
Towards Unified Dependability Modeling and Analysis

András Pataricza, Ferenc Gy
�
r

Department of Measurement and Information Systems
Budapest University of Technology and Economics

Magyar tudósok körútja 1.
1117 Budapest

pataric@mit.bme.hu
gyf@iit.bme.hu

Abstract: Unified dependability modeling and analysis consists of both functional
and non-functional modeling and analysis techniques. Nowadays one of the most
popular modeling techniques is UML. Functional properties of an UML model can
be validated and verified by existing modeling tools.

Checking of non-functional properties, like those related to dependability is of a
growing importance while they cannot be easily derived from UML models.
Despite the fact of the existence of a unified concept and terminology of
dependability notions and mechanisms, little convergence is observable between
the specific fields in dependability engineering. This paper presents a methodology
for the uniform modeling of the different dependability related attributes.

1 Introduction

Dependability plays an increasingly important role in the assurance of the quality of
services delivered by information technology systems. The objective of the paper is a
mathematically sound modeling methodology extending UML to cover dependability
properties as well.

Most of the functional properties in UML models can be checked by existing CASE
tools with a growing support by formal methods guaranteeing the functional correctness
of the target design. However, non-functional properties (including some very important
aspects, such as security and safety) cannot be handled efficiently.

The paper is based on the simple observation, that different approaches addressing
specific aspects of dependability use essentially the same algorithms for analysis of
different parts and aspects of the model.

• For instance, faults in software testability analysis are associated with coding
faults, and error propagation happens via invocation and inheritance [1].

113

• Faults are associated with the resources in assessment of the consequences of
permanent or transient hardware faults, and error propagation originates in the
interaction between the SW components and further extended by the interaction
between different components previously affected by errors [2].

• Similarly, in security analysis interactions initiated at the interface points may
propagate security and access right violations.

Additionally, the analysis methods are identical in many cases as well.

• The estimation of damage confinement regions necessitates the estimation of
the transitive closure of the graph having the objects and resources as nodes,
and their arbitrary connections as directed arcs starting from the node
representing the fault site. This transitive closure as a cover for the objects
potentially reachable from the fault site delivers a probable pessimistic estimate
of the damage containment region.

• In dynamic analysis of error propagation (i) the model has to be extended by
the transitions potentially occurring in a faulty system and subsequently (ii) the
dynamic effects of faults are estimated by simulation or by an exhaustive
traversal of the state space by model checking.

However, a contradiction exists between the uniform high level view of dependability
and the actual practice in its UML based modeling and analysis.

• The IFIP WG 10.4 conceptually unified the different forms of appearance of the
general notions of faults, errors, propagation etc. [4].

• Some papers already use this hierarchy to derive a uniform modeling concept
[5], but no paper on UML-based dependability modeling defines and
implements general algorithms covering all aspects of dependability in a
uniform way.

2 Modeling concepts

Subsequently, the general approach will be referenced further to as meta-algorithms, i.e.
general-purpose mathematical algorithms, which can be specialized in an automated way
by meta-modeling based model refinement.

Traditional domain specific profiles focus only on elements extending the target model
by the attributes needed for modeling of a specific aspect during model creation time.

114

Our proposal includes additional metamodel-level elements to be used in transformation
design as well, like (i) the description of the effects of faults at a general level1 and (ii)
the mapping of UML system models to some mathematical analysis domain.

An advantage of our methodology is to introduce all these elements as a refinement
hierarchy starting from the most general view. Specializations of the model at the highest
level of abstraction can be used for the different analysis aspects, while if different
analysis objectives share common concepts, a joint analysis method can be used.

The following modeling domains extend the basic UML metamodel in the case of
dependability analysis complementing the architecture design phase (Fig.1.):

• The standard UML is enriched by dependability attributes to be used by the
modeler of the target system.

• The standard General Resource Model is used to describe interactions by means
of QoS parameters defined according to the actual analysis objective between
the application and the underlying resources in either the form of static or
dynamic usage, together with their management.

• The basic notions for analysis of dependability attributes (e.g. error propagation
path or step) are added to the standard UML.

Figure 1: Modeling elements

1 For instance, the basic notion of stuck-at faults in traditional gate level testing is introduced at the metalevel
and the potentially faulty model is derived by applying this metalevel transformation to the faults free circuit.
A similar approach to automatically derive faulty instances of a UML model was proposed in [8].

115

For instance, the flow of errors must be tracked along all explicit (via the ordinary data
and control flow) and implicit (through shared resources) error propagation paths in
order to check a system’s dependability. This error propagation process is independent
of the particular origin of the errors, thus it is identical if an error originates in a transient
HW error, or it is caused by an intruder. In dependability analysis both kinds of errors
may share the same propagation mechanism with slightly differing propagation paths.

3 Implementation technology

The implementation of the concepts described above uses two main technologies:

• Hierarchical modeling is used to relate dependability modeling and analysis
concepts to the UML metamodel. However, the OMG standard Metaobject
Modeling Facility (MOF) suffers of several drawbacks, like having only
informal semantics, introducing a rigid four-level structure on metamodeling
levels, and confining the refinement operators (for instance, the refinement of
packages or associations is not supported). Our approach uses Visual Precise
Metamodeling (VPM), an extended metamodeling and model refinement
method [6], providing a precise refinement calculus, allowing an arbitrary
number of metamodeling levels and the refinement of all modeling constructs.

• Transformations are described by the easy-to-understand but precise formalism
of graph transformations, a multidimensional extension of the Chomsky-
grammars [7]. A transformation is defined by an ordered set of simple visual
graph manipulation rules executed in series. Each step specifies a graph pattern
to be searched in the source graph (in the UML model of the application) and
another one inserted into the target graph (into the mathematical analysis
model). Complex transformations can be composed by cascading multiple
simple ones.

Figure 2: Linking modeling domains

116

The use of hierarchical modeling is illustrated by the small fragment in Fig.2.

Here three domains are related: one describes the main concepts of dependability,
another one the target mathematical analysis tool, while the third one is the extended
UML metamodel.

The dependability metamodel defines the different forms of appearance of the notion of
a fault site. The association to the UML metamodel defines the correlation between the
dependability concepts, and UML as a modeling language. For instance, in the case of
the analysis of the consequences of hardware faults Fault_site is assumed to be a
Resource. The association between the abstract class Fault_site and the
Initial_node in a graph can be used during the analysis to define the starting point
from which the transitive closure has to be calculated.

The typical flow of transformations consists of the following steps (Fig.3.): as a first step
the dependability analysis related elements are extracted from the UML model of the
system and they are labeled according to the rules of the individual components in the
dependability metamodel. For instance, some of the resources is labeled as the fault site
in hardware error propagation analysis.

Figure 3: Transformation workflow

A subsequent transformation maps this model to the input of the mathematical analysis
tool by using the associations between the dependability analysis model model and the
metamodel of the target mathematical notion. For instance, the fault site becomes
through this transformation to the initiative node in the graph of which the transitive
closure has to be estimated.

It is worth to note, that by merging different steps in the transformation flow we may get
to the counterparts of different known methodologies. The traditional intuitive
transformations correspond to a direct and unstructured implementation of the filtering
and labeling steps. Dedicated algorithms correspond to the merging of the dependability
to mathematics transformation and the subsequent mathematical analysis.

117

The workflow indicates the benefits of using a hierarchical multistep approach. The rules
used in the „filtering and dependability related labeling“ step are derived from a few of
associations between the UML metamodel and dependability notions. The mapping from
the „dependability labeled“ model to the mathematical one is a pure definition of the
interface of the evaluation algorithm. Finally, the pure mathematical analysis algorithm
can be shared between all analysis tasks necessitating the solution of a specific
mathematical problem. This way, a small library of potentially highly optimized
algorithms can serve for a variety of analysis objectives.

4 A pilot example

Figure 4: Class diagram of the system

The theoretical results are illustrated by an example describing a web-based task
management system where a user can start a task only after getting an approval from the
system administrator or “root” . The main components of this system (Fig. 4) are

• a finite set of resources (both hardware and software), that are used by tasks
submitted by users;

• the set of “normal users” who want to submit tasks;

• the “root” responsible of the fair distribution of system resources;

118

• various “agents” keeping the system in an error and security flaw free state;

• a “database” that maintains all information about current system state;

• an “administration interface” converting root's commands into database queries;

• an “authentication hardware” preventing access to the administration interface
for non-root users;

• a “portal” displaying actual information about running tasks for the users.

During normal operation (Fig 5).when a “user” intends to initiate a task, he logs in the
portal, and submits it. After an approval is granted by the “root” a corresponding entry
is created in the database, and the system will start it as soon as possible. Otherwise the
task will be rejected. If a running task has been interrupted for some reason, an agent
will restart the task. Upon termination of a task, its owner is notified via the portal. In the
following, we will shortly summarize the hardware fault and security flaw scenarios.

Figure 5: Normal operation

The classes described in UML diagram are stereotyped as: Stateful if it is capable of
storing errors by preserving an erroneous state; Stateless if it has no memory;
Checking if it is able to detect software and/or hardware errors thus preventing further
error distribution; Blocking if it performs security checks, and prevents further
distribution of the effects of one or more security flaws.

119

4.1 Software and hardware fault handling

The set of anticipated software and hardware faults consists of four main error
categories: (i) sticking into a state; (ii) no response from a component; (iii) Random state
transitions; (iv) a bad functionality manifested as a data error.

Software and hardware errors are detected by various agents continuously monitoring
the system. One or more components forming an error-containment region will be halted
depending on the type of the error to prevent further error propagation. After a
subsequent diagnosis and repair, the corresponding components will be restarted. If the
system can not recover from an error, it will go to a “Global Failure” state, and stop.

A hardware fault may even induce a software error with potential security related side-
effects. A fault in the authentication hardware may generate a huge amount of random
database queries leading to database inconsistency by overloading it. A database
inconsistency can prohibit a successful recovery triggering a fail-stop of the system.

The damage confinement region is estimated by calculating the transitive closure of the
error propagation graph as in the general case. The nodes of this graph are the software
and the hardware resource classes; however the interruption of the error propagation by
checking and blocking nodes is modeled by omitting them from the set of graph
nodes in the association rules (Fig.6).

Figure 6: Error propagation rules

The result of the analysis shows that the errors in the database (a crucial component of
the system) are detected and blocked by several agents (Fig. 7).

120

Figure 7: Damage confinement region for a database fault

4.2 Security faults

A “malicious user”, may try an internal security attack, in order to run malicious tasks
over its limit by illegally modifying the database entry by deceiving the authentication
hardware, so aliasing the root. Fortunately a security agent notices this kind of attack,
and is able to ban the user and all of his tasks from the system.

An “external attacker” tries to violate the security of the system by illegally obtaining
valuable information, aborting running tasks, or starting unapproved tasks. An imperfect
security agent will be unable to detect this security threat. This way an attacker may
modify the database in order to let kill a non-malicious task by the misleaded security
agent, and let him spawn other, malicious tasks recognized by the agent erroneously as
interrupted benign tasks (Fig. 8) thus breaking the Bell-LaPadula's “no-read-up” rule [9].

The description of the error propagation can be done by using the same association rules
as in the case of hardware errors. The imperfectness of the security agent can be
expressed by omitting this stereotyped class from the abstract class labeled as
blocking.

5 Conclusions

A well-layered approach was presented in the paper to associate the notions of UML
models, dependability, and mathematical analysis.

121

The main advantage of the methods is that it reduces the elaboration of transformation
rules to the formalization of the general notions of dependability and analysis.
Transformation rules can be derived in an automated way from this description.

Figure 8: Security analysis

References

[1] B. Baudry. Y. Le Traon, G. Sunyé: Testability Analysis of a UML Class Diagram. Proc.
IEEE Software METRICS'02, pp. 54 -63, 2002.

[2] A. Pataricza. From the general resource model to a general fault modeling paradigm? –
Proc. of the UML'02 Workshop Critical Systems Development with UML, volume
TUM-I0208, pp. 163-171. Technische Universität München, Oct 2002.

[3] J. Jürjens: Towards Development of Secure Systems Using UMLsec. Proc. FASE 2001,
pp. 187-200, Springer LNCS-2029, 2001

[4] J.-C. Laprie: Dependability: Basic Concepts. Springer, 1992,
[5] S. Bernardi: Building Stochastic Petri Net models for the verification of complex

software systems. PhD thesis, Universit`a degli Studi di Torino, 2003.
[6] D. Varró, A. Pataricza. VPM: Mathematics of metamodeling is metamodeling

mathematics. Journal of Software and Systems Modelling, 2(3):187-210, October 2003.
[7] Gy. Csertán, et al. VIATRA - visual automated transformations for formal verification of

UML models. In Proc. IEEE ASE 2002, pp 267-270. 2002.
[8] A. Pataricza. Metamodel based fault modeling in UML designs. In Suppl. Vol. of IEEE

DSN-2003, pp. 72-73, 2003.
[9] A. Silberschatz, H. F. Korth, S. Sudershan: Database System Concepts, Third Edition,

McGraw-Hill

122

