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Abstract: In this paper, we evaluate the feasibility of using the learning classifier XCS
to control a System-on-Chip. Increasing number of transistors and process variation
make it difficult for a chip designer to foresee all possible run-time conditions. Post-
poning some decisions from design time to run time alleviates the designer’s life and
allows shorter time-to-market. In this paper, we evaluate if XCS can take these run-
time decisions on a processor with four cores. The evaluation shows that XCS can
find optimal operating points, even in changed environments or with changed reward
functions. This even works, though limited, without the genetic algorithm the XCS
uses internally. The results motivate us to continue the evaluation for more complex
setups.

1 Introduction

The number of System-on-Chip (SoC) designs is expected to increase strongly according
to the International Technology Roadmap for Semiconductors [EKRZ04]. Lower power
consumption, higher performance and simpler system integration are the major advantages
of SoC design in comparison with other design styles.

However, due to the continuing scaling of silicon technologies it is becoming increas-
ingly difficult for manufacturers to fulfill the expectations of their customers with re-
spect to the reliability of the products. In particular, changed electrical circuit properties,
the susceptibility to internal and external noises and accelerated aging pose great chal-
lenges [NX06, Bor05].

The decreased feature sizes also lead to an increased design complexity, as more and more
transistors fit on an individual chip. This makes it difficult for a designer to foresee all
possible operating conditions and failure modes of a chip. To alleviate the designer’s
life, we foresee some intelligence on an Autonomic System-on-Chip (ASoC) [LHR+05],
which takes at run time the decisions that the designer formerly took at design time. The
chip is getting aware of itself and gains organic properties such as the ability to react to

∗This work is partially funded by Deutsche Forschungsgemeinschaft, Priority Program Organic Computing
(SPP 1183) under the grants HE 4584/3-2 and RO 1030/14-2.

763



unforeseen situations. In this paper, we present our first results on evaluating how the
learning classifier system XCS can be a candidate for this intelligence and control the
operating point of an ASoC. To the best of our knowledge, no attempt has yet been made
to use XCS to control a SoC.

This paper is organized as follows: Section 2 summarizes related work. Section 3 and
4 describe the models and the experimental setup, respectively. After the results, which
Section 5 presents, Section 6 concludes this paper and shows direction of future work.

2 Related work

Holland et al. [Hol76] first proposed the learning classifier system (LCS). A learning clas-
sifier system consists of a set of condition-action pairs (the classifiers) which are learned
and executed in an environment. The LCS is supposed to learn the necessary classifiers for
a specific environment to reach some preset goal. Wilson et al. [Wil95] presented a spe-
cialized version of an LCS, the XCS, for which studies showed [Kov97] that it learns ac-
curate, complete, and minimal representations for boolean functions. Butz [But99] wrote
an implementation of XCS in C, which we used as a reference implementation.

The only known application of learning classifier systems to control a machine is Au-
tonoMouse [Dor95], where an robot mouse learned to approach a light source under dif-
ferent noise and lesion conditions. To the best of our knowledge, XCS has not yet been
applied to control the state of a SoC.

3 Models

The optimal operating point of a SoC is mainly influenced by the run-time properties per-
formance, temperature, power consumption, and (soft) error rate. This section describes
the models from the literature we use to estimate these properties.

For the performance, we use the frequency as a (rough) estimate. Later setups will in-
clude more sophisticated performance measures. We get the temperature estimates from
Hotspot [SSH+03] based on our power estimates.

The power consumption consists of the static and dynamic power dissipation (Ptotal =
Ps + Pd). For the static power dissipation Ps, we use the model of Butts et al. [BS00]
with Ps = VDDNkdesignÎleak, with supply voltage VDD, N transistors, and design and
technology dependent parameters kdesign and Îleak (given in [BS00]). For the dynamic
power dissipation Pd, we add an activity factor α to the well-known model [WE93] as
done by Intel to estimate power dissipation in the Pentium M [GS03] Pd = αCLV 2

DDfp,
where CL is the lump capacitance, and fp is the clock frequency. The activity factor gives
an estimate on the average number of zero-to-one transitions during a clock cycle and can
be gained through logic simulation.

Defining an accurate model for timing errors is difficult, as the timing error depends on the
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actual path the signal is taking. Therefore, we use a simple model where we assume a fixed
set of inverters between the two pipeline stages modeling either the longest or the average
path length. We model the average switching time of an inverter using the temperature
dependent model from [GK03]:

tav =
(tdr + ttempdelay(T )) + (tdf + ttempdelay(T ))

2
(1)

tdr and tdf are the well-known raise and fall delays of a signal on an inverter [WE93]
(which depend on voltage) and ttempdelay models the influence of the temperature on the
time delay as shown in [GK03].

We use the model of Zhu et al. [Zhu06] to model the effect of frequency and voltage

scaling on fault rates with λ010
(1−f)d
1−fmin , where λ0 is the average fault rate corresponding

to Vmax and fmax and d is a constant. The fault rate is used as a parameter in a Poisson
distribution describing the occurrences of faults.

As the mean time to failure due to hard errors is usually in the scale of several years, we
do not model the effect of hard errors.

4 Experimental setup

This section describes the hardware and software we are using for the evaluation of the
XCS, how we encode the environment and action of the XCS, and which tests we used for
evaluation.

We chose the AMD Opteron (Barcelona) processor as a multi-processor SoC (MPSoC)
hardware, which is a four-core general purpose processor produced on a single die. The
advantage of using the Opteron as an MPSoC is that most of the parameters which are
necessary for simulation are publicly available, and that the processor can adjust the fre-
quency of each core individually. Figure 1 shows the floor plan of the Opteron, as derived
from [AMD08]. We adjust the activity factor of the cores so that we meet the thermal
design power and average CPU power. Each core is controlled by one XCS which runs on
dedicated hardware, so regular core operation is not interrupted.

We execute four algorithms on the hardware: LR-decomposition, video filtering, matrix
multiplication and a dual-process application where one process has to wait for the other.
We simulate the algorithms with traces, which only describe the memory access patterns,
needed computation time and the activity factory without computing anything actually.
This decreases simulation time while still allowing for good estimates. When all cores
execute an algorithm, power consumption lies at 83 W and temperature at 55 ◦C. When all
cores are idling, power consumption lies at 26 W. These simulated values are comparable
to the actual values of the Opteron [AMD08].

We use eleven different frequencies (500 MHz–3000 MHz, encoded in four bits) and five
voltage levels (0.8 V–1.3 V, encoded in three bits). Temperature range is 50 ◦C–90 ◦C,
encoded in five bits. The action consisted of setting frequency and voltage. For this eval-
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