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Abstract: Face sketch-photo synthesis is a critical application in law enforcement and digital en-
tertainment industry where the goal is to learn the mapping between a face sketch image and its
corresponding photo-realistic image. However, the limited number of paired sketch-photo training
data usually prevents the current frameworks to learn a robust mapping between the geometry of
sketches and their matching photo-realistic images. Consequently, in this work, we present an ap-
proach for learning to synthesize a photo-realistic image from a face sketch in an unsupervised
fashion. In contrast to current unsupervised image-to-image translation techniques, our framework
leverages a novel perceptual discriminator to learn the geometry of human face. Learning facial prior
information empowers the network to remove the geometrical artifacts in the face sketch. We demon-
strate that a simultaneous optimization of the face photo generator network, employing the proposed
perceptual discriminator in combination with a texture-wise discriminator, results in a significant
improvement in quality and recognition rate of the synthesized photos. We evaluate the proposed
network by conducting extensive experiments on multiple baseline sketch-photo datasets.

Keywords: Sketch-Photo Synthesis, Generative Adversarial Networks (GAN), Unsupervised Learn-
ing, Facial Geometry Learning.

1 Introduction

Automatic face sketch-photo synthesis and identification have drawn great attention be-
cause of their applications in law enforcement and digital entertainment industry [Wa14].
In law enforcement, in many cases, there is no photo of a suspect in the police database.
Therefore, a forensic or composite sketch, which is drawn by a police artist or created by
a software, is the only evidence to identify the suspect. However, recognition of a suspect
using a face sketch is much harder than a face photo because of the significant differences
between the two modalities, such as the texture and geometric mismatching, and the sen-
sitivity of human recognition ability to the distortions of facial features. Consequently,
generating photo-realistic face images of the suspects from their forensic sketches, will
significantly increase the chance of identifying them.

The idea of sketch-based photo synthesis goes back at least to Liu et al. [LTL07], who em-
ploy a probabilistic sketch-photo generation model on input-output training image pairs.
Since then, several techniques have been proposed to tackle this problem, including sparse
representations [Ga12], support vector regression [Zh11], Bayesian tensor inference [WT09],
embedded hidden Markov model [Wa13], Markov random field model [Pe16].
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Recently, deep learning methods have been widely utilized in many areas [TND18, Bo17],
specifically in computer vision. With convolutional neural networks (DCNNs) becoming
the common tool behind a wide variety of computer vision problems, the community has
taken significant steps toward image translation tasks such as sketch-photo and photo-
sketch synthesis [Gü16, Ka18, GEB16]. Peng et al. [Pe17] proposed superpixel-based face
sketchâphoto synthesis which can estimate the inherent face structure through image seg-
mentation [ZKK18]. Zhang et al. [Zh15] used a six-layer convolutional neural network
(CNN) to generate sketches from photos. In [Zh15], a new optimization objective function
is utilized in the form of joint generative discriminative minimization to preserve the per-
son’s identity. To transfer image style between arbitrary images, a CNN-based framework
was presented in [GEB16] which learns generic feature representations.

The success of DCNNs in image generation tasks is truly depends on the objective func-
tion which they are asked to minimize. A naive approach is to ask the DCNN to minimize
Euclidean distance between generated image and its ground truth pixels, which tends to
produce blurry results [ZIE16]. More recently, Generative Adversarial Networks (GANs)
[Go14] achieved impressive results in image generation tasks by selecting a new loss func-
tion to generate more sharp and realistic images [Is17, Sa17, Ul16]. The key to the success
of GAN is the idea of employing an adversarial loss that encourages the generated images
to be indistinguishable from real images.

Since collecting input-output pairs for many graphics tasks, e.g., sketch-photo synthesis, is
usually a laborious process, several works also tackled the image generation problem in an
unpaired setting [Zh17, LBK17, Ka18]. In sketch-photo synthesis problem, it is even more
difficult to train the network in a supervised fashion, which requires the corresponding pair
of images from both the source (sketch), and the target (photo-realistic image) domains.
There are two main reasons for this difficulty: First, since each artist or software has a
distinct painting style, the network usually needs fine tuning on very limited number of
unseen sketch styles. Second, because of the geometric mismatching between the sketches
and their ground truth photos, it is almost impossible to learn a single mapping between
the two domains. Consequently, in this work, we aim to design a framework which can be
trained in an unpaired setting.

Although our work is based on CycleGAN [Zh17], one of the most successful unsuper-
vised image-to-image translation frameworks, it differs from that in two effective ways.
First, the CycleGAN, similar to other unsupervised GAN frameworks, is based on a cycle
consistency constraint, which indicates that we should be able to reconstruct the input im-
age from the synthesized photo. This constraint is defined as Euclidean distance between
the pixels of the input and its reconstruction. However, when we are dealing with images
of different modalities, e.g., sketch-photo synthesis problem, this definition can decrease
the flexibility of the network or even prevents it from convergence [Ka18]. This prob-
lem caused by the excessive force on the network to keep information in the pixel level.
To overcome this issue, we propose to use the perceptual-loss [JAFF16] as an alternative
definition of the cycle consistency. Using perceptual-loss, the network is required to only
keep the high-level facial features in the reconstructed photo which matter in terms of face
identification.
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The second, and the main, difference between our framework and the CycleGAN is em-
ploying a new discriminator, referred to as geometry-discriminator, to learn facial ge-
ometry. Isola et al. [Is17] confirmed that the discriminator of CycleGAN, namely Patch-
GAN [Is17], only captures local information like the textural information. Since, in statis-
tical point of view, GAN learns the distribution of the target domain, speaking of our ap-
plication, PatchGAN can only force the network to learn facial texture prior. The learned
texture prior is then utilized to translate an input face sketch into a photo-realistic face
while keeping the exact facial geometry of the input sketch. In contrast, in this work, our
goal is to learn the facial geometry prior as well, which encourages the network to learn
generating photos that are realistic in terms of the texture and geometry of the face. To this
end, the aforementioned geometry-discriminator, is trained to distinguish between the real
and synthesized photos by their high-level facial features. The experimental results show
how learning the facial geometry help the network to generate realistic face photos.

2 Generative Adversarial Networks (GANs)

Supervised Setting: GANs [Go14] are a group of generative models which learn the sta-
tistical distribution of training data, allowing us to synthesize data samples by mapping a
random noise z to an output image y: G(z) : z −→ y, where G is the generator network.
GAN in its conditional setting (cGAN) is proposed in [Is17] which learns a mapping from
an input x and a random noise z to the output image y: G(x,z) : {x,z} −→ y, using an
autoencoder network. The generator model, G(x,z), is trained to generate an image which
is not distinguishable from ”real” samples by a discriminator network, D. Simultaneously,
the discriminator is learning, adversarially, to discriminate between the ”fake” generated
images by the generator and the real samples from the training dataset. Therefore, the
objective of cGAN can be expressed as:

lGAN(G,D) = Ex,y∼pdata [logD(x,y)]+Ex,z∼pz [log(1−D(x,G(x,z)))], (1)

where G attempts to minimize it and D tries to maximize it. Since the adversarial loss is
not enough to guarantee that the trained network generates the desired output, one may
add an extra Euclidean distance term to the objective function to generate images which
are near the ground truth. Consequently, the final objective is defined as follows:

G∗ = argmin
G

max
D

lGAN(G,D)+λ lL1(G), (2)

where λ is a weighting factor and lL1(G) =‖ y−G(x,z) ‖1.

Unsupervised Setting: GAN in its unsupervised setting aim to capture a shared represen-
tation between the images in two different domains, all in the absence of any paired train-
ing data samples. CycleGAN [Zh17] is one of the most successful works that addressed
this problem. Their model includes two generators; the first one maps x to y: Gy(x) : x−→ y
and the other does the inverse mapping y to x: Gx(y) : y −→ x. There are two adversarial
discriminators Dx and Dy, one for each generator. Unsupervised GAN frameworks, in-
cluding the CycleGAN, owe their success to a cycle-consistency constraint assumption,
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which indicates that if a source image is mapped to an image in the target domain, it can
be mapped back to the original image in the source domain. To this end, the CycleGAN
minimizes the following loss function:

lcyc(Gx,Gy) = Ex∼pdata[‖x−Gx(Gy(x))‖1]+Ey∼pdata[‖y−Gy(Gx(y))‖1]. (3)

Taken together, the full objective function of CycleGAN is

l(Gx,Gy,Dx,Dy) = lGAN(Gx,Dx)+ lGAN(Gy,Dy)+λ lcyc(Gx,Gy), (4)

where λ is a weighting factor to control the importance of the objectives and the whole
model is trained as follows

G∗x ,G
∗
y = arg min

Gx,Gy
max
Dx,Dy

l(Gx,Gy,Dx,Dy). (5)

Limitations of CycleGAN: The CycleGAN model, and some other similar models, have
two fundamental issues: first, they have defined cycle consistency as a Euclidean distance
between the pixels of the input image and its reconstruction. From our experiments, when
the domains differ substantially in complexity, this definition of cycle consistency causes
a degradation in quality of synthesized images, and even can destabilize the training pro-
cess. Second, the discriminator of the CycleGAN is PatchGAN [Is17] that only penalizes
structure at the scale of patches, and can be considered as a form of texture/style loss.
Consequently, it is unable to learn the distribution of facial geometry and sticks to the
geometry of input sketch for inference. Next, we discuss how to extend the CycleGAN,
enabling it to generate realistic face images, in terms of texture and geometry.

3 Framework

Cycle-Consistency: To learn complex cross-domain relationships, we define the Euclidean
distance on high-level feature space as the cycle consistency, which is known as perceptual
loss [JAFF16]. Similar to [JAFF16], we make use of a VGG-16 network, Φ, pretrained for
face verification on CMU Multi-PIE [Gr10] dataset, as a fixed loss network. This loss net-
work defines a feature reconstruction loss that measure differences in high-level content
between images. Let Φ j(x) denote the feature maps of the jth layer of the loss network for
the input image x. Then the jth layer perceptual loss between images x and y is defined as

l j
per(x,y) =

1
N j
‖Φ j(x)−Φ j(y) ‖2

2, (6)

where N j is the number of perceptrons in the jth layer. In this work, we defined the cycle-
consistency loss as the average perceptual loss in multiple layers of the loss network as:

lp
cyc(G(x)) =

1
3

Ex∼pdata

[
l7
per(x, x̂)+ l10

per(x, x̂)+ l13
per(x, x̂)

]
, (7)

where x̂ = Gx(Gy(x)).
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Fig. 1: Geometry-discriminator, Dg.

Geometry-Discriminator: A straightforward solution for extending the CycleGAN to
learn the facial geometry is to equip it with a geometry-discriminator Dg. In contrast to
PatchGAN, the input to this discriminator, is the feature maps of the loss network, which
is shared with the perceptual cycle-consistency. In other words, Dg tries to distinguish be-
tween the synthetic and real images from their high-level features, which represent the
geometry of the face and its components. We use feature maps in the same level as percep-
tual loss, i.e., layers 7, 10, and 13. Since the spatial sizes of the feature maps in different
layers of the loss network are different, we cannot input them to Dg at the same time. Alter-
natively, we input the feature map with the largest size, i.e., 7th layer, to the discriminator.
Since all the convolutional layers of Dg have a stride 2, the spatial size of each layer’s
output is half of its input size. Therefore, we can concatenate the feature maps of the 10th

layer of loss network with the output of the first convolutional layer of Dg. Similarly, we
can concatenate the feature maps of the 13th layer of loss network with the output of the
second convolutional layer of the geometry-discriminator. Figure 1 visualizes this process.
Since our images are in the size of 256×256 pixels, the spatial size of feature maps in the
7th layer of the loss network is of 32×32. Note that the geometry-discriminator needs 5
convolutional layers to output a single prediction for a given image.

Full Objective Function: Similar to CycleGAN we train the network in two cycles of
X →Y → X , and Y → X →Y , where X represents the sketch domain, and Y stands for the
photo-realistic domain. Figure 2 illustrates the overall schematic of the framework. Taken
together, the full objective function of our frameworks is defined as follows:

l(Gx,Gy,Dx,Dy) = lGAN(Gx,Dx)+ lGAN(Gx,Dg
x)+ lGAN(Gy,Dy)+ lGAN(Gy,Dg

y) (8)

+λ1lp
cyc(Gx)+λ1lp

cyc(Gy),

where the hyper-parameters λ1 and λ2 control the weights of the objective terms.

4 Experiments

Datasets: The e-PRIP dataset [Mi17], contains the total of 123 identities, which we parti-
tioned into a training set of 100 identities, and a testing set of 23 identities. We made use
of its composite sketches created by the Identi-Kit and the FACES tools. For more eval-
uation, we used CUHK Face Sketch FERET Database (CUFSF) [Ph00] with the total of
1194 identities (1000 identities for training and the remaining 194 identities for testing).
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Fig. 2: Our framework shared generator and PatchGAN discriminator architectures with the Cy-
cleGAN, while we replaced the pixel-wise cycle-consistency with perceptual loss, and added a
geometry-discriminator, Dg, to the model.

Since CUFSF photos are in grayscle, we used the FERET color dataset as photo domain
to synthesize color photos.

Evaluation: We evaluate the following three models: Our proposed model with the per-
ceptual cycle-consistency but with (w/ Dg) and without (w/o Dg) geometry-discriminator,
and the CycleGAN as the baseline.

4.1 Qualitative Evaluation

(a) FACES PRIP Dataset (b) Identi-Kit PRIP Dataset

(c) CUFSF Dataset
Fig. 3: From left to right: Input sketch, ground truth photo, our framework with geometry-
discriminator, our framework without geometry-discriminator, and the CycleGAN.
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Figure 3 shows the qualitative comparison results on the EPRIP Identi-Kit and FACES
datasets, and more evaluation on CUFSF dataset. The results are reported after training for
200 epochs using the Adam optimizer with learning rate of 0.0002. The CycleGAN almost
acts as coloring tool and cannot generate realistic sharp textures. The quality of textures,
however, significantly improves by replacing the pixel-wise cycle-consistency with per-
ceptual loss. That empowers the network to generate more sharp images by relieving the
constraint to keep the information in pixel-level. Equipping the model with geometry-
discriminator, we observe results which are realistic both texture-wise and geometry-wise.

4.2 Quantitative Evaluation

Semantic Accuracy Fooling Rate (%) Verification Accuracy (%)
Method FACES Identi-Kit FACES Identi-Kit FACES Identi-Kit

Ours w/ Dg 0.173 0.179 42.3 40.1 62.3 ± 2.0 60.8 ± 3.0
Ours w/o Dg 0.207 0.231 12.8 10.4 58.0 ± 2.7 56.3 ± 2.8
CycleGAN 0.263 0.284 6.3 5.2 55.7 ± 2.6 52.4 ± 3.2

Tab. 1: The quantitative comparison of our framework with the CycleGAN on the EPRIP dataset.

We show the average distance of generated output images and their ground-truth images, in
deep feature space, over a test set of 23 samples in Table 1. The results clearly confirm that
the proposed technique substantially improves the semantic accuracy of the synthesized
images while stays faithful to the input sketch. Since the primary reason for sketch-photo
synthesis is distributing the realistic synthesized images to the public for suspect identifi-
cation, we conducted two other experiments, visual realism based on human judgments,
and face verification accuracy using a pre-trained face verifier. For visual realism test, we
successively display a real and generated image, in a random order, to multiple subjects
for 1 second each and ask them to identify the fake, and then we calculate the ”fooling”
rate. The fooling rates of the three methods are also reported in Table 1.

Finally, to investigate the effect of learning facial geometry on face verification accuracy,
we utilized a VGG16 face verifier pre-trained on the CMU Multi-PIE dataset [Gr10]. For
each sketch, the results of different methods are used for face verification against the entire
test gallery. Next, the verification accuracy of each method is calculated and reported in
Table 1. Note that we used all 123 identities in the photo gallery. The evaluation process is
repeated 10 times with a random selection of training and testing sets. The verification ac-
curacy confirms the effectiveness of learning the facial geometry for artifacts removal and
identification performance improvement. Generating sharp images and comparing them
with the CycleGAN may have also contributed to our framework’s higher accuracy.

5 Conclusion

The qualitative and quantitative results of this paper suggest that cycle-consistency and
discrimination using high-level perceptual features are promising approaches for improv-
ing the quality of translated images in terms of facial texture and geometry. These features
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are extracted from a pre-trained face verifier network which let to train the sketch-photo
synthesis framework on small datasets.
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