Evaluation of the Learning Classifier System XCS
for SoC run-time control *

Andreas Bernauer, Dirk Fritz, Wolfgang Rosenstiel
Wilhelm-Schickard-Institute of Computer Science,
Department of Computer Engineering
72076 Tiibingen, Sand 13, Germany
bernauver@informatik.uni-tuebingen.de

Abstract: In this paper, we evaluate the feasibility of using the learning classifier XCS
to control a System-on-Chip. Increasing number of transistors and process variation
make it difficult for a chip designer to foresee all possible run-time conditions. Post-
poning some decisions from design time to run time alleviates the designer’s life and
allows shorter time-to-market. In this paper, we evaluate if XCS can take these run-
time decisions on a processor with four cores. The evaluation shows that XCS can
find optimal operating points, even in changed environments or with changed reward
functions. This even works, though limited, without the genetic algorithm the XCS
uses internally. The results motivate us to continue the evaluation for more complex
setups.

1 Introduction

The number of System-on-Chip (SoC) designs is expected to increase strongly according
to the International Technology Roadmap for Semiconductors [EKRZ04]. Lower power
consumption, higher performance and simpler system integration are the major advantages
of SoC design in comparison with other design styles.

However, due to the continuing scaling of silicon technologies it is becoming increas-
ingly difficult for manufacturers to fulfill the expectations of their customers with re-
spect to the reliability of the products. In particular, changed electrical circuit properties,
the susceptibility to internal and external noises and accelerated aging pose great chal-
lenges [NX06, Bor05].

The decreased feature sizes also lead to an increased design complexity, as more and more
transistors fit on an individual chip. This makes it difficult for a designer to foresee all
possible operating conditions and failure modes of a chip. To alleviate the designer’s
life, we foresee some intelligence on an Autonomic System-on-Chip (ASoC) [LHRT05],
which takes at run time the decisions that the designer formerly took at design time. The
chip is getting aware of itself and gains organic properties such as the ability to react to

*This work is partially funded by Deutsche Forschungsgemeinschaft, Priority Program Organic Computing
(SPP 1183) under the grants HE 4584/3-2 and RO 1030/14-2.

763



unforeseen situations. In this paper, we present our first results on evaluating how the
learning classifier system XCS can be a candidate for this intelligence and control the
operating point of an ASoC. To the best of our knowledge, no attempt has yet been made
to use XCS to control a SoC.

This paper is organized as follows: Section 2 summarizes related work. Section 3 and
4 describe the models and the experimental setup, respectively. After the results, which
Section 5 presents, Section 6 concludes this paper and shows direction of future work.

2 Related work

Holland et al. [Hol76] first proposed the learning classifier system (LCS). A learning clas-
sifier system consists of a set of condition-action pairs (the classifiers) which are learned
and executed in an environment. The LCS is supposed to learn the necessary classifiers for
a specific environment to reach some preset goal. Wilson et al. [Wil95] presented a spe-
cialized version of an LCS, the XCS, for which studies showed [Kov97] that it learns ac-
curate, complete, and minimal representations for boolean functions. Butz [But99] wrote
an implementation of XCS in C, which we used as a reference implementation.

The only known application of learning classifier systems to control a machine is Au-
tonoMouse [Dor95], where an robot mouse learned to approach a light source under dif-
ferent noise and lesion conditions. To the best of our knowledge, XCS has not yet been
applied to control the state of a SoC.

3 Models

The optimal operating point of a SoC is mainly influenced by the run-time properties per-
formance, temperature, power consumption, and (soft) error rate. This section describes
the models from the literature we use to estimate these properties.

For the performance, we use the frequency as a (rough) estimate. Later setups will in-
clude more sophisticated performance measures. We get the temperature estimates from
Hotspot [SSHT03] based on our power estimates.

The power consumption consists of the static and dynamic power dissipation (Piotal =
P, + P;). For the static power dissipation P, we use the model of Butts et al. [BS00]
with P, = VppN kdesignfleak, with supply voltage Vpp, N transistors, and design and
technology dependent parameters Kqcsign and fleak (given in [BS00]). For the dynamic
power dissipation P, we add an activity factor « to the well-known model [WE93] as
done by Intel to estimate power dissipation in the Pentium M [GS03] P; = aC, VSD I
where (', is the lump capacitance, and f), is the clock frequency. The activity factor gives
an estimate on the average number of zero-to-one transitions during a clock cycle and can
be gained through logic simulation.

Defining an accurate model for timing errors is difficult, as the timing error depends on the

764



actual path the signal is taking. Therefore, we use a simple model where we assume a fixed
set of inverters between the two pipeline stages modeling either the longest or the average
path length. We model the average switching time of an inverter using the temperature
dependent model from [GKO03]:

¢ o (tdr + ttempdelay (T)) + (tdf + ttempdelay (T)) (1)
av — 9

tqr and t4r are the well-known raise and fall delays of a signal on an inverter [WE93]
(which depend on voltage) and ttempdelay models the influence of the temperature on the
time delay as shown in [GKO03].

We use the model of Zhu et al. [Zhu06] to model the effect of frequency and voltage

(1—f)d . .
scaling on fault rates with A\g10™~/min , where )\ is the average fault rate corresponding
to Vinax and fimax and d is a constant. The fault rate is used as a parameter in a Poisson
distribution describing the occurrences of faults.

As the mean time to failure due to hard errors is usually in the scale of several years, we
do not model the effect of hard errors.

4 Experimental setup

This section describes the hardware and software we are using for the evaluation of the
XCS, how we encode the environment and action of the XCS, and which tests we used for
evaluation.

We chose the AMD Opteron (Barcelona) processor as a multi-processor SoC (MPSoC)
hardware, which is a four-core general purpose processor produced on a single die. The
advantage of using the Opteron as an MPSoC is that most of the parameters which are
necessary for simulation are publicly available, and that the processor can adjust the fre-
quency of each core individually. Figure 1 shows the floor plan of the Opteron, as derived
from [AMDO08]. We adjust the activity factor of the cores so that we meet the thermal
design power and average CPU power. Each core is controlled by one XCS which runs on
dedicated hardware, so regular core operation is not interrupted.

We execute four algorithms on the hardware: LR-decomposition, video filtering, matrix
multiplication and a dual-process application where one process has to wait for the other.
We simulate the algorithms with traces, which only describe the memory access patterns,
needed computation time and the activity factory without computing anything actually.
This decreases simulation time while still allowing for good estimates. When all cores
execute an algorithm, power consumption lies at 83 W and temperature at 55 °C. When all
cores are idling, power consumption lies at 26 W. These simulated values are comparable
to the actual values of the Opteron [AMDOS].

We use eleven different frequencies (500 MHz-3000 MHz, encoded in four bits) and five
voltage levels (0.8 V-1.3'V, encoded in three bits). Temperature range is 50 °C-90°C,
encoded in five bits. The action consisted of setting frequency and voltage. For this eval-

765



3000 frequency —
| 15.45 | voltage

307, 44717

2500

2000

L2 | L2=

B
Lorel |athefachd  COTE3 |5

1500

L3-
tache

1000

16.6

frequency [MHz], voltage [mV]

EZ | s
Core? |cnekache CoOredl

0 10 20 30 40 50 60
time [sec]

Figure 2: Control reaction of the XCS after
setting a random frequency and voltage every
10sec.

Figure 1: Floorplan of the Opteron. Measure-
ments are given in mm.

uation, we treated frequency and voltage separately, although a more realistic simulation
would use only valid frequency-voltage pairs.

Given a trained XCS, we evaluated three scenarios: simple control, control under changed
environment, and online learning without genetic algorithm. In the simple-control sce-
nario, the XCS should find the optimal operating point under training conditions. In the
changed-environment scenario, the XCS should find the optimal operation point although
we change the environment and the reward function from their settings during training. In
the online learning scenario we evaluate whether the XCS can learn a new reward function
without its genetic algorithm, as on a SoC the genetic algorithm usually won’t be available.
All scenarios are modeled as single-step problems of the XCS, as for a multi-step problem
the optimal operating point generally has to be known in advance (to signal the end of the
problem to the XCS and distribute the reward) [BWOI].

We train the XCS on a single core with an activity factor (see Section 3) of 0.05 without
simulating cache access. The other cores are idling at 2000 MHz at 1.2 V. This setup
allows a significantly smaller simulation time than running the algorithms. We did 50 000
repetitions, until all possible frequency-voltage pairs are tested sufficiently often. Between
the runs, temperature is raised randomly by 5 K, 10K, 20K, or 30 K from default. For the
online-learning scenario, we used 3 = 1.0 to reduce the time needed for learning.

Reward functions The reward function should reflect that the XCS should maximize
performance and minimize power consumption, while keeping the error rate low. This
resulted in the following reward function for the training phase and the simple-control
scenario:

R(F.pyt0) = w1 =2 + w, (1 _p ) T wyrel(t, v, f) @)

max pmax

rel(t, v, f) models the reliability and is 0 in case of an error and 1 otherwise. We choose
wy; = 200, we = 35, and ws = 200. Figure 3 shows the fault count depending on

766



fault (x,y) —

temperature
in °C

5073 g

Figure 3: Timing errors dependency on temperature and voltage at 2000 MHz.

temperature and voltage at 2000 MHz. We can see, that [2000 MHz, 1.2 V] is a safe setting
in terms of faults at a usual temperature range (up to 70 °C).

In the scenario with changed environment, we raised temperature by 15K. Also, we
changed the rel(t, v, f) function in (2) to

0 if timing error
rel(t,v, f) = ¢ (2)* ift > 70 3)
1 otherwise

and changed the weights to w; = 200, wy = 35, and w3 = 200 if temperature was below
70°C and w; = 100, we = 100, and w3 = 200 if temperature was above 70 °C. This
represents an emergency behavior which allows the XCS to use a less performing setting
and shows how the designer’s prior knowledge may enter the XCS control mechanism.

In the scenario with the genetic algorithm disabled, we change the goal of the reward
function to also minimize the waiting time between two processes:

R(f,p,t,v,w) = witime(w) + woy (1 — ) + warel(t,v, f) 4

pmax

Here, rel(t,v, f) is the same as in (3) and

. 1 — —*— if the waiting time of Core 1=0
time(w) = Wmox _
0 otherwise

767



o
=3

temperature — 3000 frequency == |
voltage —

3
o

5
g
70
@ 2500
o
_ 0 2
o -
g o
=50 3 2000
o
e N
.E 10 v
H & 1500
2 30 =
£ N i
» n f1
* g VAVAVAVEY,
\ \
émuo Uuuyuu:y
10 @
H
o w
i i i i i 500
0 10 20 30 40 50 60 70 10 20 30 40 50 60 70
time [sec] time [sec]

Figure 4: XCS’s behavior to a temperature raise of 15K at¢ = 15s.

5 Results

After training, we let XCS control an MPSoC running an algorithm on each core. Each
XCS contained about 600 rules, which would require about 8 kB (104 bit per rule including
84 bit solely for rule parameters such as fitness, etc.) if we implemented it unmodified on
the SoC. We inhibit exploration and the genetic algorithm to avoid creating new classifiers
and to simulate the situation of the XCS on a SoC. In the simple-control scenario, every
10 s of simulation time a random frequency and voltage was set. Figure 2 shows the
resulting frequency and voltage settings. We observe that the XCS resets the frequency
and voltage to 2000 MHz and 1.2V which leads to no errors in the actual temperature
range (see Figure 3) and is the optimal setting.

Figure 4 shows the result for the changed-environment scenario. We observe that once
the temperature raises above 70 °C, XCS changes the frequency and voltage such that
temperature falls again and timing errors stay low. However, we also observe an oscillat-
ing behavior, as the XCS “forgets” that the previously chosen setting makes the system
temperature raise above limits. This will be a point of future research.

For the online learning scenario, Figure 5 shows the frequency-voltage pairs the XCS tries
out to learn the following new reward function, which aims to minimize the waiting time
w of Core 2 for Core 1 (and thus keep total run time low). We observe that, despite the
high learning rate, the XCS needs a long time to learn the new reward function. However,
and most importantly, we also observe the XCS is able to self-adapt to the new reward
function.

6 Conclusion and future work

This paper showed our first evaluation of the learning classifier system XCS to control
a SoC. The results show that XCS can control the operating point of a SoC, even under
changed environmental conditions. We also showed that the XCS can learn new reward

768



3000} ++ o - SSSPRRSSES; {SSSUS S ——— frequency ; 1400 ! T ! ! vbltage ]

D00 [-rerss st 5 San B S e s B s

2500 L1200 foe + o+ are b A -

1100 | Pl e e e e

N
o
S
o

,,
@
s
=)
voltage [mV]
5
a
o

900 B e RS

frequency [MHz]

1000

] 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
time [sec] time [sec]

Figure 5: XCS learning a different reward function with disabled genetic algorithm and using initial
classifiers. Each point represents a frequency or voltage setting the XCS tries out. After about 2200
sec. this exploration mode is turned off, forcing the XCS to always choose the action with the highest
prediction.

functions without a functioning genetic algorithm, as it will be the case, once XCS is
implemented on an ASoC. The results encourage us to further investigate the capabilities
of XCS.

Future work on evaluating the XCS will include the evaluation of realistic applications, for
example communicating applications or shared memory usage, a better measurement for
performance, and choosing only from a fixed set of frequency-voltage pairs. Furthermore,
we will investigate ways to reduce the necessary memory footprint to store the XCS on
the SoC, for example by not storing all rule parameters and dropping low-accurate rules.
We will also investigate how we can prevent the oscillating behavior of the XCS we ob-
served when we raised the temperature of the environment and how further actions such
as changing bus width or turning off processors affect the performance of the XCS.

Acknowledgments

We thank Johannes Zeppenfeld for his support in developing and coding large parts of
libasoc (the ASoC simulation library written in SystemC), with which the simulation
model has been described.

References

[AMD08] AMD. AMD Opteron Processor Family. http://www.amd.com/us-en/
Processors/ProductInformation/0,, 30_118_8825, 00.html, 2008.

[Bor05] Shekhar Borkar. Designing Reliable Systems From Unreliable Components: The Chal-
lenges of Transistor Variability and Degradation. IEEE Micro, 25(6):10-16, Novem-

769



[BS00]

[But99]

[BWO1]

[Dor95]
[EKRZ04]

[GKO3]

[GS03]

[Hol76]

[Kov97]

[LHR'05]

[NX06]

[SSHT03]

[WE93]
[Wil95]

[Zhu06]

ber/December 2005.

J. Adam Butts and Gurindar S. Sohi. A static power model for architects. In MICRO
33: Proceedings of the 33rd annual ACM/IEEE international symposium on Microar-
chitecture, pages 191 =201, New York, NY, USA, 2000. ACM.

Martin V. Butz. An Implementation of the XCS classifier system in C. Technical Report
99021, The Illinois Genetic Algorithms Laboratory, 1999.

Martin Butz and Stewart W. Wilson. An Algorithmic Description of XCS. In Pier Luca
Lanzi, Wolfgang Stolzmann, and Stewart W. Wilson, editors, IWLCS ’00: Revised Pa-
pers from the Third International Workshop on Advances in Learning Classifier Systems,
number 2321 in Lecture Notes in Artificial Intelligence, pages 253-272, London, UK,
2001. Springer-Verlag.

Marco Dorigo. ALECSYS and the AutonoMouse: Learning to Control a Real Robot by
Distributed Classifier Systems. Machine Learning, 19(3):209-240, 1995.

Don Edenfeld, Andrew B. Kahng, Mike Rodgers, and Yervant Zorian. 2003 Technology
Roadmap for Semiconductors. Computer, 37(1):47-56, 2004.

A. Golda and A. Kos. Temperature Influence on Power Consumption and Time Delay.
In Proc. Euromicro Symposium on Digital Systems Design, page 378. IEEE Computer
Society, 2003.

Dani Genossar and Nachum Shamir. Intel®) Pentium@®) M Processor Power Estimation,
Budgeting, Optimization, and Validation. Intel Technology Journal, 7(2):44-49, May
2003.

John H. Holland. Adaptation. In R. Rosen and F. M. Snell, editors, Progress in theoret-
ical biology, pages 263-293, New York, 1976. Academic Press.

Tim Kovacs. XCS Classifier System Reliably Evolves Accurate, Complete, and Mini-
mal Representations for Boolean Functions. In Roy, Chawdhry, and Pant, editors, Soft
Computing in Engineering Design and Manufacturing, pages 59-68. Springer-Verlag,
London, 1997.

Gabriel Lipsa, Andreas Herkersdorf, Wolfgang Rosenstiel, Oliver Bringmann, and Wal-
ter Stechele. Towards a Framework and a Design Methodology for Autonomic SoC.
In 2nd IEEE International Conference on Autonomic Computing, Seattle, USA, June
13-16 2005.

Vijaykrishnan Narayanan and Yuan Xie. Reliability Concerns in Embedded System
Designs. Computer, 39(1):118-120, 2006.

Kevin Skadron, Mircea R. Stan, Wei Huang, Sivakumar Velusamy, Karthik Sankara-
narayanan, and David Tarjan. Temperature-aware microarchitecture. SIGARCH Com-
put. Archit. News, 31(2):2-13, 2003.

N. Weste and K. Eshraghian. Principles of CMOS VLSI Design: A Systems Perspective.
Addison-Wesley, 2nd edition, 1993.

Stewart W. Wilson. Classifier Fitness Based on Accuracy. Evolutionary Computation,
3(2):149-175, 1995.

Dakai Zhu. Reliability-Aware Dynamic Energy Management in Dependable Embedded
Real-Time Systems. In [2th IEEE Real-Time and Embedded Technology and Appli-
cations Symposium (RTAS’06), pages 397-407, Los Alamitos, CA, USA, 2006. IEEE
Computer Society.

770





