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Abstract: Semantic Web technologies promise great benefits for Personal Knowledge
Management (PKM) and Knowledge Management (KM) in general when data needs
to be exchanged or integrated. However, the Semantic Web also introduces new is-
sues rooted in its distributed nature as multiple ontologies exist to encode data in the
Personal Information Management (PIM) domain. This poses problems for applica-
tions processing this data as they would need to support all current and future PIM
ontologies. In this paper, we introduce an approach that decouples applications from
the data representation by providing a mapping service which translates Semantic Web
data between different vocabularies. Our approach consists of the RDF Data Transfor-
mation Language (RDTL) to define mappings between different but related ontologies
and the prototype implementation RDFTransformer to apply mappings. This allows
the definition of mappings that are more complex than simple one-to-one matches.

1 Introduction

Today, the World Wide Web consists of several billion documents that are publicly acces-
sible and serve as a rich source of knowledge. This has already made the Web a valuable
resource for knowledge workers, but it has its limitations in exchanging data between soft-
ware system if the meaning of the data has to be preserved. The explicit encoding of the
semantics would ease the processing of that data and therefore enable new applications as
well as increase the value of existing data. The Semantic Web [BLHLO1] provides tech-
nologies to address these problems and we can observe a continuously growing popularity
in the domain of Knowledge Management (KM) as described in [War06] and a special
issue of IEEE Internet Computing [DLS07].

Personal Knowledge Management (PKM) also benefits from this development as ontolo-
gies exist to encode data from the Personal Information Management (PIM) domain. There
are ontologies for contact data (e.g. FOAF,! vCard,> NCO,?> SWRC [SBH*05]), event data
(e.g. RDF Calendar,* SWRC), and wiki data (e.g. Semantic MediaWiki [KVV06]) that

Ihttp://xmlns.com/foaf/spec/
2http://www.w3.org/2006/vcard/ns
3http://www.semanticdesktop.org/ontologies/nco
4http://www.w3.org/TR/rdfcal/
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enable the representation of PIM data in RDF. However, Semantic Web technologies also
introduce a new problem of heterogeneity as each party is free to use any existing on-
tology or define a new one to represent their application data. We can clearly observe
this problem in the PIM domain where various ontologies exist that cover the same or
strongly overlapping areas. It is unlikely that all these vocabularies will be replaced by
one unifying ontology, but rather additional ones will emerge deteriorating the situation
even more. This causes problems to applications that want to process Semantic Web data
as they would not only have to support all currently available ontologies, but the applica-
tions would also need to be updated every time a new vocabulary emerges. Therefore, we
see the need for a service that acts as a mediator between applications and Semantic Web
data. This service decouples the applications from the concrete representation of the data
by providing translations for data encoded in different but related ontologies.

To further motivate our approach, we present in this paragraph an example use case
where RDF data should be exchanged between two PIM applications via a Semantic Clip-
board [RLMGO7]. Imagine that we want to add the birthdays of all persons in our address
book to our calendar application. The address book encodes the contact data (including
birthdays) in the vCard ontology, but the calendar application employs the RDF Calendar
vocabulary and cannot process vCards. As a consequence, the Semantic Clipboard needs
to transform the source data before it gets pasted to the target application. This media-
tion process is handled by our RDFTransformer component that runs locally as part of the
Semantic Clipboard. The advantage of a local transformation service is that it does not
depend on a central server and therefore ensures the privacy of the sensitive PIM data.

The contribution of this paper is an approach to bidirectionally transform RDF data be-
tween ontologies. The approach consists of three parts: (1) The mapping language called
RDF Data Transformation Language (RDTL) to define correspondences between two on-
tologies; (2) the prototype RDFTransformer implemented as a library that enables the ap-
plication of mappings; and (3) the stand-alone server application Remote Mapping Storage
(RMS) to distribute existing mappings over the Web.

The remainder of this paper is structured as follows: Section 2 takes a brief look on related
work in the area of ontology mapping. Section 3 compares the two basic approaches for
mediating between applications and data that use different ontologies. Section 4 introduces
our approach for transforming RDF data between different vocabularies, including our
mapping language RDTL and the prototype implementations RDFTransformer and RMS.
Section 5 summaries the results from our evaluation and Section 6 concludes this paper.

2 Related Work

The problem of mapping between ontologies can be split into two parts. First, the corre-
spondences between matching elements have to be defined, either manually or automati-
cally by alignment algorithms. Second, the mappings have to be applied on data to convert
it from a source to a target format. These two parts so far received different amounts of
attention from the research community.
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A lot of effort has been put into the automated finding of corresponding concepts. Such
approaches are manifold and they can be differentiated by the characteristics they use to
detect a match. There are approaches that focus on linguistic and structural similarity
(e.g. Cupid [MBRO1]); some need the same set of instances encoded in both vocabularies
and then analyze the resulting identical individuals (e.g. FCA-MERGE [SMOL1]); others
investigate the mapping to a common reference ontology (e.g. IF-Map [KS03]). A combi-
nation of multiple techniques was also realized (e.g. OLA [EV03, EV04]). This enumer-
ation is not exhaustive, there are other approaches as well as implementations to detect
matching concepts. Their findings can also be used to define RDTL mappings.

In contrast, there was less work done in the representation of ontology mappings and
their application in RDF data mapping tools. RDFTranslator’ was developed as a tool for
ontology development and lets the user define mapping rules that are used to translate RDF
data from one vocabulary into another. Anchor-PROMPT [NMO1] provides functionality
for both finding and applying mappings on RDF data. It is implemented as a plugin for the
ontology engineering tool Protégé® and therefore uses its native formats and GUI elements.
MAFRA [MMSVO02] is a framework for mapping distributed ontologies that covers the
entire mapping process from automatically finding matches to the execution of mappings.
Stecher et al. present in [SNNOS8] an approach for information integration on personal
desktops. They use mappings to rewrite queries posed in a user-defined vocabulary to the
ontologies of the information sources. Partial mappings are computed automatically and
refined during query execution. However, the mappings are limited to simple one-to-one
relationships and the queries to conjunctive combinations of triple patterns (i.e. triples
where each of the subject, predicate, or object part can be a variable).

3 Query Rewriting versus Graph Transformation

Semantic Web applications typically use query languages to extract relevant parts from an
RDF data set. If the ontology used to encode the data differs from the one employed by
the applications, a mediation strategy is needed that translates between the two represen-
tations. There are two points in the mediation process where a translation approach can be
applied. The first is the query that can be rewritten to match the target data. The second
aims at the data by transforming the RDF graph to the vocabulary used in the application
and therefore in the queries.

We opted for the RDF graph transformation in our approach due to four advantages it has
over query rewriting. (1) Transformed data can be processed like any other Semantic Web
data (e.g. reasoning before querying, applying rules), while the query rewriting approach
is limited to querying the data. (2) The data transformation process needs to be applied just
once per data set, whereas query rewriting must be performed for each query. In situations
where one data set is queried oftentimes, the cumulated rewriting effort can exceed the one
needed for data transformation. (3) Transforming data is a one step process after which

Shttp://wiki.corrib.org/index.php/RDFTranslator
Shttp://protege.stanford.edu
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the data can be used natively, while query rewriting always needs two translation steps.
First, the query has to be rewritten to the vocabulary of the target data and second, after
its execution, the query results have to be translated back into the vocabulary of the source
application. (4) The application of data transformations is simpler in situations where
vocabularies are highly mixed, i.e., when a data set uses multiple ontologies. In the data
transformation approach, the individual mappings defined to map from one source to one
target ontology can be applied successively to transform the entire data set. This only
increases the runtime but not the complexity of the approach compared to the case where
the data is encoded in a single ontology. In the query rewriting approach it is unknown
which parts of the data is encoded in what vocabulary. As a consequence, the original
query has to be translated to every vocabulary occurring in the target data and each of
these translated queries need to make heavy use of the OPTIONAL operator to ensure that
the queries return the expected results. This not only increases the runtime but also the
complexity of the approach with respect to the single vocabulary case.

At first, data accessible solely through a SPARQL endpoint seems to be a major limitation
of the data transformation approach in contrast to query rewriting. However, SPARQL
endpoints are also problematic to query rewriting as it is in general not known which
vocabularies are used in the data exposed by the endpoint.

4 RDF Graph Transformation

In this section, we present our approach for transforming RDF graphs between ontologies.
We first introduce in Section 4.1 our mapping language RDTL that is used to define cor-
respondences between resources in a source and a target ontology. Section 4.2 gives an
overview of our prototype implementations, the RDFTransformer and the mapping storage
RMS, for bidirectionally translating RDF graphs.

4.1 Mapping Language RDTL

We analyzed various ontologies from the PIM domain to gather the requirements for our
mapping language RDTL. We investigated how certain concepts are represented and how
they can be mapped onto each other. Details about the analysis and the collected re-
quirements can be found in [Her08]. In summary, the analysis resulted in the following
requirements:

One-to-one Mapping: Most of the mappings will be simple one-to-one mappings, i.e.,
straightforward replacements of the property terms.

Typed Literals: Not all ontologies use datatypes for literal values, therefore they have to
be added or removed during the mapping.

Nested Data: Ontologies are free to group related properties in a nested substructure or
represent them individually. Support for extracting, creating, and converting of nest-
ings is needed.
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Literals/URIs: There are ontologies that represent certain properties as literals although
their contents are actually URIs (e.g. email adresses). Creating real URIs from
literals and vice versa is required.

Implicit Information: The same information can be represented differently so that it is
stored explicitly in one ontology but only implicitly in another. A mapping should
enable the extraction of implicit information.

Subject Types: Besides handling the translation of properties, every mapping also needs
to adapt the type classes of the subjects.

Listing 1: Mapping document example

<?xml version="1.0" encoding="UTF-8"7>
<mappings xmlns:xsi="http://www.w3.0rg/2001/XMLSchema—instance”
xsi:noNamespaceSchemalLocation="schemas/mapping . xsd”>
<namespace prefix="foaf”>http://xmlns.com/foaf/0.1/</namespace>
<!— ... other namespace definitions ... —>
<subject—group>
<source—type>foaf:Person</source—type>
<target—type>vCard:VCard</target —type>
<simple —mapping>
<source>foaf:birthday</source>
<target datatype="xsd:dateTime”>vCard:bday</target>
</simple—mapping>
<nested —mapping>
<target>foaf:family_name</target>
<target>foaf:givenname</target>
<source—container name="vCard:n” type="vCard:Name”>
<source>vCard:family —name</source>
<source>vCard:given —name</source>
</source—container>
</nested —mapping>
<complex—mapping>
<forward —mapping>
<arg>prop:Start_date</arg>
<arg>prop:End_date</arg>
<source>fn:toDuration</source>
<target>ex:duration</target>
</forward —mapping>
<backward—mapping>
<arg>ex:start</arg>
<arg>ex:duration</arg>
<source>fn:toEndDate</source>
<target>prop:End_date</target>
</backward—mapping>
</complex—mapping>

<l— ... other mappings ... —>
</subject—group>
<!— ... other subject groups ... —>
</mappings>
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We developed our ontology mapping language RDTL to meet these requirements. It uses
a simple XML syntax to represent the mappings based on a XML Schema definition to en-
able validation of mapping documents and to ensure the correct order of matching source-
target pairs. Listing 1 shows a small example of a mapping definition containing one
example for each mapping type. The root element in a mapping file is called mappings
and encloses the namespace definitions and the actual mappings grouped by the individ-
ual subject they apply to. RDTL supports prefixes to abbreviate long URI namespaces
in the remainder of the mapping file (see line 4 for an example namespace definition).
A subject group is defined for each class occurring in the source ontology and it encapsu-
lates all mappings that are applicable to individuals (the subjects) belonging to that class.
This enables the mapping of properties based on the context (the class of the subject) it is
used in (e.g. the same name property is used for persons and organization in the source
ontology but mapped to two distinct properties in the target vocabulary). Lines 6 to 36
represent a subject group definition containing individual mappings. First, on lines 7 and
8, the class type of the subject is mapped, where source-type contains the class name of the
source ontology which is used to select the individuals during translation and target-type
names the class associated to the individual after the mapping. Next, the mappings of the
relevant properties are defined as source-target pairs, each belonging to one of the three
supported mapping types: simple, nested, or complex mapping. A simple mapping is used
for the one-to-one mappings that simply correlate a property from the source ontology with
one from the target ontology. Simple mappings further provide features to add/remove a
datatype, transform a literal value into another format, and convert between literals and
URIs. Each feature is implemented as an XML attribute of the target or source element
that specifies the datatype or the converter function, respectively. The example on lines 9
to 12 shows a simple mapping that adds a datatype to the mapped birthday property. The
nested mapping is aimed at the requirement of nested data with support for extracting, cre-
ating, and converting nestings. Extracting implies that only the source ontology contains
a nesting which is represented as a source-container element in RDTL. It contains the
source elements that are matched to the target elements outside the container in their order
of appearance. Lines 13 to 20 depict an example of a nested mapping that gets extracted.
Likewise, creating implies that only the target ontology contains a mapping and the tar-
get elements are enclosed in a target-container element while the source elements reside
outside the container. Converting a nesting implies that both container types are present
and all source and target elements are encapsulated in their respective containers. Each
container has a name attribute identifying the property that links a subject with an RDF
container (e.g. an instance of rdf:Bag) and a type attribute that names the class of the con-
tainer (the example uses the vCard ontology that links a subject via the vCard:n property
to an rdf:Bag of the type vCard:Name containing the individual name parts). It is suffi-
cient to define only one direction of a simple or nested mapping, the reverse mapping is
created automatically enabling a bidirectional mapping with only half the definition effort.
The complex mapping is the most flexible type of mapping as it allows to call external
functions that can perform arbitrary operations on the underlying RDF graph, including
the extraction of implicit information. This flexibility necessitates that both directions of
the mapping have to be defined explicitly. Lines 21 to 34 contain a complex mapping
consisting of a forward-mapping and a backward-mapping to reflect the two mapping di-
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rections. Each mapping is made up of one source element that contains the name of the
function to call, a farget element with the name of a property that will link to the result
of the function call, and optionally a number of arg elements that act as input parameters
to the function. The comments on lines 35 and 37 indicate that the number of individual
mappings as well as subject groups is unbounded. A detailed description of our mapping
language with more examples can be found in [Her08].

4.2 Prototype Implementations

We implemented a prototype called RDFTransformer that can process and apply mappings
defined in RDTL to transform RDF data encoded in one or more source vocabularies to a
target ontology. It is realized as a library that can be embedded into other applications to
equip them with mapping functionality. Figure 1 shows an overview of its architecture.
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Figure 1: Overview and architecture of the RDF Transformer

The RDFTransformer is composed of three modules, the main module also called RDF-
Transformer, the Mapping Storage, and the Ontology Storage. The Mapping Storage mod-
ule is responsible for managing the mappings. Its main task are: providing a local interface
to register new mappings (1); compiling mapping definitions to the internal format (a set of
SPARQL CONSTRUCT queries); storing existing mappings; downloading missing ones
from RMS servers on demand (8); and serving request from the main module (7). The
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RDFTransformer uses a reasoner combined with ontology definitions to enhance the type
information in the input data. This information is later used in the mapping process to se-
lect a subject group with appropriate mappings for each instance. Handling the ontology
definitions is the task of the Ontology Storage module. Its responsibilities are: providing
an interface to the developer for manually registering new ontologies (2); storing the def-
initions; automatically downloading missing ones from the Web (5); and serving requests
from the main module (4). The RDFTransformer module provides the main interface for
the transformation of RDF data into another vocabulary. It enables a three step transfor-
mation process: First, the input data is read either from a local file or a remote URL (3)
and enhanced as explained before. Second, the URI of the target ontology is submitted (6)
which triggers the RDFTransformer to analyze the input data and determine what map-
pings are needed. They are retrieved from the Mapping Storage (7) and applied to the
input data. Third, a write command is issued to serialize the transformed data to a file (9).
Both the input and the transformed data are cached so that the same data can be trans-
lated to multiple target ontologies and written to multiple files without the need to repeat
the previous steps. More details about the architecture and implementation can be found
in [HerO8].

The Remote Mapping Storage is a self-contained server on the Web exposed via an XML-
RPC interface. Its purpose is to centrally provide common mappings over the Web for
other applications that use the RDFTransformer library. It stores compiled mappings
and provides them on request to RDFTransformers. In addition, the RMS server offers
functionality to check for new versions of mappings. The existence of independent RMS
servers has the benefit, that RDFTransformer-enabled applications do not need to import
all mappings manually but can receive them individually when they are demanded.

5 Evaluation

We implemented the RDFTransformer prototype described in the prior section as a proof
of concept and for evaluation purposes. Realized as a library, it is meant to be embedded in
other applications that need mapping functionality. On our website,” we provide a binary
version of the RDFTransformer library for download that contains the library itself as well
as all required third-party components, configuration and auxiliary files. The release also
includes a simple command line interface to the RDFTransformer for testing purposes.
It enables the user to easily interact with the prototype for registering new mappings de-
fined in RDTL and applying existing ones to RDF data. For that purpose, this release is
preconfigured to access the already defined mappings stored in our public RMS server.

We provide a public Remote Mapping Storage server as described in Sect. 4.2. It contains
mappings from the PIM domain that we defined during our research on this topic. We
currently offer the following bidirectional mappings: FOAF < vCard, FOAF < NCO,
vCard < NCO, vCard <+ SWRC, SWRC « NCO, and SWRC « BibTeX. A detailed
description on how to access and use this RMS server is available on our website.

"http://seal.ifi.uzh.ch/RDFTransformer
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In order to make testing the RDFTransformer easier for interested parties, we also offer
a simple Web application on our website that enables users to try it without any setup
effort. It provides the same set of predefined mappings as our RMS server described in the
previous paragraph, while the RDF input data can be supplied by the user. For detailed
usage instructions see the description on our website. This Web application is only a user
interface to collect the input data and display the results. The actual transformation is
performed by our RDFTransformer library.

In a next step, we implemented a Semantic Clipboard that is able to transform the source
data into another ontology before pasting it to the target application as motivated in Sect. 1.
A second Semantic Clipboard with mapping capabilities, called KDE SemClip, was im-
plemented in [Wol08] for the K Desktop Environment (KDE).® They extended the native
system clipboard to support RDF data and modified existing applications to make use of
the new transformation features. Their implementation is based on mappings defined in
our mapping language RDTL and it also uses the Remote Mapping Storage as a source for
predefined mappings.

Our experiences with these multiple implementations and applications of our approach
showed the general usefulness of such a service as well as the applicability of our bidirec-
tional mapping language RDTL.

6 Conclusion

We have presented an approach for mapping RDF data bidirectionally between differ-
ent ontologies from related domains. The distributed nature of the Semantic Web and
the growing adoption of its technologies in the domain of Personal Knowledge Manage-
ment also exposes this area to the heterogeneity problem. Multiple ontologies are used
to encode data from the same or overlapping domains making the development and op-
eration of Semantic Web-enabled applications harder. Our approach contributes to the
resolution of this problem by introducing the mapping language RDTL and the RDF-
Transformer library to decouple applications from the data representation. RDTL sup-
ports more diverse mappings than simple equivalency statements (owl:equivalentClass
and owl:equivalentProperty) provided by OWL, while remaining easy to use. The RDF-
Transformer library enables the simple embedding of mapping functionality in PKM tools
and it also showed the feasibility of our mapping language RDTL. The implementation of
two Semantic Clipboards demonstrated the usefulness and applicability of our approach
in handling RDF data encoded in different ontologies across application boundaries.
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