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Abstract:
Exhaustively testing every product of a software product line (SPL) is a difficult

task due to the combinatorial explosion of the number of products. Several sampling
approaches have been proposed to select a subset of the products that can be used to
test the SPL. However, these approaches do not scale to large SPLs such as the Linux
kernel. Since the time budget of testing is usually limited, the order in which products
are tested is important. Products have been prioritized based on domain knowledge or
feature-model criteria, but not much attention has been paid to source code. We plan to
use evolutionary testing approaches with different inputs to fitness functions to explore
the configuration space of feature models. The configurations will be generated and
prioritized automatically. Using criteria from feature model and source code, we want
to investigate whether we can increase the efficiency of SPL testing. In this proposal,
we present research questions that investigate how we can employ evolutionary testing
approaches to increase the efficiency of SPL testing.

1 Introduction and Problem Statement

SPL engineering is an approach reusing a common set of features across a potentially large

number of similar products systematically. Recently, SPLs are gaining acceptance and sev-

eral companies such as Hewlett Packard, Toshiba, and General Motors adopt their software

development process to SPLs [ABKS13]. SPL engineering addresses well-known needs

of software engineering, such as reducing the cost of development and maintenance, in-

creasing the quality, and decreasing the time to market [ABKS13]. Testing an SPL is a

difficult task due to the amount of possible combinations between features which lead to

explosion of possible products that need to be tested. The main concern is that it is not

possible to test all the possible products because the resources for testing are usually lim-

ited. To tackle this problem, several approaches have been proposed to reduce the number

of products to test, such as combinatorial interaction testing (CIT) [CDS07].

CIT is a promising approach that can perform the interaction testing between features in

an SPL. T-wise interaction testing is a technique that has been used to detect faults which

are caused by the interaction between features [JHF12] [OMR10]. Several sampling algo-

rithms have been proposed to select a set of configurations to be tested [OMR10] [JHF12].

However, these algorithms still have a scalability problem of handling large feature models

[LvRK+13]. Furthermore, these sampling approaches focus only on how to generate the

minimum number of products for a given coverage. However, there are other parameters

that may involve in the SPL testing, such as time and cost. Although CIT is an approach
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to reduce the number of products to test, the number of the products can be too large,

especially if the time budget is limited. Hence, in which order these products are tested

is important in this context. The idea of prioritizing products is to find faults as soon

as possible by starting testing products that are most likely to contain faults. The exist-

ing prioritization approaches consider only the domain knowledge [EBA+11] and feature

model [AHTM+14]. As far as we know, there is no approach that considers source code

for prioritization in SPL testing.

There are a few approaches combine sampling and prioritization [HPP+13] [EBG12].

These approaches use genetic algorithms to generate products based on certain objectives.

In their approaches, they focus only on a few criteria based on feature models. We plan to

investigate whether code-based criteria can be used to enhance the efficiency of SPL test-

ing. We plan to propose evolutionary algorithms (EA) to explore the configuration space

of feature models in order to generate the optimal products based on different objectives

by using these criteria as inputs to the fitness functions of EA. Throughout this paper, the

term efficiency represents the following: finding as many faults as possible with the least

possible effort and increasing the rate of fault detection (i.e., a measure of how quickly

faults are detected). In particular, we address the following research questions:

RQ1 How to increase the rate of fault detection for SPLs testing by prioritizing

products for a given time budget?

RQ2 What are code-based metrics that enhance the efficiency of SPL testing?

RQ3 How to achieve efficient sampling (i.e., handling multiple parameters)?

2 Research Approach

To answer RQ1, we propose a similarity-based prioritization approach to prioritize con-

figurations [AHTM+14]. This criterion measures the similarity between configurations.

The motivation of using the similarity between configurations is that similar products are

likely to contain the same faults. We evaluate the similarity between configurations us-

ing the Hamming distance. Hamming distance is mathematically given by the following

formula, where ci and cj are configurations and F is the set of all features in an SPL.

d(ci, cj ,F) = 1−
|ci ∩ cj |+|(F\ci) ∩ (F\cj)|

|F |

At first, we select the first configuration with the maximum number of selected features

because it covers most faults in individual features and enables selection of the next config-

uration with large distance. Then, we calculate the distance between this configuration and

all the other selected configurations and we select the one with the maximum distance. We

continue the process until all the configurations are ordered. Comparing to the random or-

ders and the default order of sampling algorithms which are used to sample configurations

from feature models, similarity-based prioritization approach showed promising results on

different size of SPLs with respect to increasing the rate of fault detection [AHTM+14].

In Section 2.1, we present how we can address RQ2. To answer RQ3, we plan to employ

EA to search the possible configuration space of feature models. The fitness function will
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be used to capture SPL testing parameters (objectives) that maximize the efficiency of SPL

testing. EA are generic, in a sense that different fitness functions can be defined to achieve

different goals. Hence, we can apply the same EA to different SPL testing scenarios. In

our work, we plan to use cuckoo search (CS) algorithm. CS optimization algorithm is a

recently proposed EA, based on the behavior of certain species of the cuckoo birds such as

the guira and the ani, combined with the displacement mode of many animals and insects

such as sharks and some bird species. This movement pattern has been described as a

heavy-tailed probability distribution and called the Lévy Flight pattern [YD09]. See our

earlier technical report [AH14] for more details about the CS algorithm and other related

issues of SPL testing.

2.1 Code-Based Criteria for SPLs

Regarding RQ2, we present examples of code-based criteria that we plan to use in our

project. The goal of using these criteria is to measure the complexity of products and give

higher priority to the products with higher complexity. We plan to investigate whether

these criteria and others can increase the efficiency of SPL testing.

• Scattering Degree (SD) and Tangling Degree (TD) The SD metric is the number

of the occurrences of a feature in other feature’s expressions. This metric is mea-

sured by extracting feature names from feature expressions and calculate the average

number of times the feature appears in the other feature’s expressions.

TD metric is the number of different features that occur in a feature expression. A

lower TD is better, because high TD of features in feature expressions may impair

program comprehension [LAL+10].

• Average Nesting Depth of features (AND) The AND metric represent the av-

erage nesting depth of features. It can be measured by calculating the average

nesting depth of features for each product. Since we extract nested features form

feature expressions, this metric is useful for discussions on program comprehen-

sion [LAL+10].

2.2 Research Methodology

This thesis will rely on the combination of a systematic review, experiments, and industrial

case studies. We use systematic reviews to synthesize the research results, to summarize

the existing evidence for SPL testing, and to aid in the identification of gaps in the current

research. A main portion of this research proposal is about using search-based techniques

for SPL testing. This thesis will be approached through experimental research methods.

We will implement and evaluate our approaches in FeatureIDE [TKB+14]. We plan to

apply our approaches using case study with the industrial use of FeatureIDE in order to

evaluate our approaches with real-world product lines.

3 Conclusion

We believe that there is a lack of research using code-based criteria to prioritize products.

In addition to feature-model criteria, we want to investigate what code-based metrics are
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that may increase the efficiency of SPL testing. We plan to employ evolutionary algorithms

by incorporating these criteria into fitness functions.
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