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Abstract: This contribution takes a quote from Einstein, We can't solve problems

by using the same kind of thinking we used when we created them, to take a step

back and try to have another viewpoint when thinking about a new internetworking

architecture. The ongoing research will not be looked at from an application

research point of view nor from a communication technology point of view, but

from a software engineering perspective. This new way of thinking leads us to

realize that the Internet is a largely distributed software system, and thus we

propose to apply software-oriented methodologies to define a new internetworking

architecture. These methodologies lead to a new, flexible architecture that allows

for both evolutionary and clean-slate approaches. Moreover, this approach bridges

the gap between application and distributed systems research, and networking
research to have a more holistic view and avoid suboptimal solutions.

1 Introduction

As described in the first report prepared by the FIArchitecture group [FIA11], the current

Internet is challenged by ever new demands of constantly emerging applications and new

capabilities of communication networks. Today these challenges result in an

architectural patchwork with increasing complexity and unpredictable vulnerabilities.

This patchwork of the formerly clearly layered architecture, however is not related to

specific protocols or mechanisms, but is mainly caused by the (more than 40 years old)

architecture of the Internet.

Under these circumstances all adaptations of the current Internet architecture (e.g.,

security, middle boxes) result in unintentional complexity that finally leads to an

ossification of the Internet core with increased development (for applications) and

maintenance (for networks) costs (e.g., security/privacy issues, distributed denial-of-

service attack attacks, etc.). This means that these shortcomings cannot only be solved

by an evolutionary step-by-step approach, but they also require efforts in newly designed

internetworking architectures [Cl03], which should be more adaptable and flexible.

Overall, a new internetworking architecture must offer flexible mechanisms to map the

demands of (yet unknown, future) applications onto the capabilities of (yet unknown,

future) transport networks. Especially the current uniform API of the internet has come

to be a handicap to distributed applications which cannot exploit many of the useful
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capabilities of the underlying network, and therefore must perform their own

measurements to adapt to varying network conditions, often with cross-layer approaches

(see figure 1).

Today there are sharp boundaries

between distributed systems and

applications research, and networking

research; which is evident in institutions

(IETF vs. OASIS) and companies (Google

vs. Cisco). To overcome this situation it

is essential to take advantage of

the combination and improvements in

the fields of distributed systems research

and networking research [Ro06]. This has

been discussed in many of the projects

and new initiatives within the 6th and 7th

EC Framework Programs, “Networks of

the Future”. A short overview of

related approaches can be found in

[MR08]. Future network architectures must be flexible in both the long and short term in

order to evolve and adapt to changing application requirements and new transport

technologies (fixed and/or mobile) with different capabilities, by enabling evolutionary

changes of the network itself. Long-term flexibility can be seen as the capability of a

system to evolve with updated protocols and network capabilities. Short-term flexibility

is understood as the capability of a system to adapt itself and react to network conditions

and application requirements [Kh12a].

In that sense, a new internetworking architecture should be able to be adapted to

different transport technologies so that simple, low-cost systems can be integrated into

the network just as well as high-performance end systems. From this, it follows that

network functionality should be highly configurable so that it can be adapted to several

transport technologies. Moreover, a new internetworking architecture should be able to

handle the different requirements of various applications. Since application requirements

are usually not known until run time, the network must be able to react dynamically to

handle these requirements.

In addition to such external demands, there are demands for flexibility from the network

itself. We assume that there is no fixed set of mechanisms that is well suited to fulfill all

requirements on all transport technologies for all time. Therefore, capabilities for

evolutionary changes are required in a new internetworking architecture to avoid radical,

and thus costly, changes. The nodes of the Internet today are already heterogeneous, but

they all have the functionality of TCP/IP in common. Relatively few improvements of

these protocols haven been introduced in the past (compared to the many suggested

improvements) and more radical changes like migrating from IPv4 to IPv6 are ongoing

now for more than 15 years. From this we derive the requirement that there should be

very few mechanisms — ideally none — that are mandatory for all nodes in the network.

Fig. 1. The Internet Architecture is

between applications and networking

research (adopted from [Ro06])

44



One of the drawbacks of the current Internet architecture is tight coupling of

functionalities (within a layer and cross layer) that make it difficult to integrate new

functionalities. For example, expanding the IPv4 address space by increasing address

lengths requires modifying the TCP implementation. Also the UDP checksum

incorporates parts of the IP header, tightly coupling UDP and IP. Likewise, making other

changes can encounter similar problems. We can mitigate maintenance costs by

exploiting the long-term flexibility of a flexible internetworking architecture by, for

instance, upgrading a protocol to fix a security issue.

Nevertheless, a more flexible internetworking architecture also has to deal with

increasing, but inherent, complexity resulting in increasing overhead costs. “The greater

the flexibility required, the higher the complexity of the code (i.e., overhead cost) needed

to support that flexibility” [Mc04]. This inherent complexity and its overhead costs (i.e.,

processing of the increased complexity and code length) is countered by reduced

network maintenance costs and by ever-increasing hardware capabilities. On the other

hand, increasing flexibility decreases maintenance cost, as “flexibility increases insight

into the systems secrets causing general maintenance cost to decrease. Finding system

bottlenecks and optimizing performance will also be much easier once the systems

architecture is flexible” [Ec04]. As hardware advances will mitigate overhead costs, it is

worth investing the overhead costs of increased flexibility in order to reduce long-term

maintenance costs. In contrast, the maintenance costs for inflexible network architecture

will increase: “As the maintenance backlog of the inflexible software system increases,

cost compound, development is deferred, customer dissatisfaction grows, and

competitive position declines” [Jo05].

According to the above assumption, we propose a new and open internetworking

architecture based on the principles of service-oriented architectures (SOA) [Oa06] by

defining open, standardized, and generic service interfaces which make it possible to

decouple logic from implementation. This approach prepares for the complexity of

future applications by simplifying integration of new technologies and increasing

communication system flexibility. Such a flexible architecture may also offer new

business models, as any certain functionality is not related to a fixed layer, but can be

integrated and offered as a new service when needed. Of course there are serious

methodological problems associated with researching new internetworking architectures.

In particular, it is hard to claim success in this area without building a successful follow

up to the current Internet.

2 Service Oriented Network Architecture

As mentioned above, we consider the Internet as a largely distributed software system

facing similar problems as software development processes, which has developed

several concepts (e.g., maintenance, integration of new functionality, time and task

management) to manage the complexities of the development process. Applying these

concepts directly affects the cost, quality, and development time of software. The

Internet has similar kinds of problems that are not addressed by the current design

principle(s). To deal with the inflexibility and complexity issues of the Internet, the

principles and techniques from software development can be learned and implemented.
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Software architecture has advanced from structured programming to a service-oriented

paradigm based on SOA1. The design of a future internetworking architecture can

benefit from software architecture paradigms to make a more flexible and easy to

maintain network architecture rather than having an ossified architecture (i.e., the current

Internet). The following sections present an argument on how SOA can be a suitable

methodology for a future internetworking architecture. Before arguing about why

service-orientation could be a promising paradigm for a future internetworking

architecture, the fundamental principles [Er06] of SOA are described:

• Service contract: The explicit specification of the provided service. It avoids

defining (implicitly) the delivered service by algorithms/protocols or even code,

fostering loose coupling.

• Loose coupling: Refers to the degree of dependency and bounding between two

components. The coupling of two services is considered loose when they are

independent of the implementation of one another. Loose coupling simplifies the

exchange of service implementations and the introduction of new services. This

supports long-term flexibility.

• Abstraction: Services are independent in that the logic they use is hidden from the

outside world. Abstraction fosters reusability as well as loose coupling.

• Reusability: A service should be independent and fine-grained enough to promote

reusability. Networks often have to support a wide range of applications, which

requires reusing network functionality.

• Autonomy: Characterized by the control of a service over the logic it encapsulates.

Autonomous services have fewer requirements on their environment and can be

deployed more easily, thus fostering system evolution.

• Statelessness: Service should not keep the state of a request after it has been

processed. This principle cannot be fulfilled in general, since some protocols have to

be stateful.

• Discoverability: A service should be descriptive enough for automatic service

discovery. This applies to services residing within a network infrastructure. These

kinds of services should be addressed dynamically so that various instances of a

service may be used.

• Composability: The ability of a service to be coordinated with other services in a

manner that they can form a composite service. Composability is the precondition to

avoiding the necessity of implementing large complex communication by reusing

several more fine-grained services instead.

Most of the issues in the Internet arise because of inflexibility and rigidness of the

network architecture, which is built upon a protocol stack. SOA provides a new

perspective for building a future internetworking architecture as it addresses service

loose coupling, re-usability, and autonomy; which are fundamental requirements of a

flexible architecture. As the protocol stack can be decomposed into various

functionalities, described with formal contracts (i.e., service descriptions), the

functionalities become autonomous and self-descriptive. Self-descriptive functionalities

have the ability to be discovered, as they carry descriptions that can be processed by

discovering entities. Abstraction is another key point to be taken into account.
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Decomposing the protocol stack into various functionalities should be done at an

appropriate abstraction level, where implementation details are hidden from the

consumer. Other characteristics of a functionality, such as autonomy, description and re-

usability, are important for the composition of higher level services. Nevertheless, the

statelessness principle of SOA might not be appropriate for all functionalities of a

network architecture, as some network functionalities require state (e.g., reliable

transmission). In the following we describe what services are and show their

composition in protocol graphs.

2.1 Communication Services

Services are the essential elements of a SOA. A service reflects the effects of an activity

rather than the algorithms and data structures that implement it. Thus a service could be

implemented using different algorithms. It is necessary that there are explicit service

descriptions that include the service semantics and interface definitions [Kh10a]. A

building block is the

implementation of an atomic

service. A building block could

implement a protocol such as

retransmission, encryption,

or monitoring. Each building

block usually has several effects,

such as increasing end-to-end delay

or reducing maximum payload

size, in addition to its main

function. All the effects of a

building block represent the service

it provides. The interfaces of a

building block should reflect the

provided service while hiding

its implementation details.

Building blocks should also use

generic interfaces [Li11] so that

interaction between building blocks do not require adapters. In order to fulfill the SOA

principles, it is crucial to design services and building blocks appropriately, keeping in

mind the principles of SOA.

2.2 Protocol Graphs

In order to make use of flexible networks as mentioned above, it is necessary to define

protocol graphs and to select a communication service to be used.

When a suitable protocol graph is not already defined, a new one can be created by

determining which building blocks should be used and how these building blocks have

to interact in order to provide an appropriate communication service. This selection and

composition of building blocks (see figure 2) uses the service descriptions of the

available building blocks to define an optimal protocol graph with regard to application

Fig. 2. Parameters for the definition/generation

of protocol-graphs
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requirements, network constraints, and administrative policies. Several approaches for

selection and composition are possible, ranging from manually defined protocol graphs

to automatic composition at runtime [Si11]. A simulation model which evaluates the

impact of network communication services in order to decide if a block or a set of blocks

composed into a protocol graph is able to fulfill the given application requirements and

system constraints is given in [Gu12a].

It is likely that flexible networks will offer several similar communication services to

applications, each of which could be implemented with different protocols. In such a

scenario, applications must not be aware of the utilized protocols. To achieve this,

applications must only be aware of the provided service, keeping the service

implementation transparent to applications. This can be achieved by introducing a

service broker, which selects an appropriate service implementation at runtime (see

figure 3). These

implementations can range

from the conventional protocol

stack (TCP/IP), to pre-

composed or template-based

protocol graphs, to a

completely dynamic setup that

composes a suitable protocol

graph on demand. A service is

appropriate if it fulfills all

mandatory application

requirements. In addition,

optional application

requirements are used to

determine the optimal service.

A service broker might

consider services provided by

different sources. There may

be standard protocol stacks, pre-composed services as well as dynamically composed

services. This way, a service broker also enables the simultaneous use of concurrent

selection and composition approaches.

As mentioned above, flexible protocol graphs are made up of building blocks. Each

block implements certain network functionality like encryption, loss reduction, routing,

or compression. From a pool of available functional blocks, appropriate blocks are

selected by looking at certain criteria, including application requirements, and then

connected via their ports [Sc11] to create a requirement and network specific protocol

graph. To reduce the naturally occurring complexity in creating an entire protocol graph,

we use a template-based functional composition (TFC) approach.

The idea of this TFC approach is to split the functional composition process among

different time-phases (i.e., design-time, deployment-time, and run-time) so that the time

consuming activity is performed at the least time-critical phases (e.g., design-time).

Potentially less time consuming activities are performed at run-time. The most time

Fig. 3. Selecting an appropriate communication

service at runtime
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consuming activities are the selection of functionalities, but not the actual functional

blocks, and connecting them together in appropriate order so that they can interact with

each other. To utilize the less time critical phases and still provide enough flexibility,

TFC utilizes placeholders to represent the functional blocks that will be selected at run-

time. TFC may produce more than one protocol graph that fulfills the application’s

requirements. Selecting which of these protocol graphs to use is a Multi- Criteria

Decision Analysis (MCDA) problem that is solved by using an adaptation of the

Analytic Hierarchy Process (AHP) [Kh06]. A description language is used to describe

the application requirements and functional block capabilities. These descriptions are

necessary for the selection and composition process. A detailed description of the

proposed service description language can be found in [Kh12b]. Moreover, for

demonstration purposes, an interface, GAPI (G-Lab Application-to-Network Interface

[Li11]), was created to allow applications to specify their requirements.

2.3 Service Description

Service selection and composition requires the description of communication services.

The task of service selection is to select a suitable or the best service from a set of

candidate services. Service composition takes a set of application requirements as input

and composes a set of fine-grained services considering constraints from the user, an

administrator, and from the network. Service selection is a prerequisite of service

composition.

Selection and composition take the requirements from the application, a set of policies

from the administrator, constraints from the network, and a set of effects provided by the

building blocks. Then it composes the selected building blocks, considering all of the

inputs, and produces a protocol graph as output. As is seen in the figure 2, all of the

inputs and outputs are nothing but descriptions. Having a service description of the

composed protocol graph facilitates the process of service selection as shown in figure 3.

A service provider might provide services of the conventional protocol stacks (i.e.,

services provided by TCP/IP, UDP/IP, and SCTP/IP).

A compound service can be seen as a service composed during design time. A

compound service provider will provide design time composed services. Another service

provider can supply a template during design time and the rest of the composition can be

done during run-time. The dynamic selection and composition uses the requirements and

other inputs at runtime (where the most information about the communication is

available) to compose services.

A communication service description language must be able to describe fine-grained

functionality (i.e., the capacities or capabilities of a service), constraints from the

network, policies from the administrator, and application requirements. Moreover, the

output of the selection and composition (S&C) engine is a protocol graph that should be

described using the same language. The selection of a suitable, or the best, service

requires the description of requirements and offerings, as shown in figure 2, which

should also be described without changing the language. All of these requirements,

constraints and offerings require specification of effects, influence, interfaces, data types
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and dependencies. Effects and interfaces are required to hide internal implementation

mechanism from an application or a user and show only the parts that are required

during selection and composition. Whether a building block or a service influences a

header of a packet, the payload of a packet, or the flow of data needs to be known during

service selection and composition. During service composition, the compatibility of the

connections between interfaces is checked by using data types. An interface can only

accept a connection from the building block X if the building block offers data of a

particular type. Dependencies are required to assist the functional composition process.

3 Can SOA based network architectures provide flexibility?

Using services as the basic elements for the design of a system instead of algorithms or

protocols fosters loose coupling and abstraction. Service descriptions represent the

service contracts and are also used to discover services. Building blocks should be

largely independent of their environment to achieve autonomy. Generic building block

interfaces make composition much easier. The layerless architecture implies higher

probability for reuse of functionality. Statelessness cannot be achieved in general

because some functionality can only be implemented using state-full protocols. In

addition, there may be generic states, for example, in the connection setup or release

phase or states for failure or debug modes.

A new internetworking architecture should be flexible in two ways. First, networks

should be able to adapt to specific customer or application needs and changing

environmental conditions. Second, networks should be able to evolve, meaning that

functionality is added, changed, or even removed. This flexibility is achieved by

composing several (smaller) services into more complex and specialized services.

Today's networks organize complex protocols in layers, building a nearly static protocol

graph [OP92]. Service oriented network architectures aim to support dynamic

composition

of services (i.e., dynamic protocol graphs). When dynamic protocol graphs are used, it is

easier to make use of new protocols (i.e., building blocks) and to reuse functionality on

different levels. Having dynamic protocol graphs implies that there is no static

Fig. 4: Layer vs. Service Oriented Paradigm
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placement of functionality as defined by the layers of the OSI reference model (see

Figure 4). In this sense such networks will be layerless such as compression or

encryption can be used for application payload only or also for some protocol headers.

Furthermore it is not necessary that building blocks be processed in sequence. For

example, there might be different branches in the protocol graph to handle different, but

related, data types within one flow (e.g., signaling and streaming media). In order to

enable dynamic protocol graphs the interaction between building blocks is not defined

by executable code but by description that can be changed easily. Dynamic adaptation

(i.e., dynamical adaption to requirements and constraints) can be achieved by service

composition and service selection that supports short term-flexibility. A short description

of a first prototype of this approach based on the SONATE (service-oriented network

architecture) framework [Kh10a] can be found in [Gu12b]. A first method for generating

requirement-specific protocol graphs can be found in [Gu12c].

4 Conclusions

Because of the inherent inflexibility (ossification) in the current Internet architecture, it

is hard to integrate new functionalities required from the application- or network-site.

This paper argues that short-term and long-term flexibility is the key for designing new

internetworking architectures. To achieve such a required flexibility it is necessary to

overcome the barriers between “distributed-systems” and “networked-system” research

based on the ideas of software defined networking. Taking this into account, our

approach for a new and flexible internetworking architecture is based on a new software

engineering methodology namely the service-oriented architecture principles.

Such an approach of fine-grained functionality can enable more flexible networks, so

that the network can adapt to new application's needs and new network capabilities

and/or constraints. This also allows the introduction, alteration, and removal of

functionalities. Moreover, as any certain functionality is not related to a fixed layer but

can be integrated and offered as a new user oriented, application oriented, or network

oriented service when needed (potentially by a third party), this approach may also offer

new business models.

While this paper gives a design foundation for future network architectures there are still

several open issues remain for applying the SOA paradigm in network architectures. One

open issue e.g. is service granularity. Because SOA does not describe the granularity of a

service design guidelines are required for the extent of logic every service must contain.

Another open question is service composition. Approaches for selection and composition

face a tradeoff between ’composition time’ and ’information availability’. On the one

hand, at design time, there are nearly no time limitations for the composition process and

requirements of application(s) are already known. On the other hand, at runtime there are

hard time constraints for selection and composition, but most of the specific user

requirements network constraints might be available. A further challenging issue is how

to handle different types of network nodes, to simultaneously make use of their provided

services, and to ensure a conflict-free service composition at the same time. The

challenge here is to develop mechanisms or protocols to handle heterogeneous services

offered by different devices on a communication path.
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Although the presented approach does not offer a short-term product oriented approach,

it offers a long-term research methodology to foster research and innovation in this area.
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