Platform-Independent Specification of
Model Transformations @ Runtime Using
Higher-Order Transformations

Michael Schlereth'?, Tina Krausser®

'Siemens AG, Industry Sector, I DT MC R&D 7 3
Frauenauracher Str. 80, D-91056 Erlangen
Technische Universitit Darmstadt, Institut fiir Datentechnik,
Fachgebiet Echtzeitsysteme, Merckstr. 25, D-64283 Darmstadt
michael.schlereth@siemens.com

3Lehrstuhl fiir Prozessleittechnik der RWTH Aachen,
Turmstralie 46, D-52064 Aachen
tina.krausser@plt.rwth-aachen.de

Abstract: Model transformation specifications are currently bound to a specific
transformation execution engine, typically executed on desktop systems. This
paper presents a novel approach to transform platform-independent model
transformation specifications into platform-specific model transformation
specifications, which can be executed for example by the runtime systems of
process control systems employed in plant automation. For that purpose, the
concept of higher-order transformations was adapted to the transformation between
platform-independent and platform-specific models of model transformations.

1 Introduction

Process control systems controlling plants e.g. for chemical processes include the
runtime of models from different engineering disciplines (see Figure 1). The plant
engineering model, based on process and instrumentation diagrams (P&ID), is used for
example by the batch planning and process diagnosis runtime system. The HMI runtime
controls the operator panels used to operate the factory. The runtime of the automation
devices controls the sensors and actors of the plant equipment, such as vessels, pumps
and valves.

Process plants are operational for many decades executing continuous manufacturing
processes, which usually can’t be interrupted. Therefore, process control systems are
typically updated and reconfigured at runtime. This means that the plant continues
operation while the runtime system is modified. Reasons for such a modification might
be an extension of the plant, a process redesign or the replacement of faulty devices. To
simplify these modifications of the running plant, process control systems such as
ACPLT [Lell], which is used as an example in this paper, abandon the separation of
engineering and runtime by keeping all engineering models in a common executable
runtime database as shown in Figure 1. Since the models are modified independently by

124 Michael Schlereth, Tina Krausser

engineers working in different disciplines, a rule-based system, called ACPLT/RE, runs
as part of the runtime and aligns the other models in real time if one of the engineering
models is changed. To be executable in the process control runtime system, all
engineering models together with the model of the reconciliation rules are specified by
the automation controller programming languages defined by IEC 61131-3 [In03].

P&ID HMI Control
Editor Editor Editor

plant engineering HMI engineering control engineering

< prie

ACPLT |g= =" -

(IEC 61131-3 N O -
Runtime) [11,% wh=gg 1%,
' et

U e T

Reconciliation
Rules

ACPLT/RE

Figure 1: Runtime environment of a process control system

In this paper, a novel approach is presented for the specification of these model
reconciliation rules executed at runtime. The concept of the PIM/PSM approach of the
model driven architecture [MMO3] is extended and transferred to the platform-
independent specification and platform-specific execution of model transformations.
This new concept is used to execute model transformation languages, which are
currently only available for desktop applications as model transformations @ runtime for
process control systems.

2 Application Scenario

This section is split in two parts. The first part describes the engineering process of the
application scenario for model transformations @ runtime from a platform-independent
view, while the second part introduces the process control system ACPLT used as the
specific implementation platform [Lel1].

2.1 Engineering of Process Control Systems

The application example used in this paper demonstrates the engineering process of a
process control system (PCS). As an example for this engineering process, a pumping

Platform-Independent Specification of Model Transformations @ Runtime Using Higher-Order Transf... 125

plant designed for teaching purposes is used in this paper. As part of this engineering
process, a plant engineer creates a model of the pumping process, visualized as a P&ID
(piping and instrumentation diagram) shown to the left in Figure 2. Plant assets used by
the plant engineer for the pumping process includes vessels, pumps, and valves, for
example. The task of the control engineer is to create HMI (human machine interface)
screens for the plant operation based on the assets defined by the plant engineer (shown
to the right in Figure 2). Both engineering models - the plant engineering model and the
HMI engineering model - are stored together with other engineering models of the
pumping plant (e.g. the engineering model of the control functions) in the runtime
environment of the process control system (PCS) at the pumping plant site.

For a lot of the assets in the plant model, a HMI symbol must be created on the HMI
screen to operate this asset: a vessel HMI symbol for the vessel plant asset, a pump HMI
symbol for the pump plant asset, and a valve HMI symbol for the valve plant asset. It is
the task of the plant engineer and of the control engineer to keep both models consistent
(indicated by the arrows in Figure 2): If a plant asset is created in the process model, a
HMI symbol must be created in the HMI model. If a plant asset is deleted in the process
model, the corresponding HMI symbol must also be deleted. This reconciliation is a
tedious manual task, which is especially error prone in a parallel engineering process,
where the plant model and the HMI model are engineered simultaneously. Therefore, a
rule-based system called ACPLT/RE [KQEI11] was developed, which automates the
reconciliation between plant engineering models. ACPLT/RE is executed as part of the
runtime of the process control system (PCS), because plants in the process industry,
which have been operating for many decades, are typically updated on site while the
plant continues to operate. Rule-based engineering for automation systems is used to
automate engineering processes within process control engineering (PCE) [SE06].

laman|a
re- e -:‘Il'

[==

5 NN o
Process Engineering =———————% Human Machine Interface

Figure 2: Application example: engineering a pumping plant

2.2 The ACPLT Process Control System

The rule-based engineering system ACPLT/RE together with the plant engineering
model RIVA and the human machine interface model ACPLT/HMI is stored and
executed by the ACPLT process control system. All three models are based on the
ACPLT/FB function block library, which implements an IEC 61131-3 [In03] compliant

126 Michael Schlereth, Tina Krausser

process automation system. A commercial implementation named iFBSpro is provided
by [LT04].

The ACPLT/FB object model consists of two main types: function block instances
(FB_Instance) and function block links (FB_Link) as shown in Figure 3. A function
block is a programmable controller programming language element consisting of a data
structure with input, output, and internal variables [In03]. Instance values of the function
block data structure are stored in ACPLT/FB by the FB_VariableValue class. The three
engineering models of the application example are based on the OV_Library called
gssffa for plant engineering, hmiRIVA for HMI engineering, and reSFCbased for rule-
based engineering.

OV_Database +elements OV_Element
FB_VariableValue FB_Instance FB_Link OV_Library
. N +vari
+ id :string variableValues + classld :string + associationType :string
+ variableType :OV_VariableType + path string + parentType :string
+ role :FB_VariableRole + parentPath :string
+ value :string + childType :string
+ children :string[]

Figure 3: The ACPLT/FB object model [LT04]

3 Specification of Model Transformations @ Runtime

This section presents the novel concept of platform-independent model transformation
specifications (PIM-MT) and platform-specific model transformation specifications
(PSM-MT), which can be applied during the design phase and @ runtime. The current
usage of model transformation technology focuses on the platform-independent model
and the platform-specific model for a system implementation [MMO3] but not on the
platform of model transformation execution systems itself. In the process plant
application scenario it is advantageous to use a platform-independent model
transformation model for two reasons:

e A platform-independent model transformation language allows for a more
compact and formally verified specification than the model transformation
specification @ runtime by ACPLT/RE in IEC 61131-3. The same platform-
independent specification can be used during the design phase and at runtime
using different transformation engines.

e Over the lifetime of a plant, the model transformation system @ runtime might
change due to the fact that a new process control system has been installed. A
platform-independent model transformation language allows for the migration
of the model transformations to a new runtime system.

Therefore, the PIM/PSM approach is extended to include the transformation of model
transformations as shown in Figure 4, which shows PIM and PSM levels (but not M2

Platform-Independent Specification of Model Transformations @ Runtime Using Higher-Order Transf... 127

and M1 levels). This transformation is called a higher-order transformation (HOT), since
it is a transformation of transformations [Ti09]. The HOT transformation specification
describes the transformation from an ATL transformation specification metamodel (M2)
to an ACPLT/RE rules specification metamodel (M2). The execution of this HOT
transformation specification transforms a specific ATL transformation specification
(M1, e.g. the RIVA to HMI transformation) to a specific ACPLT/RE rule execution
specification (M1). The reverse model transformation specification describes the
transformation from an ACPLT library (M3) to the ECORE metamodel (M3). The
execution of this transformation specification transforms a specific ACPLT library (M2,
e.g. the HMI library) to a specific ECORE metamodel (M2, e.g. the HMI metamodel). In
our new approach, the concept of HOT has been extended so that it can be used for plain
model transformations as well as for model transformations of model transformations. A
special characteristic of this HOT is that it is not only directed from the PIM to the PSM
but that it also includes a transformation in the reverse direction from the PSM to the
PIM with respect to the referenced metamodels and libraries. This aspect will be
explained in detail in Section 4.

The next two subsections describe in detail the platform-specific model transformation
@ runtime and the related platform-independent transformation @ desktop, running
outside the process control system.

Platform Independent | ATL Transformation | depends OE ECORE

Model Transformation Metamodel Metamodels

w \\./T Model
\ il i Transformation
e by ATL

Platform Specific
Model Transformation ACPLT/RE rules |depends OQ ACPLT

Metamodel Libraries

Figure 4: PIM to PSM higher-order transformation

3.1 Platform-Specific Specification of Model Transformations @ runtime

The engineering rule for the ACPLT engineering elements introduced in Section 2.2 is as
follows: For each gssffa/Unit create a hmiRIVA/Unit and set the UnitType variable of
hmiRIVA/Unit to the same value as the UnitType variable of gssffa/Unit. This kind of

128 Michael Schlereth, Tina Krausser

rule can be executed by the rule-based engineering system ACPLT/RE as part of the
plant runtime system. ACPLT/RE is implemented as an OV_Library in the same way as
the plant engineering and the HMI engineering model. The advantage of this common
implementation of all engineering models in a process control system is that an
automation engineer, who is familiar with IEC 61131-3 programming languages, can
work with all of these models for plant engineering, operation, and maintenance.

To specify the rule above, ACPLT/RE provides the function blocks
reSFCbased/RuleExecControl for the rule definition, reSFCbased/RuleChain for the
condition and the conclusion of the rule and reSFCbased/ShadowFB for the model
pattern used by the condition and the conclusion of the rule. The use of the ACPLT/RE
functions to specify the rule above is shown in Figure 5.

The rule is defined by the function block instance rivaUnit2HmiUnit (shown at the top of
Figure 5). This function block instance aggregates the condition and conclusion function
block instances (shown with their children as two blocks below the rule in Figure 5).

As mentioned in the description of the ACPLT/FB object model, this aggregation is not
visible in the typed object model but in the string values of the path attribute of the
function block instances (e.g. /TechUnits/Mike/Rules/rivaUnit2HmiUnit/Condition). The
condition defines a pattern, which must be found in the engineering model to execute the
rule rivaUnit2HmiUnit. In ACPLT/RE, patterns of function blocks are defined by so
called shadow function blocks (classld reSFCbased/ShadowFB). A shadow function
block defines the library and the class of a function block instance, which should be
matched. In Figure 5, the shadow function block instance named rivaUnit matches
function blocks from the library gssffa with the classId Unit. The shadow function block
can define additional constraints such as variable values in addition to the classld. For
simplicity, these constraints are omitted in our example.

For each match of the condition, the conclusion of the ACPLT/RE rule is applied. The
conclusion also uses shadow function block instances to define a pattern, which is
generated in the engineering model. In the example, the conclusion hmiUnit generates a
function block instance from the library hmiRiva with the classld Unit. Also the
conclusion can set additional variable values, which is also omitted for simplicity in
Figure 5.

In ACPLT/RE, the simple example for an engineering rule formulated at the beginning
of this section, which maps plant engineering units to HMI engineering units, totally
consists of 41 function block programming elements: 16 function block instances and
25 function block link elements (the instance diagram of function block link elements for
the ACPLT/RE rule has been omitted in this paper for to keep it short).

Platform-Independent Specification of Model Transformations @ Runtime Using Higher-Order Transf... 129

SUEERED b B pag EF o ngepR s E v [orie
pa v e i s T o vy el T veel el

TR w i A DL R R
By 6 T bl M P, Yl [T VP D3

chaiihd s Lt prSe LF C B Thiekred B
T i Tl P, e, e

itanaid = dbrine e Bl Dhe e Thadosd I
[M [resver, R P bt

Figure 5: Simple ACPLT/RE rule example (function block links omitted)

The use of function block programming according to IEC 61131-3 for engineering
definitions by ACPLT/RE has advantages as well as disadvantages. The advantage of
function block programming is the compatibility to the runtime system of a process
control system in a plant: the engineering rules can be executed online in the operational
plant automation system without the need to shut down the plant for extensive
engineering data transfer. The typical commissioning use case for automation systems,
where automation engineers with PLC programming background must get the
automation system running, is also well addressed using the commonly known IEC
61131-3 programming paradigm. The declarative approach of the ACPLT/RE rule
definitions is easy to understand.

A disadvantage of ACPLT/RE is the high amount of function block programming
elements, which are required to define even simple rules. A more abstract syntax than
IEC 61131-3, which is transformed to ACPLT/RE would ease the definition of
engineering rules. Another problem is the dependency on the target system: Plant

130 Michael Schlereth, Tina Krausser

engineers typically must support different automation system providers according to
customer requirements. If a plant operator does not use ACPLT technology but for
example the SIEMENS PCS7 process control system, the rules should also be able to be
executed on this process control system. Therefore, a more abstract and compact rule
definition language, which can be transformed to ACPLT/RE, would ease the
application of rule-based engineering.

3.2 Platform-Independent Specification of Model Transformations

While ACPLT/RE considers the rules required to automate our engineering scenario of
Section 2.1 as the primary artifacts, the model transformation community would
consider the engineering models for plant control engineering and HMI engineering as
the primary artifacts and would talk of a model transformation from the plant
engineering model to the HMI engineering model to automate our engineering scenario.

For industrial use, a mature and proven model transformation language is required.
Therefore, the ATL transformation language, introduced by [Jo06] and implemented on
the Eclipse platform was selected. ATL transformations are compiled and executed by
an ATL-specific virtual machine, which transforms a source Ecore model to a target
Ecore model (Ecore is a model definition language introduced by the Eclipse modeling
platform).

An ATL model transformation is specified by a set of rules, which specify the mapping
of source elements to target elements. The ATL rules are aggregated as elements of type
ModuleElement in an ATL module, which is the container of all ATL rules. The
declarative ATL rules considered in this paper are a special ModuleElement called
MatchedRule. Each MatchedRule consists of an InPattern and an OutPattern. The
InPattern is specified by an OclExpression. The object constraint language (OCL) was
originally designed to describe expressions on UML models and was reused by ATL for
data types and declarative expressions. The OutPattern is specified by a set of bindings,
which also use OCL to assign values to attributes of the created target model elements.
The detailed ATL model referred to is described by [Ti09]

The ATL transformation language rule definitions are based on a textual syntax, which
allows for more abstract and compact rule definitions than ACPLT. The development of
ATL rules is well supported on the integrated development environment Eclipse, e.g.
with context sensitive editors and team support. In addition to the textual syntax, ATL
provides an Ecore model for the rule definitions, which allows the processing of ATL
rule definitions by higher-order transformations [Ti09]. In contrast to the weak type
definitions of ACPLT/RE function blocks based on string variables (cf. RepLib and
RepClass variables in Figure 5) ATL rules support strong typed pattern elements. This
strong type supports avoids rule errors due to invalid types at compile time of the ATL
rules and not at run time as with ACPLT/RE.

The disadvantage of ATL is that the transformations of models at runtime is not
supported: a typical ATL transformation setup assumes that the source and target models
are exported from the runtime environment of a process control system to the Ecore

Platform-Independent Specification of Model Transformations @ Runtime Using Higher-Order Transf... 131

model format and after transformation are re-imported to the runtime system instead of
supporting intertwined execution of the plant control software and its transformations.
Furthermore, the ATL transformation engine is available only on the Java platform,
which would require an additional Java-compatible industrial PC device in typical plant
automation system setups.

4 Higher-Order Transformation from ATL model transformations to
ACPLT/RE rules

This section presents in detail the higher-order transformation between ATL model
transformation specifications and ACPLT/RE model transformations @ runtime as
introduced in Figure 4. For the process automation application scenarios the combination
of the advantages of ACPLT/RE and ATL would ease the definition and execution of
engineering rules in automation systems, e.g. the reconciliation between plant
engineering and HMI engineering models as described in Section 2.1. ACPLT/RE
provides the runtime support for rule execution on the process control system (PCS) and
is easy to understand for automation engineers e.g. when commissioning plant
extensions. ATL provides type-safe and compact rule definitions, which are independent
of the execution platform.

Therefore, a transformation from ATL rule definitions, engineered in the Eclipse
platform, to ACPLT/RE rule definitions, executed by the ACPLT plant control system,
was developed. With that transformation, it is possible to define the plant engineering to
HMI engineering transformation by ATL, but execute the transformation by ACPLT/RE.

In ATL, the engineering rule example shown in Figure 5 is expressed as shown in
Figure 6. Just as the ACPLT/RE rule, for every plant asset of type "gssffa::Unit"
(which could be a vessel, a pump or a valve according to the UnitType attribute), the
ATL rule creates an HMI engineering element of type "hmiRIVA::Unit". The OCL
expression "rivaUnit .path.startsWith" in the ,,from* clause of the rule selects the
context of the plant asset within the plant structure. Within the “to” clause of the rule, the
UnitType value of the newly created HMI engineering element is set to the same value
as the UnitType value of the corresponding plant asset.

The approach presented by this paper transforms ATL rules, such as the rule presented in
Figure 6, to ACPLT/RE rules, such as the rule presented in Figure 5. This transformation
was implemented by ATL higher-order transformations between the ATL and
ACPLT/RE languages. ATL was chosen for the higher-order transformation because
both ATL and ACPLT/RE languages can be specified by Ecore models and because
every additional language would increase the complexity of the engineering system. The
Ecore model of ATL rules is provided by the ATL implementation itself. The Ecore
model of ACPLT/RE was developed as part of the work presented by this paper with the
help of a XTEXT [Th11] grammar for the textual export format FBD of ACPLT.

132 Michael Schlereth, Tina Krausser

-- @path MMRIVA=/atl2fbd/model lib/rivaBalance.ecore
-- @path MMHMI=/atl2fbd/model_ lib/hmi.ecore

module riva2hmiTyped;
create OUTHMI : MMHMI from INRIVA : MMRIVA;

rule rivaUnit2hmiUnit

{

from
rivaUnit : MMRIVA!"gssffa::Unit"
(rivaUnit.path.startsWith (
' /TechUnits/RIVA/IC001/IC001/IC001/TU10"))
to

hmiUnit : MMHMI!"hmiRIVA::Unit"
(path<-'/TechUnits/Mike/Simotion'+rivaUnit.name
, UnitType <- rivaUnit.UnitType)

Figure 6: Plant asset to HMI element engineering rule

According to the analysis of the authors, ATL and ACLT/RE are both structured in four
areas as shown in Figure 7. The rule language defines the relationship between
engineering models. The engineering models are defined by rule language-specific
system models. The pattern language is used by the rule language to define the model
elements selected or constructed by the rule language. Finally, the inter-rule execution
control determines the execution order of multiple rules and resolves model element
dependencies between rules. The implementation presented here covers the
transformation of the rule language, the system model, and a small part of the pattern
language as required by the process control engineering scenarios presented in
Section 2.1. More complex pattern language constructs and inter-rule execution control
are considered as future extensions of the work presented here.

ATL ACPLT/RE
Rule Language ATL matched rules ACPLT/RE rules
System Model Ecore metamodels ACPLT libraries
Pattern Language OCL IEC 61131-3
function blocks (FB)
Inter-Rule ATL traceability IEC 61131-3 sequential
execution control function charts (SFC)

Figure 7: Comparison of the structure of the ATL transformation language
and the ACPLT/RE rule language

Platform-Independent Specification of Model Transformations @ Runtime Using Higher-Order Transf... 133

4.1 Transformation of the System Model and the Rule Language

The ATL rule language consists of two elements: ATL matched rules and Ecore
metamodels referenced by these rules (see Figure 7). Therefore, the transformation of the
ATL rule language into ACPLT/RE consists of two ATL transformations in different
directions (see Figure 4):

e An ATL transformation from ATL to ACPLT/RE to transform the ATL
matched rules to ACPLT/RE rules. (l:n transformation from platform-
independent representation to different specific platforms).

e An ATL transformation from ACPLT/RE to ATL to transform the ACPLT/RE
libraries of the engineering models to Ecore metamodels, which can be used by
ATL matched rules. (n:1 transformation from different specific platforms to
platform-independent representation).

The ATL transformation, which is required to transform the ATL rule language into
ACPLT/RE, is a higher-order transformation (HOT) and is implemented as the ATL
module at12fbd.atl. A higher-order transformation uses a transformation language
to transform the transformation language itself: in our case an ATL transformation
transforms the ATL transformation language into ACPLT/RE. Therefore, it is a
transformation from the ATL metamodel MMATL to the ACPLT/RE metamodel MMFBD,
which is represented as an XTEXT grammar for FBD files, the data exchange format of
ACPLT/FB. Figure 8 shows an exemplary part of the at12fbd.atl higher-order
transformation: the transformation from an ATL matched rule MMATL!Rule (the
“from” clause in Figure 8) to an ACPLT/RE RuleExecControl function block,
which is specified as an MMFBD!FB Instance with a classld
/Libraries/reSFCbased/ RuleExecControl (the “to” clause in Figure 8).
An ACPLT/RE rule also consists of an instance of the condition and conclusion function
blocks, which are created along with the RuleExecControl function block instance
in the “to” clause of the ATL higher-order transformation. In addition to these function
block instances, ACPLT/RE also requires the creation of function block connections and
links to the task system of the process control system for its elements. In the FBD
metamodel, these elements have a more complex creation pattern, which can be reused
in different rules of the higher-order transformation. Therefore, this creation pattern is
implemented for reuse by the ATL called rule, which is called createTaskLink.

The second transformation, the transformation of the plant engineering metamodel
(ACPLT library gssffa) to the HMI engineering metamodel (ACPLT library hmiRiva) in
the reverse direction to the higher-order transformation, is implemented by the ATL
transformation ovmString2ecore.atl, which generates the Ecore metamodels
rivaBalance.ecore and hmi.ecore.

The ACPLT libraries are defined by description files in a textual format called OVM,
with a similar syntax as used by the FBD format defined by ACPLT/FB (see
Section 2.2). Therefore, the same XTEXT parser could be used for FBD and OVM files.
In contrast to FBD, OVM doesn’t include instance information for objects, but instead
type information. The ovmString2ecore.atl transformation is generic and

134 Michael Schlereth, Tina Krausser

transforms every OVM file into an Ecore model depending on its run configuration.
Currently, the only limitation of the ovmString2ecore.atl transformation is the
fact that the OVM #include statement is not supported in the XTEXT grammar.
Therefore, library definitions that are included must be copied into a combined file
before running the ovmString2ecore.atl transformation.

With the help of the two generated metamodels rivaBalance.ecore and
hmi.ecore, it is possible to specify the transformation from the plant engineering
model to the HMI engineering model as an ATL matched rule, as shown at the left side
of Figure 4 (a rule example was presented in Figure 6).

rule rule2ruleexec
from

s: MMATL!Rule
using

{
}

to
t: MMFBD!FB_ Instance
(
path <- ruleFbName
, classId <- '/Libraries/reSFCbased/RuleExecControl’
)
,condition: MMFBD!FB Instance
(
path <- ruleFbName+'/Condition'
, classId <- '/Libraries/reSFCbased/RuleChain'
)
,conclusion: MMFBD!FB_Instance
(
path <- ruleFbName+'/Conclusion'
, classId <- '/Libraries/reSFCbased/RuleChain’
)
do
thisModule.createTaskLink ('RuleChain', ruleFbName) ;
-- additional createTaskLink ommitted
thisModule.createFbConnection (ruleFbName, 'Startl’',
ruleFbName+'/Condition', 'Command') ;
-- additional createTaskLink ommitted

}

ruleFbName : String = thisModule.ruleDomain+s.name;

}

Figure 8: ATL rule, which transforms an ATL rule into an ACPLT/RE rule

Platform-Independent Specification of Model Transformations @ Runtime Using Higher-Order Transf... 135

4.2 Transformation of the Pattern Language

The second part of the ATL transformation language, the pattern language (see
Figure 7), is based on the OCL language and is required to compute attribute values
either for pattern matching or for pattern creation. The computation of attributes is called
“binding” in ATL. For the rule-based engineering application in process control
engineering, the focus is on the application of rules with simple bindings on a huge
number of objects. This is done to avoid faults due to tedious manual engineering.
Therefore, the OCL string comparison expression “startsWith” and value assignments
already cover a notable application scope (see Figure 6). These two OCL expressions are
currently implemented as part of the ATL higher-order transformation. Figure 9 shows
an excerpt of the HOT rule, which transforms the variable binding of the “to” clause of
the platform-independent ATL rule shown in Figure 6 to ACPLT/FB function block
elements. The rule is executed for each MMATL!NavigationOrAttributeCallExp
and creates a function block instance of type /Libraries/tmtlib/getVariable.
According to the ACPLT/FB metamodel (see Figure 3), the variables of this function
block instance must be initialized by the creation of six MMFBD!FB VariableValue
elements.

rule BindingNavigationOrAttributeCallExp
{
from
s: MMATL!Binding
(s.value.oclIsTypeOf (MMATL!NavigationOrAttributeCallExp))
using { } -- local variables
to
-- create getVariable function block
t: MMFBD!FB_ Instance
(path <- getVariableFbName
, classId <-
'/Libraries/tmtlib/getVariable'
, variableValues <-
OrderedSet{t_varname,t iexreq,t actimode})
, t_varname: MMFBD!FB VariableValue
(id <- 'varname'
,role <- '"INPUT'
,variableType <- 'STRING'
,value <- '"'t+sourcePropertyName+'"')
-- continued with 5 more MMFBD!FB VariableValue elements
-- and ATL do block

Figure 9: ATL rule, which transforms an OCL binding expression into ACPLT/FB blocks

The experience gained from implementing of the transformation from the OCL language
to IEC 61131-3 function blocks by an ATL higher-order transformation indicated that it
will be difficult to specify the higher-order transformation for more complex OCL
statements because the OCL language and the standard function blocks of IEC 61131-3
language are very different in their language structure. This problem can be resolved, if

136 Michael Schlereth, Tina Krausser

ACPLT/RE would be extended by a function block helper library, which better matches
the OCL expression syntax than the currently available IEC 61131-3 function blocks.

5 Related Work

The integration of engineering models of process control systems was investigated by
[BHWOS5]. The focus of this work was on the offline integration of desktop application
and did not address models @ runtime nor the PIM/PSM approach with higher-order
transformations presented here. The classification of transformations by [MV05]
considers the PIM to PSM transformation as a vertical transformation. The term “higher-
order transformation” is used for transformations of model transformations on the same
platform but not in relationship to a vertical transformation as presented in this paper.
The higher-order transformation support of ATL was introduced by [Ti09]. ATL higher-
order transformations are classified with respect to usage patterns, but the transformation
between different model transformation execution systems is not considered. The work
presented here uses, for the first time higher-order transformations to transform a
platform-independent model transformation PIM-MT into a platform-specific model
transformation PSM-MT @ runtime. Up until now, higher-order transformations and
PIM/PSM transformation were considered separately.

The term models@runtime was introduced in a special issue of Computer [BBF09]. The
models@runtime workshop 2010 [BelO] presented two application scenarios for
automation systems: the reconfiguration of a flexible manufacturing system and the
failure detection in industrial automation systems. The reconfiguration of a flexible
manufacturing system uses a world model at runtime which is updated according to the
state of the production line. The failure detection system uses an engineering knowledge
base at runtime to support failure detection of components. Both applications handle
models at runtime similar to ACPLT but do not apply model transformation technology
nor do they structure the system into PIM to PSM transformations.

This paper proposes the reuse of the platform-specific transformation language ATL as a
platform-independent language as it provides a mature tool support and higher-order
transformations. Languages such as UMLX [Wi03] or GTXL [La04] have been designed
for platform-independent data exchange between transformation tools. Such a language
might be an implementation option for the platform-independent language if it were to
be supported by a mature development environment.

6 Conclusion and Future Work

The work presented in this paper extends the applicability of current model
transformation languages aimed for desktop use to model transformations @ runtime.
For this purpose, a new approach was developed, which extends the MDA concept of
transformations from platform-independent models (PIM) to platform-specific models
(PSM). The new approach transforms platform-independent transformations (PIM-MT)

Platform-Independent Specification of Model Transformations @ Runtime Using Higher-Order Transf... 137

to platform-specific transformations @ runtime (PSM-MT). The PIM-MT to PSM-MT
transformation is a new application of higher-order transformations (HOT). The new
concept was verified by an implementation for process control systems, which
transforms ATL model transformations by an ATL higher-order transformation to the
runtime transformation system ACPLT/RE. For use in the industrial environment, the
advantage of this approach is the possibility of being able to transform model
transformation definitions to different transformation runtime platforms, e.g. dependent
on customer requirements, dependent on a given runtime environment or dependent on
system evolution. Furthermore, the ATL platform-independent model transformation
(PIM) is easier to test and analyze during the design phase due to its domain-specific
syntax and its good tool support. One finding of the work presented here is that the HOT
requires an additional transformation in the opposite direction to enter the referenced
models of the model transformation specification from the platform-specific
representation to the platform-independent specification. In the case of ACPLT/RE and
ATL, this includes a transformation from weak typed to strong typed metamodels.

The current implementation of the HOT from ATL to ACPLT/RE is complete with
respect to the PSM-MT ACPLT/RE and the current ACPLT/RE application scenarios.
ACPLT/RE only requires the implementation of a HOT for the first two packages shown
in Figure 7, rule language and system model, and a partial implementation of a HOT for
the pattern language. Since the PIM-MT ATL provides more features than ACPLT/RE, a
complete HOT from ATL to ACPLT/RE would require the extension of ACPLT/RE by
further IEC 61131-3 programming elements. Therefore, the implementation of the HOT
is restricted with respect to the PIM-MT ATL, but complete with respect to the PSM-MT
ACPLT/RE. The limitations of the current implementation are the reduced ATL
language support without inter-rule execution control, without traceability support, and
with a reduced set of supported OCL expressions. Therefore, future work will go into
two directions: For the platform-specific part, the implementation of traceability and
inter-rule execution control will be considered. For the platform-independent part, the
use of a model transformation language, which is not as specific as ATL, will be
considered to ease the higher-order transformations to a specific implementation.

The platform-independent specification of engineering rules using the reduced ATL
language support of the current higher-order transformation implementation is already
useful as it avoids many engineering model inconsistencies, and reduces the
commissioning time of plant reconfigurations.

7 References

[BBF09] Blair, G.; Bencomo, N.; France, R. B.: Models@run.time. In Computer,
2009; pp. 22-27.

[Bel0] Bencomo, N.; Blair, G.; Fleurey, F.; Jeanneret, C. Eds.: Proceedings of the
5th Workshop on Models@run.time at the ACM/IEEE 13th International
Conference on Model Driven Engineering Languages and Systems
(MODELS 2010). Oslo, Norway, October 5th, 2010.

138 Michael Schlereth, Tina Krausser

[BHWO0S5] Becker, S. M.; Haase, T.; Westfechtel, B.: Model-based a-posteriori

[In03]

[J006]

[KQE11]

[La04]

[Lell]

[LT04]

[MMO3]

[MV05]

[SE06]

[Thi1]

[Ti09]

[Wi03]

integration of engineering tools for incremental development processes. In
Software and Systems Modeling, 2005, 4; pp. 123-140.

International Electrotechnical Commission IEC 61131-3: Programmable
controllers — Part 3: Programming languages, 2003.

Jouault, F.: Contribution a 1’étude des langages de transformation de
modeles, 2006.

Krausser, T.; Quirés, G.; Epple, U.: An IEC-61131-based Rule System for
Integrated Automation Engineering: Concept and Case Study: Proceedings of
the 9th International Conference on Industrial Informatics (INDIN 2011),
2011; pp. 539-544.

Lambers, L.: A New Version of GTXL: An Exchange Format for Graph
Transformation Systems. In (Tom Mens; Andy Schiirr; Gabriele Taentzer
Eds.): Proc. Workshop on Graph-Based Tools (GraBaTs 04), Satellite Event
of ICGT 04. Elsevier Science, Rom, Italy, 2004; pp. 51 -63.

ACPLT: ACPLT Technologies. http://www.plt.rwth-aachen.de/en/acplt-
technologies/, 15.08.2011.

iFBSpro. http://www.ltsoft.de/index.php?id=338, 15.08.2011.

MDA Guide Version 1.0.1. http://www.omg.org/cgi-bin/doc?omg/03-06-
01.pdf, 19.05.2010.

Mens, T.; Van Gorp, P.: A Taxonomy of Model Transformation and its
Application to Graph Transformation. In (Karsai, G.; Taentzer, G.
Eds.): Proceedings of the International Workshop on Graph and Model
Transformation (GraMoT 2005). Tallinn, Estonia, September 28, 2005.

Schmitz, S.; Epple, U.: On Rule Based Automation of Automation. In (Troch,
I. Eds.): 5th Vienna Symposium on Mathematical Modeling (MATHMOD).
ARGESIM ARGE Simulation News Vienna Univ. of Technology, Vienna,
2006.

Xtext. http://www.xtext.org, 15.08.2011.

Tisi, M. et al.: On the Use of Higher-Order Model Transformations. In
(Paige, R. F.; Hartman, A.; Rensink, A. Eds.): Model driven architecture -
foundations and applications. 5th European conference, ECMDA-FA 2009,
Enschede, June 23 - 26, 2009, Springer, Berlin, 2009; pp. 18-33

Willink, E. D.: UMLX : A graphical transformation language for MDA. 2nd
OOPSLA Workshop on Generative Techniques in the context of Model
Driven Architecture, 2003, Anaheim, 2003.

