Towards Entropy-Based Requirements Elicitation
Arkadiy V. Kostanyan, Vladimir A. Shekhovtsov

Department of Computer-Aided Management Systems
National Technical University “KhPI”, Kharkiv, Ukraine
kostanyan@datasvit.net, shekvl@kpi.kharkov.ua

Abstract: This paper presents our views towards constructing the universal
parsing technique for the software requirements texts and the requirements
elicitation technique based on the output of this parsing process. With the proposed
parsing technique, it should be possible to achieve language-independent
processing of the requirements texts. Source sentences are treated as systems with
words as elements and with a state determining the set of links between elements.
The main goal of the parser is to find the state of the system with the highest
organization level by minimizing its entropy. The requirements elicitation
technique extends trained indicator approach by Cleland-Huang treating inter-word
links as indicators. The output of the elicitation process is the set of requirements
information ready to be processed further using Conceptual and Aspectual
Predesign techniques.

Key words: NLP methods, parsing, aspectual predesign, conceptual predesign,
genetic algorithm, entropy, training, indicator weights

1 Introduction

The input for requirements analysis phase of the software process consists of customer
requirements expressed in various textual, graphical, or verbal forms. For large-scale
systems, the volume of requirements makes it difficult to understand and analyze them in
full detail. Therefore, an organization or requirements information becomes necessary.
To organize the requirements information obtained from the requirements texts into
special intermediate models and convert these models into the conceptual model, the
Conceptual Predesign [KMO02] and Aspectual Predesign [SKO05, She06] techniques were
proposed (the former aimed at processing functional requirements, the latter enhancing it
to cover non-functional requirements).

Prior to using these techniques, however, it is necessary to fill the intermediate models
with requirements information. One of the possible approaches of doing this is to use
natural language processing (NLP) techniques for analyzing the requirement
specifications texts and eliciting the necessary information. For each NLP method, the
first stage is a parsing of text. This article describes our suggestions towards constructing
the universal requirement specification parser aimed at determining the set of links

105

between the sentence’s words. We also propose the requirements elicitation technique
using the set of links determining by the parser. The output of the elicitation process is
the set of classified requirements information suitable for use with Conceptual and
Aspectual Predesign.

The remainder of this work is organized as follows. Section 2 gives brief background
information. Section 3 states the problem. Section 4 describes the parsing technique,
section 5 — the elicitation technique. Section 6 describes the related research. Section 7
includes our conclusions and recommendations for future research.

2 Background

2.1 Conceptual and Aspectual Predesign

The main goal of the Klagenfurt Conceptual Predesign [KM02, MK02] is to implement
requirement gathering that could be controlled and verified by the end-user. This goal is
achieved with the help of KCPM (Klagenfurt Conceptual Predesign Model) —
intermediate semantic model that resides between the requirement specification and the
conceptual model. This model consists of semantic concepts that are more general than
conceptual modeling concepts and could be more easily understood and verified by the
end user, such as thing-type (generalization of entity/class and attribute), connection-type
(representing all kinds of relationships among the concepts), operation (generalization of
the method), and event. KCPM could be presented in tabular form (as glossaries) and as
the semantic network. The KCPM is supposed to be retrieved from the functional
requirement specifications. This can be done manually or with the help of Natural
Language Processing (NLP) tools. The latter approach is used in the project NIBA
[Nib02, FKMO03] that will be described later in this section.

The main goal of Aspectual Predesign technique [SKO5, She06] is to elicit the non-
functional (quality) requirements from the software requirements specifications into
enhanced model based on KCPM (we call this model Aspectual Predesign Model,
APM). In this model, thing-types are used to represent quality requirements types,
crosscutting behavior implementing quality requirements (advices, interceptors) is
represented via operation-types; pointcuts (rules that connect advices to some places in
model where they are supposed to be called) are represented via the modified
connection-types. Aspectual predesign can be seen both as an extension to the
Klagenfurt conceptual predesign that allows mapping the non-functional requirements
and as an intermediate step of the AOSD [Asp05] residing between aspect-oriented
requirements engineering and aspect-oriented modeling.

As for KCPM, it is necessary to perform the elicitation of the non-functional
requirements to obtain the natural language requirements specifications before starting
the aspectual predesign process and to capture the artifacts of these requirements directly
from the requirements specifications via NLP methods. For this purpose, one can use the
results of existing projects (e.g. NIBA) or develop special-purpose approaches.

106

2.2 NIBA project

NIBA project represents tools and methods to get ready conceptual model directly from
requirements texts. The NIBA project workflow consists of the following phases
[Nib02]:

1. Textual analysis using an NTS based parser.

2. Interpretation of the parser output and transformation of requirements related
patterns into KCPM schema entries.

3. KCPM schema validation and modification by the end users and their consultants.

4. Transformation of the KCPM schema into conceptual model by application of
heuristic transformation rules.

5. First cut cost estimation using function point analysis based on the knowledge
gathered in phases 2) and 4).

For the purpose of our paper, we need to look at the first step of NIBA workflow in more
detail.

NTS (Naturlichkeitstheoretische Syntax) [MFWO98] is a grammar model based on
generative syntax. Descriptions of grammatical phenomena are represented by trees
expressing both constituency and dependency relations. These trees are unfoldings /
projections of lexical base-categories. Basic lexical categories are VO (verb), NO (noun),
A0 (adjective), PO (preposition), QO (quantifier), ADVO (adverb), PTO (particles), and
SPZ0 (auxiliaries and determiners).

NL-Parsing is done using a Prolog engine. The Prolog Parser is written in the Definite
Clause Grammar (DCG) format. The lexicon of the parser comprises 20 verb classes, to
which class-specific phrase structures have been assigned. The input for the parser could
be any German sentence related to the chosen domain.

3 The Problem Statement

Investigating the current state of affairs, we see the following open problems for NLP
techniques (in particular those implemented for NIBA) applying to requirements texts.

1. It is necessary to have parser capable of processing sentences with arbitrarily
complex structure. Such parser should have open system of rules making it easy to
define new sentence structure cases if necessary. Current version of NTS parser uses
DCG that restricts the available sentence structures and lexical constructs to some
predefined set not intended for extension.

2. Large software projects are multinational and often multi-language in nature.
Therefore, the parser should be capable of handling sentences expressed in different
languages (at least for Latin-based language group). Current version of NTS
grammar uses lexical categories tightly tied to German and not intended for reuse as
other languages’ categories.

107

3. The output of the parser should be used as an input for requirement elicitation
techniques. For further processing, these techniques need to have access not only to
the linguistic information related to the parsed texts, but also to the requirement-
related information. Such information currently is not included in the output of the
NTS-based parser.

4. Currently, the NTS-parsed information can only be transferred into KCPM (on the
Step 2 of the NIBA workflow); functional requirement-specific actions are
“hardwired” into this process. It is not possible currently to transfer non-functional
(quality) requirements information into APM.

The purpose of this paper is to make a first step and propose requirements parsing and
classification techniques addressing these problems.

4 Entropy-Based Parser Concept

To solve the parsing problems described above we propose the new concept of parser
building that we call entropy-based parser. In this section, we present the basic concept
of this parser, its foundations, and implementation issues.

4.1 A Sentence System

We consider each source sentence as a system with the set of elements (words) and the
set of links between the elements (the sentence system). The link between the words is
defined as a semantic connection between the concepts corresponding to these words in
a sentence’s context. We follow the opinion of [Rup06] that the words by themselves
(out of context) are meaningless. Consequently, the set of links between the words
makes sense of the sentence from the knowledge point of view and generates the
sentence system from its elements from the system analysis point of view. To put it
briefly, we assume that the current state of the sentence system is determined by the
current set of links between its words.

Let us formalize this idea further and present some notions and definitions. First we
denote a sentence system by W, its elements by w;, i € I (W), where I (W)= {1, 2, ... |W/}
is a set of all indexes of W elements; |¥] is a cardinality of .

We define a link state of the sentence system as a presence of the link between the
particular pair of the sentence elements (w;, w;). A link state is denoted by s(i,j) € S(W),
i,j € I (W) where S(W) is the set of all possible link states of the sentence system W.
Later on we will often omit pair indexes defining link state simply as s € S(W). Every
link state is supplemented with link state probability P(s) € [0, 1], s € S(W) indicating
the probability of the corresponding link to appear in a sentence. We outline the ways of
calculating this probability later in this section.

108

We define an enhanced sentence system A(W) as a sentence system where all word
elements and link states are augmented with additional sets of properties. Actually, in 4
every element x € W U S(W) is replaced with the following tuple:

x" =< x,Prop(x),Req(x) >, xeWUSW).

Here Prop(x) is the set of linguistic properties of x which is either word or link state;
Req(x) — the set of requirement-related properties of x. Further we will also use the
notion of w’ (augmented word), and s’ (augmented link).

Linguistic properties are language-dependent (they can represent such characteristics as
declension, conjugation, case, number etc.); they are used to calculate linguistic
probabilities of links further in this section.

Requirement-related properties are defined in a process of requirement elicitation;
establishing them for all the words and links in a sentence forms the basis for eliciting
the requirement out of this sentence. They will be described in detail in Section 5.

4.2 Entropy Calculation

The main task of the parser is to define exact structure of the sentence (a set of words
and the links between them). We assume this structure corresponds to the state of the
system with the highest degree of organization and use well-known notion of entropy as
a measure of this degree. We calculate the system entropy H(#) as follows:

H(K) ==Y P(s)-log(P(s)), se K < S(W), KeUW)cQW). (1)

Here K is the particular subset of link states of a sentence, U(W) — set of all subsets of
the link state set in W leaving no words of W unlinked, Q(W) is a set of all possible
subsets of the link state set in /7. We assume that it is not feasible to consider sentences
containing unlinked words.

The system state with the highest degree of organization has the minimum of entropy.
Therefore, the main task of our parser is to select entropy-minimizing subset of link

states K* < S(W) among all subsets of the link state set qualified to calculate entropy:

(<

We calculate link state probabilities P(s) for elements of link state set K using the
following formula:

H = mKin(—ZP(s)-log(P(s)), seK c S(W)), KeUW) c Q(W)}~

P(s)=P"(s)-P°(s), sekK.

109

Here P"(s) and P(s) are, correspondingly, linguistic and statistical probabilities of the
link state s. Here P" represents a priori probability based only on common linguistic
knowledge; whereas P° represents a posteriori probability calculated on a basis of
statistical experiments with training corpora.

We calculate the linguistic probability of the link state s(i, j) using the following
formula:
. 1 Li,j) . .
PE(s() = gy s b €1V
=i L)+ L(j

Here L(i, j) is a number of linguistic properties of a pair of elements (w;,w}) making
possible the presence of a link between w; and wj; L(i) — total number of linguistic
properties defined for an element /. When w; and w; are adjacent (j is next to /) and all
the ' and W properties make possible the presence of a link, the value of this

characteristic is equal to one (the link certainly exists). In the worst case (no properties
make possible the presence of a link), it will be equal to zero (the link certainly not
exists).

Example of linguistic properties making possible the presence of a link between w; and
w; can be the property “w; is an adjective” together with the property “w; is a noun”.
Exact rules should be defined for the particular language.

We calculate the statistical probability of the link state s(7,) using the following
formula:

s o Clj) o '
p (S(l’]))_7C(i)+C(j)’ h,jelw)

Here C (i, j) is a number of sentences in the training corpora where both elements of the
link state pair (w;, w;) are present; C (i) — number of sentences in the training corpora,
were element w; is present. This value also changes in range from zero to one.

4.3 Sentence Parsing Algorithm

Now we should define the method for searching the optimal set of links for the described
criteria (minimal entropy value). In our case, the main task is to select K* from a
predefined number of K e U(W) < Q(W). It is possible to solve this combinatorial

problem by exhaustive search, but if the number of words in the sentence is large, this
could take a long time due to combinatory explosion effect.

To avoid exhaustive search, we propose to use a genetic algorithm (for general theory of

these algorithms, their convergence, performance advantages over the exhaustive search
etc. see e.g. [Mic99]). This algorithm (Algorithm 1) uses links as individuals and

110

subsets of possible links K e U(W) = QW) as populations. It is applied to shorten the
search among all the subsets of the same size. Its sequence of steps is as follows:

Step 1. Randomly select initial population x c (W) < Q(W) of size |K|e [\W| —L(‘;V ‘)]

Step 2. Perform the crossover operation swapping first words of two random links.

Step 3. Perform the mutation operation replacing both words of the randomly chosen
link with two random words from the same sentence.

Step 4. Calculate entropy for the modified population according to (1).

Step 5. Perform the selection operation generating new population based on values of
P(s)-log(P(s)), s € S(W) (selected are top |K] individuals).

Step 6. Terminate if entropy remains unchanged through MG iterations; in this case, K"
for the particular subset size is found; otherwise go to step 2.

As mentioned, this algorithm considers only subsets of the same size. To look through
all the K e U(W) < Q(W') we propose the following Algorithm 2:

Step 1. Let G = |W-1.
Step 2. Apply Algorithm 1 to subsets of size G, find K" (G), calculate H(K'(G)), set

K™ =K"(G),H™ = H(K'(G)) if H(K"(G))<H™ or G =|W|-1.

Step 3. Let G = G+1.

Step 4. Terminate if entropy is not decreasing through ML iterations or if G = (‘;V ‘)+1
(all possible subsets are processed); in this case K™ is the entropy-minimizing
set of links; otherwise go to step 2.

It is important to note that for most requirement texts (where sentences are not large),
exhaustive search can be feasible so this algorithm should be applied only if
performance problems are expected.

As an output of the parsing process (which consists of applying Algorithm 2 or
exhaustive search sentence-by-sentence), we obtain the set of sentence structures
(W, K (W)), each structure containing the set of the words and the set of the links

between these words. These structures form the input for the requirement elicitation
process, which we describe in the next section.

5 Requirements Elicitation

An input for the requirements elicitation process is the set of parsed sentence systems.
Every such sentence system has the set of its words and the set of links between them.

5.1 Requirement-Related Properties

Requirement-related properties are represented by the following tuple:

111

Req(x) = < Kind(x), Repr(x), Satis(x), Role(x) >, xe W U S(W)

Every Req(x) element represents particular facet of the requirement [Gli05] connected to
the element x (which, as earlier, is either word or the link). Following a classification by
Glinz [Gli05], enhanced in [SK06] according to the recommendations by ISO [ISO01],
we briefly outline the set of possible values for each facet.

1. Kind(x) represents the kind of requirement connected to x. Possible kinds
according to [G1i05, SK06] can be selected from the following two-level hierarchy:

a. Functionality, decomposed into:
Suitability, Accuracy, Interoperability, and Security;
b. Reliability, decomposed into:
Maturity, Fault tolerance, Recoverability;
c. Usability, decomposed into:
Understandability, Learnability, Operability, and Attractiveness;
d. Efficiency, decomposed into:
Time behavior and Resource utilization;
f. Maintainability, decomposed into:
Analyzability, Changeability, Stability, and Testability;
e. Portability, decomposed into:
Adaptability, Installability, Co-existence, and Replaceability.

Other requirements hierarchies exist (see, for example, [Kas06] for an extensive
hierarchy of the quality aspects corresponding to the quality requirements); one can
choose which is better for a particular case.

Our hierarchy does not separate functional and non-functional (quality) requirements,
they are listed alongside each other (see [Gli05, Kas06] for more in-depth discussion). It
is important for our purpose, as we target both Conceptual and Aspectual predesign so
the parser should parse all the requirements regardless of their types.

2. Repr(x) denotes the representation of the requirement. Possible values are
“operational”, “quantitative”, and “qualitative”.

3. Satis(x) denotes the degree of satisfaction of the requirement. Possible values are
“hard” (the requirement must be satisfied) and “soft” (the requirement is desirable to be
satisfied).

4. Role(x) denotes the role of the requirement. Possible values for roles are
“prescriptive” and “assumptive”.

These four facets are our preliminary attempt to outline a set of requirements-related
properties. Elaborating detailed definition of these properties is a target for further
investigation.

112

5.2 Setting the Sentence Properties

Requirement-related properties can be set by the process similar to one proposed by
Cleland-Huang [Cle06]. Following [Cle06] it is possible to define the set of indicator
terms (keywords) and train this set on the sample sentences already classified into
requirements categories. Here the training means determining the weights indicating the
relevance of the terms for the requirements categories. After the set is trained, it is
possible to classify newly presented document sentences into requirements categories
based on the total relevance weight of the indicator terms found in every sentence.

We propose to adopt this technique by maintaining the trained element set A" = W' U S,
where W is the set of trained words and S is the set of trained links. The element of this
set (trained sentence element, based on either word or the link) is denoted
byx” =<x,Req’ (x)>, xe A", where Req’(x) is the following tuple:

ReqT(x) =< Vkind(x),Vrepr(x),VsaﬁS(x), VIOIE(x) >’ xe AT.

Here V' ™(x) = {v""(x,/) €[0,1], f eF""} is a set of indicator weights v*"(x,f) for the
set X" of all possible values f of the kind facet (indicating relevance of x for the
categories corresponding to these values, i.e. categories corresponding to the
requirement kinds). For brevity, we will use the kind facet in the following description;
other facets are processed exactly the same way.

kind

The weights v “"“(x, f) are calculated using simplified formula from [Cle06] as

Vi (v £ :LZ N(x’Wf) . N, (x)

, feFkind’ xe A’
N, \W,\ N(x)

Here N;is a number of sample sentences falling into “kind f” category (f-sentences), |Wy|
is a cardinality of f-sentence system; N(x, ;) is a number of occurrences of x in f-
sentence Wy Ny(x) is a number of f-sentences containing x, N(x) is a total number of
sentences containing x. See [Cle06] for more discussion regarding calculation of these
weights and adjusting them based on sample sentence systems used in training.

We propose to go through the parsed sentence system element by element. Every
element x of the parsed sentence system is matched against #” if x is a word or against
ST if it is a link (the match succeeds if an element is found in a set). Then, if x is a word,
all the links involving this word are matched against S”. If x is a link, both words
comprising this link are matched against #’. We stop the process at this point, but in
theory it is possible to recursively explore the links further, this process can be
controlled by specified recursion depth.

After all the comparisons are made, the matched elements form the basis for obtaining

property facet values for the current element. To do this, we calculate total weights z;‘.i“d

of all the requirement facet values:

113

Z;ind(x): Hvkind(y,.f), .feFkind’ AMT(X)CAT'

yeAMT(x)

Here AM(x) is the set of trained elements matched against x. The facet value £ " "(x)
possessing the largest total weight is chosen as the value of this facet for the current
element.

Kind(x) = {7 ()| 2" (x) = max 27" (1)}

e kind

For cases when no exact match is found, we plan to implement calculating the proximity
between the current element and the trained set elements and set facet values based on
the weights calculated by combining this proximity and the trained weights. In this
situation, current element with all its facet weights can be added to the trained set (so the
training can continue during the elicitation process). An approach to proximity
calculation is a target of future research.

5.3 Eliciting Requirements from Extended Sentence Systems

The result of the described process is the set of extended sentence systems containing
requirement-related properties supplementing all sentence elements (both words and the
links between them). Actually, these properties define the classification of sentence
elements according to the requirement facets. This classification can be used to convert
the elements into the representation of KCPM and APM. It is especially well suited to
eliciting the quality requirements ready to be filled into APM:

1. Links between the words can be converted into APM connection types representing
rules describing crosscutting in the system (quality requirements usually crosscuts
different functionality of the system). Corresponding requirement-related properties
(belonging to both the link and the words it connects) define the type of corresponding
quality requirement. In AOSD and APM terminology, these rules are called pointcuts.

2. Words connected with these links can be converted into operation-types describing
crosscutting behavior of the system (the implementations of quality requirements). In
AOSD and APM terminology, these operations are called advices or interceptors.

See [SKO05, She06] for more discussion of the APM and possible types that can be
represented by this model.

6 Related research
Our work can be put under an umbrella of the requirements discovery techniques. These
techniques process free-text or structured requirements specifications using NLP,

Information Retrieval, and similar methods with a goal of obtaining the requirements
from these documents in automated way.

114

According to the Theme/Doc method [BCO04] the requirements specifications are
processed in search for keywords that are used to generate diagrams for the design
phase. This keywords search is mostly template-based so the parsing is simple.
Approach in [Ros04] uses IR-based techniques (e.g. regular expression matching) for
finding the requirements related to the particular system quality. Only simple regular
expressions are considered, nothing in this approach can be compared to the real
requirements parser.

In Section 5, we have already shown how it is possible to use an approach of Cleland-
Huang [Cle06] to supplement our parsing technique. In its initial form, this approach
classifies requirements documents into categories related to quality aspects (our kind
facet). It differs from our technique in that it does not include parsing step (the input for
classification process is pure text) and it does not consider the properties of links
between the words.

7 Conclusions and future work

Described entropy-based parsing and elicitation technique has some important properties
making it suitable for use with Conceptual Predesign and Aspectual Predesign.

1. It allows working with linguistic information on the abstract level using universal
notions. As a result, it is possible to use such parser for any language sharing common
set of specific linguistic properties.

2. It reveals word-linking information that can be used to describe the requirements
that cannot be easily described by pure words such as quality requirements.

3. It augments parsed words and links with requirement-related properties that can be
used to elicit the requirement information ready to be filled into KCPM or APM.

We plan to test the viability of the ideas presented in this article using real-life set of
requirements specifications texts. We also consider investigating the structure of
requirement-related properties in more detail and create rules for converting parsed and
property-augmented information into KCPM or APM.

We also plan to investigate the possibility to use neural network-based approaches to
implement the training process applied to define the requirement-related properties.

Bibliography

[Asp05] Aspect-Oriented Software Development, Addison-Wesley, 2005.

[BC04] Baniassad, E.; Clarke, S. Finding Aspects in Requirements with Theme/Doc. In:
Proceedings of Early Aspects 2004, Lancaster, UK, 2004.

[Cle06] Cleland-Huang, J; Settimi, R.; Zou, X.; Solc, P. The Detection and Classification of
Non-Functional Requirements with Application to Early Aspects. In: Proceedings of
RE’06 Conference, 2006.

115

[FKMO3]Fliedl, G.; Kop, Ch.; Mayr, H.C.: From Scenarios to KCPM Dynamic Schemas: Aspects

[G1i05]
[1SO01]

[Kas06]

[KMO02]

of Automatic Mapping. In: (Diisterhoft, A.; Thalheim, B. Eds.): Natural Language
Processing and Information Systems - NLDB'2003. Lecture Notes in Informatics P-29,
GI-Edition, 2003, pp. 91-105.

Glinz, M. Rethinking the Notion of Non-Functional Requirements. In: Proc. of the Third
World Congress for Software Quality (3WCSQ 2005), Munich, Vol. 11, 55-64.

ISO/IEC 9126-1 (2001). Software engineering — Product quality — Part 1: Quality model.
International Organization for Standardization, 2001.

Kaschek, R.; Pavlov, R.; Shekhovtsov, V.; Zlatkin, S.: Towards Selecting among
Business Process Modeling Methodologies. In: Proc. of BIS 2006, Klagenfurt, Austria,
2006.

Kop, Ch.; Mayr, H.C.: Mapping Functional Requirements: From Natural Language to

Conceptual Schemata. In: Proc. International Conference SEA 2002, Cambridge, USA,
Nov. 4-6, 2002, pp. 82-87.

[MFW98] Mayerthaler, W.; Fliedl, G.; Winkler, Ch. Lexikon der Natiirlichkeitstheoretischen

[Mic99]

[MKO02]

[Nib02]
[Ros04]
[Rup06]

[She06]

[SKO5]

[SK06]

Syntax und Morphosyntax, Stauffenburg Verlag, Brigitte Narr, Tiibingen, 1998.

Michalewicz, Z. Genetic Algorithms + Data Structures = Evolution Programs, Springer-
Verlag, 1999.

Mayr, H.C.; Kop, Ch.: A User Centered Approach to Requirements Modeling. In:
M.Glinz, G. Miiller-Luschnat (eds.): Proc. Modellierung 2002. Lecture Notes in
Informatics P-12 (LNI), GI-Edition, 2002, pp.75-86.

Niba, L.C.: The NIBA workflow: From textual requirements specifications to
UMLschemata. In: Proc. ICSSEA'2002, Paris, December 2002.

Rosenhainer, L. Identifying Crosscutting Concerns in Requirements Specifications,
Workshop on Early Aspects, Vancouver, Canada, Oct. 2004.

Rupp, C. Clairvoyance for Intermediate Learners. Keynote for International Conference
NLDB 2006.

Shekhovtsov, V.A.; Kostanyan, A.V.; Gritskov S.; Lytvynenko Yu.: Tool Supported
Aspectual Predesign. In: Information Systems Technology and its Applications -
ISTA'2006. LNI P-84, GI-Edition, 2006, pp. 153-164.

Shekhovtsov, V.A.; Kostanyan, A.V.: Aspectual Predesign. In: Information Systems
Technology and its Applications - ISTA'2005. LNI P-63, GI-Edition, 2005, pp. 216-226.
URL.: http://apmtool.sourceforge.net/apm/apmpaper.pdf

Shekhovtsov, V.A.; Kostanyan, A.V.: Universal software system requirements
classification. In: Proc. CSIT'2006, September 2006, Lviv, Ukraine.

116

