
Model Checking Erlang Programs –
LTL-Propositions and Abstract Interpretation

Frank Huch
Christian-Albrechts-University of Kiel,Germany

fhu@informatik.uni-kiel.de
Abstract: We present an approach for the formal verification of Erlang programs using
abstract interpretation and model checking. In previous work we defined a framework
for the verification of Erlang programs using abstract interpretation and LTL model
checking. The application of LTL model checking yields some problems in the verifi-
cation of state propositions, because propositions are also abstracted in the framework.
While state propositions must be satisfied, negated state propositions have to be refu-
ted. We show how this can be decided by means of the abstract domain. The approach
is implemented as a prototype and we are able to prove properties like mutual exclusi-
on or the absence of deadlocks and lifelocks for some Erlang programs.

1 Introduction

The programming language Erlang [AWV93], developed by Ericsson, is successfully used
for the implementation of distributed systems. In [Hu99] we have developed a framework
for abstract interpretations [CC77, JN94, SS98] for the formal verification of Erlang pro-
grams by model checking. This framework guarantees safety of an abstract operational
semantics (AOS) with respect to the standard operational semantics (SOS). Since the AOS
can contain more paths than the SOS in this framework, it is only possible to prove proper-
ties that have to be satisfied on all paths, like in linear time logic (LTL). If the abstraction
satisfies a property expressed in LTL, then also the program satisfies it, but not vice versa.
For finite domain abstract interpretations and an additional flow-abstraction [Hu02b] we
obtain a finite AOS, for which model checking is decideable [LP85, Va96].

However, the application of LTL model checking to the AOS is not that straightforward.
LTL is usually defined by means of simple state propositions. In our approach of verifi-
cation by model checking, the validity of a state proposition depends on the chosen ab-
straction. However, in the context of abstraction, the equivalence of not validating a state
proposition and refuting it does not hold. We show how safe model checking with respect
to the abstract interpretation can be implemented.

The paper is organized as follows: Section 2 introduces the programming language Erlang
and Section 3 shortly presents our framework for abstract interpretation. In Section 4 we
add propositions to Erlang programs which can be used for formal verification by LTL
model checking, shortly introduced in Section 5. Then, Section 6 motivates how abstract
state propositions can be decided, which is formalized in Section 7. Finally, we present a
concrete verification in Section 9 and conclude in Section 10.

438

2 Erlang

Erlang is a strict functional programming language, extended with concurrent processes.
In Erlang, variables start with an uppercase letter and can be bound to arbitrary values,
with no type restrictions. Basic values are atoms (starting with a lowercase letter), e.g.
true,false. More complex data structures can be created by constructors for tuples of
any arity ({. . .}/n) and constructors for lists ([.|.]and []). It is also possible to use atoms
and these constructors in pattern matching.

In Erlang, a new process can be created by spawn(f,[a1, . . . , an]). The process starts
with the evaluation of f(a1, . . . , an). The functional result of spawn is the process iden-
tifier (pid) of the newly created process. With p!v arbitrary values (including pids) can be
sent to other processes, addressed by the pid p. The messages sent to a process are sto-
red in its mailbox and the process can access them conveniently with pattern matching in a
receive-statement. Especially, it is possible to ignore some messages and fetch messages
from further behind. For more details see [AWV93].

For the formal verification we restrict to a core fragment, called Core Erlang, which con-
tains the main features of Erlang. Its syntax is defined as follows:

p ::= f(X1, . . . ,Xn) -> e. | p p
e ::= φ(e1, . . . ,en) | X | pat = e | e1,e2 | e1!e2 | case e ofm end |

receivem end | spawn(f,e)
m ::= pat1->e1; . . . ;patn->en

pat ::= c(pat1, . . . ,patn) | X
where φ represents predefined functions, functions of the program and constructors (c).

Example 1 A database process for storing key-value pairs can be defined as follows:

main() -> DB = spawn(dataBase,[[]]), spawn(client,[DB]), client(DB).

dataBase(L) -> prop(top), receive
{allocate,Key,P} ->

prop({allocate,P}),
case lookup(Key,L) of

fail -> P!free, receive
{value,V,P} -> prop({value,P}),

dataBase([{Key,V}|L])
end;

{succ,V} -> P!prop(allocated), dataBase(L)
end;

{lookup,Key,P} -> prop(lookup), P!lookup(Key,L), dataBase(L)
end.

At this point the reader should ignore the applications of the function prop. In Section 9
we will verify the database and we will need the state propositions introduced by prop.

The program creates a database process holding a list L of key-value pairs. The com-
munication interface of the database is given by the messages {allocate,Key,P} for
allocating a new key and {lookup,Key,P} for retrieving the value of a stored key. In
both patterns P is bound to the requesting client pid to which the answer is sent.

The allocation of a new key is done in two steps. First the key is received and checked. If
there is no conflict, then the corresponding value can be received and stored in the database.
This exchange of messages in more than one step has to guarantee mutual exclusion on the

439

database. Otherwise, it could be possible that two client processes send keys and values
to the database and they are stored in the wrong combination. A client can be defined
accordingly [Hu99]. In Section 9 we will verify this property for a database with two
clients.

In [Hu99] we presented a formal semantics for Core Erlang. In the following we will refer
to it as standard operational semantics (SOS). It is an interleaving semantics over a set of
processes Π ∈ States. A process (proc ∈ Proc) consists of a pid (π ∈ Pid := {@n | n ∈
IN}), a Core Erlang evaluation term e and a word over constructor terms for the mailbox.

The semantics is a non-confluent transition system with interleaved evaluations of the pro-
cesses. Only communication and process creation have side effects to the whole system.
For modeling these actions two processes are involved. To give an impression of the se-
mantics, we present the rule for sending a value to another process:

v1 = π′ ∈ Pid

Π, (π,E[v1!v2], µ)(π′, e, µ′)
!v2=⇒ Π, (π,E[v2], µ)(π′, e, µ′ : v2)

E is the context of the leftmost-innermost evaluation position, with v1 a pid and v2 an
arbitrary constructor term. The value v2 is added to the mailbox µ′ of the process π′ and
the functional result of the send action is the sent value. For more details see [Hu02a].

3 Abstract Interpretation of Core Erlang Programs

In [Hu99] we developed a framework for abstract interpretations of Core Erlang programs.
The abstract operational semantics (AOS) yields a transition system which includes all
paths of the SOS. In an abstract interpretation Â = (Â, ι̂,�, α) for Core Erlang programs
Â is the abstract domain which should be finite for our application in model checking. The
abstract interpretation function ι̂ defines the semantics of predefined function symbols
and constructors. Its codomain is Â. Therefore, for example, it is not possible to interpret
constructors freely in a finite domain abstraction. ι̂ also defines the abstract behaviour of
pattern matching in equations, case, and receive. Here the abstraction can yield addi-
tional non-determinism because branches can get undecidable in the abstraction. Hence,
ι̂ yields a set of results which defines possible successors. Furthermore, an abstract inter-
pretation contains a partial order �, describing which elements of Â are more precise than
others. We do not need a complete partial order or a lattice because we do not compute any
fixed point. Instead, we just evaluate the operational semantics with respect to the abstract
interpretation1. This yields a finite transition system, which we use for (on the fly) model
checking. An example for an abstraction of numbers with an ordering of the abstract re-
presentations is: IN � {v | v ≤ 10} � {v | v ≤ 5}. It is more precise to know, that a value
is ≤5, than ≤10 than any number. The last component of Â is the abstraction function α
which maps every concrete value to its most precise abstract representation. Finally, the
abstract interpretation has to fulfill five properties, which relate an abstract interpretation
to the standard interpretation. They also guarantee that all paths of the SOS are represented

1Since we do not need a cpo, we use a partial order for the abstract domain. Therefore, the orientation of our
abstract domain is upside down compared to standard frameworks using lattices. The least precise abstract value
is the least element of the abstract domain.

440

in the AOS. An example for these properties is the following:
For all φ/n ∈ Σ ∪ C, v1, . . . , vn ∈ TC(Pid) and (P1)
ṽi � α(vi) it holds that φÂ(ṽ1, . . . , ṽn) � α(φA(v1, . . . , vn)).

It postulates, that evaluating a predefined function or a constructor on abstract values which
are representations of some concrete constructor terms (TC(Pid)) yields abstractions of
the evaluation of the same function on the concrete values. The other properties postulate
correlating properties (P2-P5) for pattern matching in equations, case, and receive, and
the pids represented by an abstract value. More details and some example abstractions can
be found in [Hu99, Hu02a].

4 Adding Propositions

For a convenient specification of state propositions, we add propositions to our programs
which are interpreted as state propositions in the AOS. As propositions we use arbitra-
ry Core Erlang constructor terms which is very natural for Erlang programmers. For the
definition of propositions we assume a predefined Core Erlang function prop/1 with the
identity as operational semantics. Hence, adding applications of prop does not effect the
SOS nor the AOS. Nevertheless, as a kind of side-effect, the state in which prop is eva-
luated has the argument of prop as a valid state proposition, marked by the label prop in
the AOS: Π, (π,E[prop(v)], µ)

prop−→ÂΠ, (π,E[v], µ)
The valid state propositions2 of a process and an abstract system state can be evaluated by
the function propÂ : P̂rocÂ −→ P(Â) where

propÂ((π,E[e], µ)) :=
{
{v̂} , if e = prop(v̂) and v̂ ∈ Â
∅ , otherwise

The propositions of a state propÂ : Ŝ tateÂ −→ P(Â) are defined as the union of all pro-
positions of its processes. In Example 1 we have added four propositions to the database:

top the main state of the database process
{allocate,P} the process with pid P tries to allocate a key
{value,P} the process with pid P enters a value into the database
lookup a reading access to the database

In most cases, propositions will be added in a sequence as for example the proposition
top. However, defining propositions by an Erlang function, it is also possible to mark
existing (sub-)expressions as propositions. For example, the atom allocated.

5 Linear Time Logic

The abstract operational semantics is defined by a transition system. We want to prove
properties (described in temporal logic) of this transition system using model checking.
We use linear time logic (LTL) [Ga80] in which properties have to be satisfied on every
path of a given transition system.

Defintion 2 (Linear Time Logic (LTL))
Let Props be a set of state propositions. The set of LTL-formulas is defined as:

ϕ ::= P | ¬ϕ | ϕ1 ∧ ϕ2 | Xϕ | ϕ1 U ϕ2

2For both functions we use the name propÂ. The concrete instance of this overloading will be clear from the
application of propÂ. We will also omit the abstract interpretation in the index, if it is clear from the context.

441

An infinite word over sets of propositions π = p0p1p2 . . . ∈ P(Props)ω is called a path.
A path π satisfies an LTL-formula ϕ (π |= ϕ) in the following cases:

p0π |= P iff P ∈ p0 π |= ¬ϕ iff π 	|= ϕ
π |= ϕ ∧ ψ iff π |= ϕ and π |= ψ p0π |= Xϕ iff π |= ϕ

p0p1 . . . |= ϕ U ψ iff ∃i ∈ IN : pipi+1 . . . |= ψ and ∀j < i : pjpj+1 . . . |= ϕ

The propositional formulas P ∈ Props are satisfied, if the first state of a path satisfies
them. The next modality Xϕ holds if ϕ holds in the continuation of the path. Finally, if ϕ
holds until ψ holds and ψ finally holds, then ϕ U ψ holds.

Formulas are not only interpreted with respect to a single path. Their semantics is exten-
ded to Kripke Structures K = (S,Props,−→, τ, s0) with S a set of states, Props a set of
propositions, −→⊆ S×S the transition relation, τ : S −→ P(Props) a labeling function
for the states, and s0 ∈ S the initial state. A Kripke structure satisfies an LTL formula ϕ
(K |= ϕ) iff for all paths π of K: π |= ϕ. The technique of model checking automatically
decides, whether a given Kripke structure satisfies a given formula. For finite Kripke struc-
tures and the logic LTL model checking is decidable [LP85]. Some useful abbreviations
can be defined as follows:

ff := ¬P ∧ P tt := ¬ff ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ) ϕ→ ψ := ¬ϕ ∨ ψ
F ϕ := tt U ϕ G ϕ := ¬F¬ϕ F∞ϕ := G F ϕ G∞ϕ := F G ϕ

The propositional abbreviations are standard. Fϕ is satisfied if there exists a position in
the path, where ϕ holds, whereas in Gϕ the formula ϕ has to hold in every position. The
property F∞ϕ postulates, that ϕ holds infinitely often on a path, whereas G∞ϕ is satis-
fied, if ϕ is satisfied with only finitely many exceptions. In other words there is a position,
from where on ϕ always holds.

For the verification of Core Erlang programs we use the AOS respectively the SOS of a
Core Erlang program as a Kripke structure. We use the transition system which is spawned
from the initial state (@0,main(),()). As labeling function for the states we use the functi-
on prop from the previous section.

6 Abstraction of Propositions

We want to verify Core Erlang programs with model checking. The framework for ab-
stract interpretations of Core Erlang programs guarantees, that every path of the SOS is
also represented in the AOS. If the resulting AOS is finite, then we can use simple model
checking algorithms to check, if it satisfies a property ϕ expressed in LTL. If ϕ is satisfied
in the AOS, then ϕ also holds in the SOS. In the other case model checking yields a coun-
ter example which is a path in the AOS on which ϕ is not satisfied. Due to the fact that the
AOS contains more paths than the SOS, the counter example must not be a counter exam-
ple for the SOS. Therefore, in this case it only yields a hint, that the chosen abstraction is
too coarse and must be refined. The application of model checking seems to be easy but
proving state propositions yields problems as the following example shows:

main() -> prop(42).
A possible property of the program could be F 42 (finally 42). To prove this property
we use the AOS with an abstract interpretation, for instance the even-odd interpretation,
which only contains the values even (representing all even numbers), odd (representing
all odd numbers), and ? (representing all values). With this abstraction the AOS yields the
following transition system:

(@0,main(), ()) −→ (@0,prop(42), ()) −→ (@0,prop(even), ())
prop−→ (@0, even, ())

442

Only the state (@0, prop(even), ()) has a property, namely even. 42 is an even number, but
it is not the only even number. For safeness, this property cannot be proven. For instance,
we could otherwise also prove the property F 40.

It is only possible to prove properties for which the corresponding abstract value exclu-
sively represents this value. However, it does not make much sense to abstract from spe-
cial values and express properties for these values afterwards. Therefore, we only use
propositions of the abstract domain, like F even (finally even). In the AOS the state
(@0,prop(even),()) has the property even. Therefore, the program satisfies this proper-
ty. Now we consider a more complicated example:

main() -> prop(84 div 2).
This system satisfies the property too because (84 ÷ 2) = 42. On the other hand, in the
even-odd abstraction we only get:

(@0,main(), ()) −→ (@0,prop(84 div 2), ()) −→ (@0,prop(even div 2), ())
−→ (@0,prop(even div even), ()) −→ (@0,prop(?), ()) −→ (@0, ?, ())

with prop((@0,prop(?),()))= {?} and ∅ as propositions of the other states. The result of
the division of two even values must not be even. In a safe abstraction we cannot be sure,
that the property F even is satisfied. Hence, model checking must yield, that it does not
hold. For instance, the program

main() -> prop(42 div 2).
has a similar AOS but the property is not satisfied (42 ÷ 2 = 21). Therefore, a proper-
ty is satisfied in a state, if the property of the state is at least as precise, as the expected
property: p0p1 . . . |= ṽ iff ∃ṽ′ ∈ p0 with ṽ � ṽ′. However, this is not correct in all cases,
as the following example shows. We want to prove that the program satisfies the property
G¬even (always not even) Therefore, one point is to check that the state (@0,prop(?),())
models ¬even. With the definition from above we can conclude

(@0,prop(?),()) 	|= even and hence (@0,prop(?),()) |= ¬even.
which is wrong. In the program main() -> prop(84 div 2) the property is not sa-
tisfied (see above). The SOS has the property 42, which is an even value. The reason is
the non-monotonicity of ¬. Considering abstraction, the equivalence π |= ¬ϕ iff π 	|= ϕ
does not hold! π 	|= ϕ only means that π |= ϕ is not safe. In other words, there can be a
concretization which satisfies ϕ but we cannot be sure that it holds for all concretizations.
Therefore, negation has to be handled carefully.

Which value of our abstract domain would fulfill the negated proposition ¬even? Only
the proposition odd does. The values even and odd are incomparable and no value exists,
which is more precise than these two abstract values. This connection can be generalized
as follows: p0p1 . . . |= ¬ṽ if ∀ṽ′ ∈ p0 holds ṽ � ṽ′ does not exist.
Note, that this is no equivalence anymore. The non-existence of ṽ � ṽ′ does only imply
that p0p1 . . . |= ¬ṽ. It does not give any information for the negation p0p1 . . . |= ṽ. This
(double) negation holds, if ∃ṽ′ ∈ p0 with ṽ � ṽ′.

On a first sight refuting a state proposition seems not to be correct for arbitrary abstract
interpretations.Consider the abstract domain where the abstract value ≤0 represents the
concrete values {0,−1,−2, . . .}, ≥0 represents {0,1,2, . . .},
and num represents ZZ. The represented concrete values of ≤0
and ≥0 overlap in the value 0. Therefore, it would be incorrect
that a state with the proposition ≤0 satisfies the formula ¬≥0.

≤0 ≥0

num

443

However, this abstraction is not possible. Any abstraction function α : A −→ Â yields
one single abstract representation for a concrete value. Without loss of generality, let
α(0) = ≥0. Abstract values which represent the concrete value 0 can only be the re-
sult of the use of the abstract interpretation function ι̂. However, all these results ṽ must
be less precise: ṽ � α(0) = ≥0 because of the properties claimed by our framework.
Hence, this abstract domain can be defined but the value ≤0 does only represent the values
{−1,−2, . . .}. The name of the abstract value is not relevant. However, for understanda-
bility it should be renamed to <0.
Alternatively, the abstract domain can be refined. The two overlapping abstract values can
be distinguished by a more precise abstract value:

<0 0 >0

≤0 ≥0

num

or

0

≤0 ≥0

num

In both cases we must define
α(0) = 0 because otherwise
we have the same situation as
before and the concrete value
0 is not represented by both
abstract values ≤0 and ≥0.

7 Concretization of Propositions

With the advisement of the previous section we can now formalize whether a state pro-
position is satisfied or refuted, respectively. Similar results have been found by Clark,
Grumberg, and Long [CGL94] and Knesten and Pnueli [KP98]. In their results Knesten
and Pnueli handle a simple toy language in which only propositions on integer values can
be made. In our framework state propositions are arbitrary Erlang values and their validity
has to be decided with respect to an arbitrary abstract domain. The same holds for the
paper of Clark et. al which also does not consider a real programming language. In the
following, we present how these ideas can be transfered to formal verification of the real
programming language Erlang.

First we define the concretization of an abstract value. This is the set of all concrete values
which have been abstracted to the value, or a more precise value.

Defintion 3 (Concretization of Abstract Values)
Let Â = (Â, ι̂,�, α) be an abstract interpretation. The concretization function γ : Â −→
P(TC(Pid)) is defined as γ(ṽ) = {v | ṽ � α(v)}.

For the last example we get the concretizations: γ(0) = {0}, γ(≥0) = {0,1,2, . . .},
γ(≤0) = {0,−1,−2, . . .}, and γ(num) = ZZ.

Lemma 4 (Connections between γ and α)
Let Â = (Â, ι̂,�, α) be an abstract interpretation and γ the corresponding concretization
function. Then the following properties hold:

1. ∀v ∈ γ(ṽ) : ṽ � α(v) 2. {α(v) | v ∈ γ(ṽ)} = ṽ

For all proofs of this paper see [Hu02a]. With the concretization function we can define
whether a state proposition of a state satisfies a proposition in the formula or refutes it.

Defintion 5 (Semantics of a State Proposition)
Let Â = (Â, ι̂,�, α) be an abstract interpretation. A set of abstract state propositions

444

satisfies or refutes a proposition of a formula in the following cases:
p |= ṽ if ∃ṽ′ ∈ p with γ(ṽ′) ⊆ γ(ṽ) and p 	|= ṽ if ∀ṽ′ ∈ p holds γ(ṽ) ∩ γ(ṽ′) = ∅

Similarly to these definitions for the concretization, we can decide whether a state propo-
sition if satisfied or refuted for abstract values. For finite domain abstractions, this can be
decided automatically.

Lemma 6 (Deciding Propositions in the abstract domain)
Let Â = (Â, ι̂,�, α) be an abstract interpretation. A set of abstract state propositions
satisfies or refutes a proposition of a formula in the following cases:

p |= ṽ if ∃ṽ′ ∈ p with ṽ � ṽ′ and p 	|= ṽ if ∀ṽ′ ∈ p holds ṽ � ṽ′ does not exist

Note, that we only show an implication. We can define unnatural abstract domains in
which a property is satisfied or refuted with respect to Definition 5 but using only the
abstract domain, we cannot show this. We consider the following abstract domain:

num � zero � 0 with α(v) = 0, if v = 0 and α(v) = num otherwise
The abstract value zero is superfluous because it represents exactly the same values, as
the abstract value 0. However, this abstract domain is valid. Using the definition of the
semantics of a state proposition from Definition 5, we can show that {zero} |= 0 because
γ(zero) = γ(0) = {0}. However, zero � 0 and we cannot show that {zero} |= 0 just
using the abstract domain.

The same holds for refuting state propositions. Consider the following abstract domain
0

≤0 ≥0

num

with α(v) = ≥0 if v ≥ 0 and α(v) = ≤0 otherwise. In this
domain the abstract value 0 is superfluous. Its concretization is em-
pty. Hence, γ(≤0) = {−1,−2, . . .} and γ(≥0) = {0,1,2, . . .}.
γ(≤0) ∩ γ(≥0) = ∅ and ≤0 |= ¬≥0. However, this proposition
cannot be refuted in this abstract domain since ≤0�≥0 = 0 exists.

These examples are unnatural because the domains contain superfluous abstract values.
Nobody will define domains like these. Usually, the concretization of an abstract value is
nonempty and differs from the concretizations of all other abstract values. In this case,
deciding propositions in the abstract domain is complete with respect to the semantics of
propositions. Although it is not complete in general, but it is safe.

8 Proving LTL Formulas

So far, we have discussed whether a state proposition is satisfied or refuted. However, in
LTL negation is not only allowed in front of state propositions. Arbitrary sub-formulas
can be negated. The basic idea is pushing negations into the formulas, like in [Va96].
We decide the state propositions in dependence of the negation in front. We distinguish
positive (marked with +) and negative (marked with −) state propositions in dependence
on an even respectively odd number of negations in front of them and decide whether they
are satisfied respectively refuted by means of Lemma 6.

We implemented this model checker as a prototype, by which we are able to analyze small
systems with up to 30000 states in the abstract model (AOS). The prototype also includes
some standard abstractions (for which we proved correctness with respect to the claimed
properties P1-P5 of [Hu99]) and a simple partial order reduction optimization. For the

445

verification of real systems, this prototype is not sufficient and a connection to an efficient
model checker like Spin [Ho97] is necessary.

9 Verification of the Database

Now we want to verify the database process of Example 1, with two clients. We want to
guarantee, that the process which allocates a key also sets the value:

If a process π allocates a key, then no other process π′ sets a value before π
sets a value, or the key is already allocated.

This can for arbitrary processes be expressed in LTL as follows:∧
π∈Pid,π′ �=π

G (−{allocate, π} −→ (¬−{value, π′}) U (+{value, π} ∨ +allocated))

In our system only a finite number of pids occurs. Therefore, this formula can be trans-
lated into a pure LTL-formula as a conjunction of all possible permutations of possible
pids which satisfy the condition. We have already marked the propositions in the formula
with respect to the negations in front of them. Considering this marking the proposition
−{allocate, π} must be refuted. For instance, this is the case for the abstract values top
and {lookup,?}. However, ? and {allocate,p} with p the pid of the accessing client do
not refute the proposition and the right side of the implication must be satisfied.

We can automatically verify this property using a finite domain abstraction, in which only
the top-parts of depth 2 of the constructor terms are considered. The deeper parts of a con-
structor term are cut off and replaced by ?. For more details see [Hu02a]. Our framework
guarantees that the property also holds in the SOS and we have proven mutual exclusion.

10 Related Work and Conclusion

There exist other approaches for the formal verification of Erlang: EVT [NFG01] is a theo-
rem prover especially tailored for Erlang. The main disadvantage of this approach is the
complexity of proves. Especially, induction on infinite calculations is very complicated and
automatization is not support yet. Therefore, a user must be an expert in theorem proving
and EVT to prove system properties. For users it is easier to use our approach, since it is
much closer to a push-button technique. This approach is also pursued by part of the EVT
group [AE01]. They verified a distributed resource locker written in Erlang with a stan-
dard model checker. The disadvantage of this approach is that they can only verify finite
state systems, while in practice, many systems have an infinite (or for model checkers too
large) state space. As a solution, we think abstraction is needed to verify larger distributed
systems. A similar approach for Java is made by the Bandera tool [HDL98]. They provide
abstraction, but the user is responsible for consistent abstractions by explicitly defining
abstracted methods in the source code. Hence, the user can define wrong abstractions and
the correctness of their approach is not guaranteed. Furthermore, they have the same pro-
blems with negation as we discussed in this paper, but they do not explicitly discuss them
and the user is responsible to solve them.

Our approach for the formal verification of Erlang programs uses abstract interpretation
and LTL model checking. The main idea is the construction of a finite model in the AOS
by means of a finite domain abstract interpretation. The abstraction is safe in the sense,

446

that all paths of the SOS are also represented in the AOS. For convenient verification we
have added state propositions to the AOS. We showed how these state propositions can be
decided by means of the abstract domain, with respect to the number of negations in front
of them. Finally, we used this technique in the formal verification of the database process:
we proved mutual exclusion for two accessing clients.

For future work, we want to transfer the presented and prototypically implemented results
to a tool using existing model checkers like Spin [Ho97]. Here a problem is the integration
of verifying or refuting properties in dependence of their positive or negative occurrences
in formulas. α-Spin [Ga02] is a first approach tackling this problem. However, using their
abstraction techniques will be difficult, because Spins specification language Promela and
Erlang are quite different (imperative vs functional, different kinds of data structures).

Literatur

[AWV93] Joe Armstrong, Robert Virding, and Mike Williams. Concurrent Programming in Erlang.
Prentice-Hall, Englewood Cliffs, NJ, 1993.

[AE01] Thomas Arts and Clara Benac Earle. Development of a verified Erlang program for re-
source locking. In Formal Methods in Industrial Critical Systems, Paris, France, July
2001.

[CGL94] Edmund Clarke, Orna Grumberg, and David E. Long. Model checking and abstraction.
ACM Transactions on Programming Languages and Systems, 16(5):1512–1542, Septem-
ber 1994.

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction of approximation of fixed points. In Proc.
of the 4th ACM Symp. on Principles of Programming Languages, pages 238–252, New
York, NY, 1977. ACM.

[Ga02] Marı́a del Mar Gallardo, Jesús Martı́nez, Pedro Merino, and Ernesto Pimentel. αSPIN:
Extending SPIN with abstraction. In Proc. of the 9th Int. SPIN Workshop on Model
Checking of Software, volume 2318 of LNCS, pages 254–258, 2002.

[Ga80] Dov Gabbay, Amir Pnueli, Saharon Shelah, and Jonathan Stavi. On the temporal analysis
of fairness. In Conference Record of the Seventh Annual ACM Symposium on Principles
of Programming Languages, pages 163–173. ACM SIGACT and SIGPLAN, ACM Press,
1980.

[HDL98] John Hatcliff, Matthew B. Dwyer, and Shawn Laubach. Staging static analyses using
abstraction-based program specialization. LNCS, 1490:134–148, 1998.

[Ho97] Gerard J. Holzmann. The model checker SPIN. IEEE Trans. on Software Engineering,
23(5):279–295, May 1997. Special issue on Formal Methods in Software Practice.

[Hu99] Frank Huch. Verification of Erlang programs using abstract interpretation and model
checking. ACM SIGPLAN Notices, 34(9):261–272, September 1999. Proceedings of the
ACM SIGPLAN Int. Conference on Functional Programming (ICFP ’99).

[Hu02a] Frank Huch. Verification of Erlang programs using abstract interpretation and model
checking. PhD thesis, RWTH Aachen, 2002.

[Hu02b] Frank Huch. Model checking Erlang programs - abstracting recursive function calls. In
Proceedings of WFLP’01, ENTCS, volume 64. Elsevier, 2002.

[JN94] Neil D. Jones and Flemming Nielson. Abstract interpretation: a semantics-based tool for
program analysis. In Handbook of Logic in Computer Science. Oxford University Press,
1994. 527–629.

447

[KP98] Yonit Kesten and Amir Pnueli. Modularization and abstraction: The keys to practical
formal verification. In L. Brim, J. Gruska, and J. Zlatuska, editors, The 23rd Int. Symp.
on Mathematical Foundations of Computer Science, volume 1450 of LNCS, pages 54–71.
Springer, 1998.

[LP85] Orna Lichtenstein and Amir Pnueli. Checking that finite state concurrent programs satisfy
their linear specification. In Proc. of the 12th ACM Symposium on Principles of Program-
ming Languages, pages 97–107, New Orleans, Louisiana, 1985. ACM SIGPLAN, ACM
Press.

[NFG01] Thomas Noll, Lars-åke Fredlund, and Dilian Gurov. The Erlang verification tool. In
Proceedings of TACAS’01, volume 2031 of LNCS, pages 582–585. Springer, 2001.

[SS98] David Schmidt and Bernhard Steffen. Program analysis as model checking of abstract
interpretations. LNCS, 1503:351–380, 1998.

[Va96] Moshe Y. Vardi. An Automata-Theoretic Approach to Linear Temporal Logic, volume
1043 of LNCS, pages 238–266. Springer, New York, NY, USA, 1996.

448

