored by
the tool and hence be reused in future analysis. Based on these metric weights, the tool
calculates the structural deviation between current and ideal AL and highlights gaps inside
the graphical representation of the landscapes if required. The prototype has the ability
to calculate measures to resolve the structural deviation. Such measures are summarized
as an action list inside the tool and a detailed description is available. Each measure is
bound to a certain deviation observed by a specific metric and the position in the action
list is determined by the weight of the metrics which assures an adequate prioritization of
measures. Considering the metric purity of the domain a suggested action might be to split
or to merge components of the current landscape to achieve a higher purity of the domain.

We use XML to store the elements of our ALs. The left side of figure 5 depicts a rep-
resentation of the ideal AL whereas the current AL is described by the XML-file on the
right side of the figure. The partitionig of ALs as introduced in section 3 is considered by
the XML-file’s structure. Component-elements can be used as child-elements of domain-
elements for instance.

289



Figure 5: Rough data structure of ALs as used for structural mapping and gap analysis inside the
prototype.

All quantitative metrics are calculating indicators for structural deviation between two
data structures. Figure 6 illustrates the metric Completeness. The ideal AL-operations
not implemented in the current AL are highlighted in red (Display alarm, Register outage
call). The number of such current AL-operations divided by the number of the overall
Ideal operations lead to the indicator of completeness.

According to [PSS09] all quantitative metrics form the overall distance between current
and ideal AL. The tool is able to calculate the overall distance value and can record distance
values over time for long term analysis (for example to indicate progress when the current
AL evolves and is compared to the ideal AL again).

Figure 6: Violation of the completeness metric.

290



6 Consequences

We would like to consider some consequences of applying the gap analysis pattern on the
basis of the forces described in section 2.1.

1. Qualitative assessment and quantitative assessment
A quantitative assessment of the differences between the as-is and ideal state pro-
duces manageable key figures and directly leads to a first list of possible needs for
actions to be taken in order to converge towards the ideal state. Such assessment
should be complemented by a qualitative assessment comprising more general IT
strategic considerations, for example with regard to strengths, weaknesses, chances
or risks of the current landscape. The results of the quantitative and qualitative as-
sessment are weighed against the short-term operative goals to finally come to a
workable list of actions to be taken. When performing the gap analysis, all these
considerations need to be taken into account by an architect as part of an overall EA
development process.

2. Considering entire application landscape or focus on selective components
The amount of data necessary to perform gap analysis on the entire application land-
scape on a detailed level considering operations is overwhelming. Unless data is
automatically collectible - which has never been the case for pre-SOA landscapes in
our daily work observations- it is not realistic to model the entire application land-
scape. However, this pattern is beneficial for partial consideration of the application
landscape, when single systems need to be restructured, for instance.

3. Regarding state snapshots for gap analysis or monitor the distance over time
Gap analysis is a data intensive analysis and the manual detection of structural devi-
ations is a time consuming task. Whenever gap analysis is a reoccurring task for an
enterprise architect, tool support is advisable. This is especially true, when progress
of architectural work should be measured continually. In this case, single compari-
son of two states is insufficient.

7 Conclusion and Outlook

In our contribution, we introduced the task of gap analysis and elaborated on an I-Pattern
for gap analysis on application landscapes. We described how a gap analysis between
a current non SOA AL and service oriented ideal AL can be performed based on a for-
mal I-Pattern and supported by a software prototype in order to derive a suitable target
application landscape.

In this contribution we focused on the shift from non SOA toward SOA. However, a grow-
ing number of enterprises is going to introduce or has already established SOAs. Gap
analysis is also of relevance at evolution on established SOAs. Ongoing research is aiming
in this direction and we are currently working on evolution patterns for SOA.

291



References

[AGA+08] Ali Arsanjani, Shuvanker Ghosh, Abdul Allam, Tina Abdollah, Sella Ganapathy, and
Kerrie Holley. SOMA: A method for developing service-oriented solutions. IBM Sys-
tems Journal, 47(3):377–396, 2008.

[BELM08] Sabine Buckl, Alexander M. Ernst, Josef Lankes, and Florian Matthes. Enterprise Ar-
chitecture Management Pattern Catalog. Technical Report TB 0801, Software Engineer-
ing for Business Information Systems (sebis), Technische Universität, February 2008.

[EHH+08] Gregor Engels, Andreas Hess, Bernhard Humm, Oliver Juwig, Marc Lohmann, Jan-
Peter Richter, Markus Voß, and Johannes Willkomm. Quasar enterprise: Anwendungs-
landschaften serviceorientiert gestalten. dpunkt.verlag GmbH, Heidelberg, 1. edition,
2008.

[Fow96] Martin Fowler. Analysis Patterns Reusable Object Models. Pearson Education (US),
1996.

[Gam94] Erich Gamma. Design patterns: Elements of reusable object-oriented software.
Addison-Wesley, Reading Mass. [u.a.], 2. print.. edition, 1994.

[KBS06] Dirk Krafzig, Karl Banke, and Dirk Slama. Enterprise SOA: Service-oriented architec-
ture best practices. The Coad series. Prentice-Hall, Upper Saddle River, NJ, 6. print
edition, 2006.

[PGS09] Matthias Postina, José Gonzalez, and Igor Sechyn. On the Architecture Development of
Utility Enterprises with Special Respect to the Gap Analysis of Application Landscapes.
In Ulrike Steffens, Jan Stefan Addicks, Matthias Postina, and Niels Streekmann, edi-
tors, Proceedings of the 3rd Workshop ”MDD, SOA, and IT Management”, Oldenburg,
Germany, September 2009. GITO.

[PSS09] Matthias Postina, Igor Sechyn, and Ulrike Steffens. Gap analysis of application land-
scapes. In Vladimir Tosic, editor, Enterprise Distributed Object Computing Conference,
pages 274–281. IEEEXplore Digital Library, 2009.

[Sec09] Igor Sechyn. Komponentenentwurf für Anwendungslandschaften am Beispiel eines
Energiekonzerns. Ein werkzeuggestützter Abgleich zwischen Ist-Landschaft und Ideal.
Diplomarbeit, Carl von Ossietzky Universität, Oldenburg, 2009.

[The09] The Open Group. TOGAF Version 9. van Haren Publishing, 2009.

292


