
A User Interface for XML Document Retrieval

Kai Großjohann Norbert Fuhr Daniel Effing Sascha Kriewel
University of Dortmund, Germany

{grossjohann,fuhr}@ls6.cs.uni-dortmund.de

Abstract: XML document retrieval requires new ideas for user interface design. The
query language provides primitives for dealing with the tree structure, which needs to
be reflected in an interface for query formulation. Further, the XML structure is also
reflected in the retrieval results, where items may contain each other. In this paper,
we present a user interface for formulating queries in an XPath-like language and an
interface for presenting retrieval results.

1 Introduction

XML document retrieval poses new challenges for user interface design, arising from the
complex structure of XML query languages and the documents themselves. The classical
task in Information Retrieval is the selection of documents from a given collection. For
XML, this should be extended such that parts of documents (XML elements) can be se-
lected, as well. We chose XPath as the starting point for developing XIRQL [FG01], our
own XML query language. While it is possible to select elements from documents with
XPath, some things are missing from the Information Retrieval point of view:

Weighting and Ranking:The result of any query should be a ranked list. So, query re-
sults should always be weighted sets and all operators should be (re)defined to take these
weights into account.

Data Types and Vague Predicates:XPath provides string and numeric predicates, but this
does not reflect the semantic richness of the underlying data. For prose, users wish to
search for ground forms, person names lead to search for phonetic similarity, and so on.
The query language should provide appropriate search predicates for the different data
types.

Compared with unstructured document retrieval, retrieval in XML documents results in
increased complexity in two areas: first of all, XPath is a complex query language due to
the conditions on the XML structure of the documents. Secondly, the query results exhibit
internal structure, as one retrieval result might be the ancestor of another retrieval result.
Section 2 presents a mechanism for constructing XIRQL queries without needing to know
the syntax of the query language. In section 3, we deal with the presentation of retrieval
results to the user.

166



2 Query Formulation

We aim at an interface for formulating XIRQL queries which does not require knowledge
of the query syntax [Eff02]. The interface should be independent of the application, it
should be applicable to any kind of documents.

Element names, the dot. , and the operators/ , // and [] work in XIRQL as they do
in XPath. Additionally, XIRQL supports various comparison operators for different data
types. For example, where XPath allows constructions like//element="string"
to search for a certain string, XIRQL offers//author sounds_like "name" for
person names and//para contains "word" for English prose.

Figure 1:Interface for formulating queries.

A screenshot of our interface can be seen in figure 1. There are three areas: On the left,
the structure condition areaenables users to formulate single query conditions. On the
right, thecondition list areaallows users to edit the query conditions and to specify how
to combine them to form the whole query. At all times, a paraphrase of the current query
in XIRQL syntax is kept up to date in theparaphrase areaon the bottom.

For formulating a single query condition, the main mechanism is to useQuery by Example.
In the screenshot, the layout-oriented variant is shown. The user can click on a word in
that document and the system derives from it astructural condition(candidate) and a
value condition(candidate). The structural condition describes the list of element names
on the path from the root node to the leaf node in the XML tree. From it, a number of
generalizations (using the// operator and the* wild card) are produced and shown to the
user (see the popup window in the middle of the screenshot). After selecting the structural
condition, the query condition is added to the condition list area, where additional changes
can be made: The comparison value (defaulting to the word the user selected) can be
edited, and a search predicate can be chosen for this condition.

In addition to the layout-oriented variant of Query by Example, we offer a structure-

167



oriented variant where people see an expandable tree of the XML document, as well as
a structure-orient variant which shows a document surrogate only. Finally, as an alterna-
tive to Query by Example, we offer aDTD orientedmethod for specifying the structure
condition which does not rely on an example document.

The next step is to specify how the query conditions thus collected should be combined
to form the whole query. Here, we focus on thestructural dependencebetween the con-
ditions. This is achieved by specifying a common prefix for two query conditions. For
example, in the third condition,/ARTICLE/BDY is grayed out. This means the match
for the second and third conditions must be in the sameBDYelement (and hence within
the sameARTICLE element). The graying-out connects two adjacent conditions, so it is
possible to move conditions up and down in the list. In addition to the structural depen-
dence, theBoolean connectorsbetween the conditions also need to be specified. We do
this in a simple manner, allowing the user to choose betweenand andor between any
two conditions, but we plan more elaborate support, possibly based on Venn diagrams.

To test the usefulness of this ap-
Task visual interface cmd line

1 2 3 4 5 4 5

articles by Tomayko (family name)
3:10 7:00 3:54 0:55 0:30 0:56 0:33

by William (given name) mentioning the ENIAC computer
4:56 5:15 2:43 1:15 2:10 1:17 1:08

1995 articles by Helen M. Wood
4:12 3:50 2:15 0:40 1:15 1:45 1:59

Table 1:User study for formulating queries, times given in min-
utes and seconds. Users 1 to 3 had no knowledge of XIRQL, users
4 and 5 were XIRQL experts.

proach, we performed a small pre-
liminary user study, summarized
in table 1. Three retrieval tasks
(against the content of the IEEE
Computer Society CD-ROMs from
1995 to 19971) were given in nat-
ural language. Five users performed
the tasks with the graphical inter-
face described here, two also used
a command-line tool to directly en-
ter XIRQL queries. It seems that
even people with no knowledge of
XIRQL are enabled to pose queries using this interface. For more complex queries, the
interface might speed up users who know XIRQL. The layout-oriented variant of Query
by Example was popular with all users, the DTD-based method was rarely used.

3 Result Presentation

The objective of traditional document retrieval systems is to select documents from a col-
lection. For XML documents, the obvious extension is to select parts (elements) of doc-
uments, too. Items in such retrieval results may contain each other, so it is important to
show the relationship in the tree between them. Since results are expected to come from
several documents, the representation should be compact so that more than one document
can be displayed at the same time. Treemaps [JS91] provide such a representation (see
figure 2 for an example).

But for trees with many nodes, the representation is too cluttered. Therefore, we augment
the concept and introducePartial Treemaps, where we omit nodes if they are not a retrieved

1http://www.computer.org/cspress/catalog/cs-96.htm

168



item or an ancestor of a retrieved item [Kri01].

Tool-tips provide additional information about each retrieved item.

c d

b

f g

e

a

a

b c d

e f g

Figure 2: A simple
tree and its treemap.

In addition to a list of Partial Treemaps, the document itself is shown
(processed by an XSL style-sheet) together with a ‘table of contents’
view. The table of contents is a tree view of the document, but certain
‘unimportant’ XML elements are left out to constrict the size of the
tree. The elements to retain are those that contribute to the overall
logical structure of the document. (Typically, thesection element
would be included, but thebold element would not be included.)

With XIRQL, a retrieval result is always a weighted set. So the visu-
alization described in the previous paragraphs needs to be extended to
deal with the weights, too. For the weights, a visual variable is needed
that can be used together with Partial Treemaps. Since the weights
impose a linear order on the results, the visual variable should be
selective (allowing distinction between objects with and without a
certain property) as well as ordered (allowing a less-than comparison between values). We
choose brightness as the visual variable to use. This is implemented via shades of gray,
where white means zero (the object is not relevant at all) and black means one (the object is
highly relevant). The result is a generalization of the concept ofTileBars[Hea95, Hea99]
from linear text to tree structures. Our interface is shown in figure 3.

We performed a small user study to test the effect of
text Partial Treemaps

time 2:20 2:05
recall 0.51 0.75
precision 0.40 0.66

Table 2: User study on visualization of
retrieval results. Times are given in min-
utes and seconds. All values are averages
over the five users and six tasks.Recall
means, how many of the relevant results
were also judged as relevant; whereaspre-
cisionmeans, how many of the results that
were judged as relevant were actually rele-
vant.

the visualization on the time the users needed, and
on the quality of the relevance judgments. Five users
were given six queries each, together with a visual-
ization of the query results. Each user chose three
queries (query results) for judgment with a textual
result representation, and three queries for judgment
with a Partial Treemap visualization. Our findings on
time and quality are shown in table 2.

The small difference in time between the the two
methods is puzzling. Participants reported that they
had a closer look at the retrieval results and their
relationships when using the graphical method; this

could be an explanation. The added information provided by the graphical method clearly
improved the quality of the judgments.

4 Conclusion

Retrieval from XML documents brings up the issue of dealing with the XML tree structure
both when formulating queries and when looking at the retrieval results. We have devel-
oped a visualization for both tasks. Our solution for the query formulation is application-
independent and currently only suitable for experienced users. Support for naive users also

169



Figure 3:Result presentation with Partial Treemaps. Each element in the treemap has a tool-tip with a summary
about that element. In the bottom left, we show a ‘table of contents’ (tree showing certain elements) and in the
bottom right, we show the document itself, at the spot corresponding to the element in the treemap that the user
has clicked on.

implies making the interface application-dependent; this is subject of further research. We
are also working on supporting browsing and navigation in addition to formulation of
queries.

Literature

[Eff02] Daniel Effing. Unterst¨utzung von Nutzern bei der Erstellung von XIRQL-Anfragen.
Diploma thesis, Universit¨at Dortmund, FB Informatik, January 2002.

[FG01] N. Fuhr and K. Großjohann. XIRQL: A Query Language for Information Retrieval in XML
Documents. In W.B. Croft, D. Harper, D.H. Kraft, and J. Zobel, editors,Proceedings of
the 24th Annual International Conference on Research and development in Information
Retrieval, pages 172–180, New York, 2001. ACM.

[Hea95] Marti A. Hearst. TileBars: Visualization of Term Distribution Information in Full Text
Information Access. InProceedings of CHI, May 1995.

[Hea99] Marti A. Hearst. User Interfaces and Visualization.Modern Information Retrieval, 1999.

[JS91] Brian Johnson and Ben Shneiderman. Tree-Maps: A Space Filling Approach to the Visual-
ization of Hierarchical Information Structures. Technical Report CS-TR-2657, University
of Maryland, Computer Science Department, April 1991.

[Kri01] Sascha Kriewel. Visualisierung f¨ur Retrieval von XML-Dokumenten. Diploma thesis,
Universität Dortmund, Fachbereich Informatik, Dezember 2001.

170




