Lars Grunske, Janet Siegmund, Andreas Vogelsang (Hrsg.): SE 2022,
Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik, Bonn 2022 43

Contrasting Dedicated Model Transformation Languages vs.
General Purpose Languages: A Historical Perspective on
ATL vs. Java based on Complexity and Size — Extended
Abstract

Stefan Hoppner! Timo Kehrer? Matthias Tichy'

Abstract:

Model transformations are one key concept of model-driven engineering, and model transformation
languages (MTLs) emerged with its popularity about 15 to 20 years ago. MTLs claim to ease model
transformation development by abstracting from recurring transformation aspects and hiding complex
semantics behind simple and intuitive syntax. Nonetheless, MTLs are rarely adopted in practice, there
is still no empirical evidence for the claim of easier development, and the argument of abstraction
deserves a fresh look in the light of modern general-purpose languages (GPLs) which have undergone
a significant evolution in the last two decades. In our SoSyM paper [HKT21], we report on a study
in which we compare the complexity and size of model transformations written in three different
languages, namely (i) the Atlas Transformation Language (ATL), (ii) Java SE5 (2004-2009), and
(iii) Java SE14 (2020); the Java transformations are derived from an ATL specification using a
translation schema we developed. Based on the results of these comparisons, we discuss the concrete
advancements in newer Java versions. We also discuss to which extent new language advancements
justify writing transformations in a GPL rather than a dedicated MTL. We further indicate potential
avenues for future research on the comparison of MTLs and GPLs.

Keywords: ATL; Java; Model transformations; Model transformation language; General purpose
language; Comparison; MTL vs. GPL; Historical Perspecitve; Complexity Measure; Size Measure

In the literature, many advantages are ascribed to model transformation languages, such
as better analysability, comprehensibility or expressiveness [GTG21]. Nowadays, however,
such claims have two main flaws. First, there is a lack of actual evidence to have confidence
in their genuineness [GTG21]. And second, most of these claims emerged around 15 years
ago when the first model transformation languages were introduced. From this follows
the presumption that transformations can just as well be written in a modern GPL. This
presumption is confirmed by a community discussion on the future of model transformation
languages [BCG19], and partially by an empirical study conducted by Hebig et al. [He18].
The presumption is mainly rooted in the idea that new language features allow developers to
heavily reduce boilerplate code that MTLs claim to abstract away from. To validate and

1 Ulm University, Institute for Software Engineering and Compiler Construction, James-Franck-Ring 1, 89081
Ulm, Germany [stefan.hoeppner|matthias.tichy] @uni-ulm.de

2 Humboldt University Berlin, Institute for Informatics, Unter den Linden 6, 10099, Germany timo.kehrer @
informatik.hu-berlin.de

®®O


https://creativecommons.org/licenses/by-sa/4.0/

44 Stefan Hoppner, Timo Kehrer, Matthias Tichy

better understand this argumentation, we elected to compare 12 transformations written in
the Atlas Transformation Language (ATL), one of the most widely known MTLs, with the
same transformations written in a recent version of Java (Java SE14), as well as an older
version (Java SES), that was recent when ATL was introduced. The goal of our SoSyM
paper [HKT21] was to (i) analyse how much transformation code, written in Java, has
improved over the years and (ii) contextualise these improvements by relating them to ATL
code. To do so, we opted to use both size and complexity measures to gain insights into the
makeup of transformation code for the discussion.

Our results show that new features introduced in Java since 2006 help to significantly reduce
the complexity and lines of code of transformations written in Java. However, they do not
reduce the number of words required to write the same transformations. This suggests an
ability to express more information dense code in newer Java versions. Transformations
in newer Java versions can also be written in a more data driven way that more closely
resembles the way they are defined in MTLs. We also showed that, while the overall
complexity of transformations is reduced, the distribution of how much of that complexity
stems from code that implements functionality that ATL and other MTLs can hide from the
developer stays about the same. This observation is further supported by the analysis of code
size distribution. Here, we found that while large parts of the transformation classes relate
to the transformation process itself, within those parts there is still significant overhead
from tracing as well as general supplemental code required for the transformations to work.
It follows, that while the overall complexity is reduced, the overhead entailed by using a
general purpose language for writing model transformations is still present.

Overall we find that more recent Java versions make development of transformations easier
because less work is required to set up a working transformation, and the creation of output
elements and the assignment of their attributes are now a more prominent aspect within
the code. From our results and experience with this and other projects, we also conclude
that general purpose languages are most suitable for transformations where little to no
tracing is required because the overhead associated with this transformation aspect is the
most prominent one and holds the most potential for errors. However, we also believe that
advanced features such as property preservation verification or bidirectional and incremental
transformation development cannot currently be implemented with justifiable effort in a
general purpose language.

Data Availability

All transformation and analysis code involved in our work is publicly accessible on the
OPARU system of our university [HTK21].



MTL vs GPL: A Historical Perspective on ATL vs. Java based on Complexity and Size 45

Bibliography

[BCG19]

[GTG21]

[He18]

[HKT21]

[HTK21]

Burgueiio, Loli; Cabot, Jordi; Gerard, Sebastien: The Future of Model Transformation
Languages: An Open Community Discussion. Journal of Object Technology, 18(3):7:1-11,
July 2019. The 12th International Conference on Model Transformations.

Gotz, Stefan; Tichy, Matthias; Groner, Raffaela: Claimed advantages and disadvantages of
(dedicated) model transformation languages: a systematic literature review. Software and
Systems Modeling, 20(2):469-503, 2021.

Hebig, Regina; Seidl, Christoph; Berger, Thorsten; Pedersen, John Kook; Wasowski,
Andrzej: Model Transformation Languages Under a Magnifying Glass: A Controlled
Experiment with Xtend, ATL, and QVT. In: Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering. New York, NY, USA, 2018.

Hoppner, Stefan; Kehrer, Timo; Tichy, Matthias: Contrasting dedicated model transforma-
tion languages versus general purpose languages: a historical perspective on ATL versus
Java based on complexity and size. Software and Systems Modeling, 2021.

Hoppner, Stefan; Tichy, Matthias; Kehrer, Timo: , Contrasting Dedicated Model Transfor-
mation Languages vs. General Purpose Languages: A Historical Perspective on ATL vs.
Java based on Complexity and Size: Supplementary Materials, 2021.



