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Abstract: We specify a system for authentication and key derivation using genetic
fingerprints which prevents the recovery of biometric information from data stored
for verification. We present a detailed security analysis based on estimates of the
entropy of the DNA data and formal security results. The scheme is shown to be
robust and efficient by analysing the typical frequency and structure of errors in DNA
measurements and selecting appropriate error correcting codes. As a result we obtain
an authentication system that offers a security level equivalent to cryptographic keys
with 73 bits and a FRR well below 1%.

1 Introduction

Biometric authentication systems face various risks. In [12], Jain, Nandakumar and Nagar
provide a systematic and thorough analysis of the vulnerabilities due to intrinsic failures
and potential attacks by adversaries. One of the most serious threats is compromising
of the templates database. An attacker with access to a reference template could try to
impersonate a legitimate user by reconstructing the biometric trait and by creating a phys-
ical spoof [1, 4, 9]. Therefore, compromising the database can have disastrous impact on
the whole authentication system. Furthermore, the potential disclosure of digitally stored
biometric data raises serious concerns about privacy and data protection [10]. However,
the effectiveness of access control mechanisms is inherently limited, e.g. against internal
attacks or in the presence of software vulnerabilities.

The inherent fuzziness of biometric measurements rules out a simple verification of the
presented template against a reference value computed with a one-way hash function,
as is common for password-based authentications. In order to overcome these limita-
tions, several schemes have been proposed which deploy error correcting codes to provide
error-tolerant biometric authentication while, at the same time, preventing the recovery
of biometric information from the reference data stored for verification by cryptographic
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techniques. These properties minimise the risk of unauthorised access to biometric tem-
plates and thereby render biometric authentication more secure and privacy friendly. Most
of the schemes also use the biometric data to conceal or derive a cryptographic key! and
are therefore also referred to as biometric cryptosystem or biometric encryption.

However, even if the stored reference data have been hashed with a one-way function,
they enable an attacker to launch an exhaustive search by systematically executing the
verification algorithm on a large set of candidate templates. In order to render such an
approach infeasible, the biometric templates must contain sufficient entropy. Furthermore,
the template must have enough entropy to ensure the secrecy and unpredictability of the
concealed or derived cryptographic key.

After a detailed discussion of these aspects, Plaga [16] concluded that single conventional
biometric features that are nowadays in common use do not offer the amount of entropy
required for biometric cryptosystems. On the other hand, the human DNA represents a po-
tential biometric feature which contains several megabyte of discriminatory information
and hence could leverage the implementation of a secure biometric cryptosystem. There-
fore, we decided to base our design on DNA data. Although genetic fingerprints do not
allow real-time authentication with current technology, there are many other application
scenarios where such a system could be useful. In fact, identification by genetic finger-
prints is already routinely deployed for forensic and criminalistic purposes.

Our system is based on a scheme of Juels and Wattenberg [14]. By generalizing their secu-
rity analysis to the case of a non-uniform distribution of the templates, we will show that
the reference data stored for verification does not reveal the template. Furthermore, we will
show that our system is reliable and secure against potential masquerades by estimating
the false rejection rate and the false acceptance rate.

2 Previous Work

Many proposals have been made for biometric authentication in which the need to store
templates for verification has been eliminated by combining error correction techniques
and cryptographic methods.

In [14], Juels and Wattenberg published a fuzzy commitment scheme which can be used
as a basis for biometric cryptosystems. Their construction was based on the Hamming
metric (as shown in [6], it is even optimal for that metric) and is thus appropriate for any
biometrics where the impact of measurement errors on the template is regional. Juels
and Wattenberg provided a strict security analysis only for the case that the biometric
templates are uniformly distributed, but in section 3.2 we will generalise their result to
arbitrary distributions. Our authentication system is based on their construction.

A different approach has been taken by Juels and Sudan in [13]. Their construction was
based on secret sharing techniques, making it tolerant against any reordering as well as
limited deletions and insertions of the substrings defining the template. This property

! Accordingly, in [12] the schemes are classified as key binding or key generation systems.
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makes the scheme particularly interesting for biometric features like fingerprints or iris
scans where such errors are commonly induced by the measurement. In [6] Dodis, Reyzin
and Smith proposed an optimisation of the scheme of Juels and Sudan and provided a
stringent security analysis of both the original scheme and the optimisation. Furthermore,
a general model for biometric authentication with key derivation was defined that covers
many of the published biometric cryptosystems.

In [5] and [8], specific systems were proposed for iris scans. The construction of [8] was
based on the scheme of Juels and Wattenberg and also addresses general limitations of
biometric key derivation (in particular the irrevocability and limited secrecy of biometric
information) by introducing hardware tokens as a third authentication factor. Both pub-
lications estimated the security of the scheme based on estimates of the entropy of iris
codes. However, the analysis of the entropy achievable with current biometric measure-
ment techniques carried out in [16] indicated that the estimates of [5] and [8] were far too
optimistic.

Bohannon et al. ([2]) addressed various cryptographic approaches to privacy of forensic
DNA databases and provided a “solution framework” for this problem, strongly related to
the present one. In particular, we will design and analyze the biological and cryptographic
features of one of their suggested solutions in detail.

In [11], Itakura et al. discuss the applicability of DNA data for identification systems. They
empirically verify that the genotypes at different loci are uncorrelated and give estimates
for matching probabilites between distinct persons. Finally, they specify a cryptosystem
using keys constructed from the genetic fingerprints. However, they neglect correlations
between the maternal and the paternal part of the DNA (see section 4.3.2 for a discussion)
and do not consider potential measurement errors and error correction.

3 General Cryptographic Scheme

This section reviews how a biometric template f is cryptographically protected in the
scheme of Juels and Wattenberg (subsection 3.1) and then quantifies its security in general
(subsection 3.2).

3.1 The Scheme of Juels and Wattenberg

In [14], Juels and Wattenberg proposed a very simple biometric encryption scheme based
on any binary (not necessarily linear) error correcting code. In the following, we will
consider the generalisation of the scheme to symbol based codes, i.e. codes over arbitrary
finite fields. The elements of the finite field are referred to as symbols.

Let ¥ C F; be an [n,k, 2t + 1] error correcting code with encoding function G : F; — €,
where F, denotes the finite field with g elements. The encoding function transforms mes-
sages consisting of k symbols into n symbol code words (n > k), that can be retransformed
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into the messages even if up to ¢ symbols of the received codeword are corrupted by errors.

During enrolment, a secret key s € F,;‘ is randomly selected and
y=G(s)—f 4

is stored in the database. Here f is the biometric template that is obtained during enrol-
ment. Furthermore, the secret key s is hashed with a cryptographic hash function 4 and
h(s) is stored in a database. For authentication, the template f presented by a user is added
to the value y stored in the database. The result is G(s) 4 f — f and if the hamming distance
between f and f is at most ¢, G(s) and hence s can be recovered. If the hash value of the
recovered s matches the one stored in the database, the user is authenticated.

3.2 Security Analysis

For our security analysis we make use of the following notations. Let Pr(X) denote the
probability of an event X and let E,._4 [f(a)] be the expectation of the function value of a
random variable A. The min-entropy of a random variable A is given by

H.(A) := —log,(max(Pr(A = a))),
a
and the average min-entropy of A given B is defined as

H..(A|B) = —log, (E,,HB [2*H°°<A|B:”>D — _log, (EH {mjlx (Pr(A=a|B= b))D

We use the term B reveals u bits of A to indicate that u = Ho.(A) — He (A| B).

Now let S, F and Y denote the random variables for s, f and y, respectively. The dis-
tribution F of the templates refers to any fixed population and can be arbitrary, i.e. we
do not assume a uniform distribution of the templates. S is uniformly distributed and the
distribution of Y is induced by those of S and F.

We assume that the hash value /(s) does not reveal any information about the secret key s.
Consequently, we restrict our analysis to attackers who, in order to compute the template
f or the secret key s of a user, take as input only the corresponding value y defined by
equation (1). The following result limits the success probability of such attackers.

Theorem 1. Any algorithm that takes as input a random output y of the scheme and tries
to output the corresponding s has at most an average success probability of 2~ Ho(S|Y),
Any algorithm that takes as input a random output y of the scheme and tries to output the
corresponding f has at most an average success probability of 2~ Ha(F|Y),

For fixed y the probability that the output of the algorithm equals the secret key is at most
max, (Pr(S =s|¥Y =y)) = 2~ H=(SIY=)) Taking expectations on both sides yields the first
statement. The second statement follows analogously.

The following result shows that it is equally difficult to determine s from y as it is to
determine f from y.
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Lemma 2. H..(S|Y) = H.(F|Y).

For fixed y, the key s is uniquely determined by f and vice versa. Therefore, for a
given y the most likely s corresponds to a unique, and hence equally likely f, and thus
max, (Pr(S=s|Y =y)) = maxy (Pr(F = f|Y =y)). Taking expectations over y on both
sides yields the claim.

We now turn to the security of the authentication. For biometric authentications this is usu-
ally measured by the False Acceptance Rate (FAR), which can theoretically be modelled as
the probability that unauthorised persons are accepted as authorised, i.e. are authenticated
as a legitimate user. The probability is taken over a random choice of the enrolled users
and the impostor from the considered population.

For the following result, we assume that the hash function maps all s € F(f to distinct hash
values, and consequently, that the authentication is only successful if the correct secret key
is recovered.’

Theorem 3. The FAR, i.e. the probability that a random impostor is accepted as one of m

randomly selected users, is limited by m2~H=(FIY),

For fixed y let R, (f) be the unique secret key s that is recovered during authentication from
template f, e.g. the unique s with [y + f — G(s)| < .3 In case there is no such s, i.e. if the
distance of y+ f to the next code word is greater than ¢, let Ry(f) = 0.

By assumption, an impostor is authenticated as a user U; enrolled with (f;,s;,y;), if and
only if his own template f satisfies Ry, (f) = s;. Thus, for given y; the probability that a
random impostor is accepted as user U; is given by Pr(S =Ry, (f)|Y =y;), which is at
most 2~ H=(S1Y=Yi) - Consequently, for a given set of users Uy, ...,U, the probability that
a random impostor is accepted as one of the users is limited by Y7, 2~ H=(S1Y=yi)  Now,
the result is obtained by taking expectations over the y; (i.e. over the random selection and
enrollment of the users) and applying Lemma 2.

Our analysis has shown that the security of the scheme can be measured by ﬁm(F |Y),
which can be determined from the entropy of the template and the number of bits of f
revealed by y. In section 4.3 we will estimate the entropy of templates derived from genetic
fingerprints. Subsequently, we will analyse the number of bits of f revealed by y.

In [14], Juels and Wattenberg show that if the templates are uniformly distributed in F,",
y reveals only n — k bits of information about f and no information about s. However,
biometric templates are usually not uniformly distributed. In section 5.3 of [14] Juels and
Wattenberg argue that “a good security analysis” of the scheme for a non-uniform distribu-
tion & “will, in general, require detailed knowledge of 2”. Fortunately, this presumption
is not true: The following theorem generalises the result of Juels and Wattenberg by giving

2This assumption can be justified by selecting a hash function with an output length considerably greater than
the bit length of the secret keys.

3The uniqueness follows from the precondition that G is the encoding function of a [, k, 2z + 1] error correct-
ing code.
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an upper bound for the number of bits of s revealed by y for arbitrary distributions of the
templates.*

We consider the generalised scheme over an arbitrary finite field F,. The result for the
original scheme is implied by the case g = 2.

Theorem 4. For any distribution F of the templates, at most (n — k)log, q bits of f are
revealed by y, i.e. Hw (F |Y) > Hoo(F) + (k—n)log, g.

By definition, we have

27 H=G1Y) = Y pr(y = y)- max (Pr(S=s|Y = y)). @)
yEFq” $

Using Bayes’ theorem and equation (1) we obtain

Pr(Y =y)-Pr(S=s|Y =y) Pr(Y =y|S=s) -Pr(S=5)
g *Pr(Y =y|S=5)

g *Pr(F =G(s)—y|S=5s). 3)

The distributions of F' and S are statistically independent. Therefore, we can omit the
condition § = s on the right hand side of equation (3). Consequently, we get

max (Pr(Y =y)-Pr(S=s[¥ =y)) = ¢ “max(Pr(F = G(s) ~))
< g *max (Pr(F =z))
— qfk 27H°°(F>. 4)

Equations (2) and (4) yield 2~ H=(S1V) < Yyerrq * 2 HeelF) — =k ~He(F) “and with The-
orem 2 we obtain the desired result.

4 DNA as Biometric Feature

In this section, we summarise some basic properties of short tandem repeats (subsection
4.1), analyse the reliability of their measurement (subsection 4.2) and estimate the infor-
mation content of the resulting data (subsection 4.3).

4.1 Short Tandem Repeats

The most common DNA variations used for the identification of individuals, in particu-
lar in forensic applications, are Short Tandem Repeats (STR) — arrays of 5 to 50 copies

“In [6], a much weaker result has ben shown for a variant of the scheme.
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(repeats) of the same pattern (the motif) of 2 to 6 base pairs. Two properties make STR
particularly eligible for identification purposes:

e The number of repeats of the motif is highly variable among individuals, even in
small populations.

e Forensic STR are typically located in the non-coding regions of the DNA and (at the
time of writing) no biological functions of these STR loci are known.>

The human genome contains several 100,000 STR loci, i.e. physical positions in the DNA
sequence where an STR is present. Today, approximately 20 STR loci are in practical
forensic use.® and some more can be considered as candidates. In order to optimise their
suitability for forensic applications these loci have been selected to maximise the variabil-
ity of the genotype and to minimise the likelihood of any association between the genotype
and a biological function, or between the genotypes of different loci.

As with any other DNA polymorphism, an individual variant of an STR is called allele.
Alleles are denoted by the number of repeats of the motif. In some cases, one or more mo-
tifs may not be complete within the STR, in which case the allele is denoted by a decimal
number, where the digit after the decimal point equals the number of base pairs modulo
the length of a complete repeat. For instance, if the motif is AGT the allele AGTGTAGT is
denoted as 2.2.

The genotype of a locus comprises both the maternal and the paternal allele. If these
two alleles are identical the genotype is called homozygous, and if they are different it
is called heterozygous. However, without additional information, one cannot determine
which allele resides on the paternal or the maternal chromosome, i.e. allele combinations
(A,B) and (B,A) are indistinguishable. Therefore, genotypes are denoted by the allele
numbers in ascending order, i.e. as (A,B) with A < B.” The range of possible genotypes
differs from one STR locus to another. Typically, there are 10-20 different alleles known
per locus. However, these alleles are not of equal frequency in a given population. In
section 4.3 we give estimations of the entropy per locus.

For a given set of loci, the combined genotypes at these loci are called an STR profile. If
the set of loci is large enough to allow reliable distinction between individuals, the profile
is also referred to as a genetic fingerprint.

The measurement of an STR profile is conducted by specialized laboratories using com-
mercially available STR kits. The details of this procedure are described in [3], p. 313
onward. At the time of writing, an STR profile can be determined in approximately 4
hours. Since this time is sufficient for typical forensic applications, manufacturers of STR
kits have presumably made only limited efforts for further optimization.

SHowever, correlations between STR genotype and ethnical, regional or familial affiliation exist.

50f these, 13 are the CODIS (Combined DNA Index System) core loci, which are the basis of the forensic
system used by the FBI.

7 A homozygous genotype is sometimes denoted by the single allele, i.e. as (A).
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4.2 Reliability of STR measurements

Like any measurement, DNA analysis is not free of errors. For details on typical sources
for errors in STR measurements we refer to [7].

STR measurement errors are commonly classified into three groups:

1. Allelic drop-outs. An allele of a heterozygous genotype is missing, e.g. genotype
(7,9) is measured as (7,7).

2. Allelic drop-in. In a homozygous genotype, an additional allele is erroneously in-
cluded, e.g. genotype (10, 10) is measured as (10,12).

3. Allelic shift. An allele is measured with a wrong repeat number, e.g. genotype
(10,12) is measured as (10, 12.2).

The German DNA Profiling Group (GEDNAP) regularly performes ring experiments to
assess the quality of laboratories performing forensic STR analysis. A central laboratory
prepares several sets of identical samples. These samples are sent to all participating
laboratories, who send back their results for all or a subset of samples at their discretion.
The organising laboratory verifies the correctness of the results by comparison to their
own, carefully conducted measurements. We refer to [17] for details.

In 2005, GEDNAP 30 and 31 were conducted with more than 175 laboratories, reporting
approximately 19,000 measurements. An analysis of the (anonymised) data provided to us
by GEDNAP showed that few laboratories account for most of the errors, whereas the vast
majority of the laboratories have low error rates.® Assuming a minimum quality standard
for biometric measurements, we evaluated the error rates with the results of the four worst
laboratories disregarded. Table 1 summarises the results for each type of error.” For allelic
shifts we distinguished between homozygous and heterozygous genotypes; this distinction
is useful for the selection of an eligible encoding of the template (see section 5.1).

Table 1: Errors reported in GEDNAP 30 and 31

Type of Error Number | Frequency
Allelic drop-ins 7 0.04%
Allelic drop-outs 8 0.04%
Allelic shifts (het.) 19 0.10%
Allelic shifts (hom.) 2 0.01%

The results in Table 1 show that error rates below 0.2% are achieved when a minimum
quality standard for the laboratory is assumed. Furthermore, none of the good laboratories
measured more than one locus incorrectly, which indicates that measurement errors occur
independently for different loci.

8GEDNAP members explain the bad performance of some laboratories by their poor equipment and the lack
of proper quality management.

9The classification of errors is not always unambiguous. However, the error rates based on different interpre-
tations differ only marginally.
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4.3 Entropy of STR Data

As shown in section 3.2, the security of the authentication depends on the entropy of the
templates. We now estimate the entropy of an STR profile based on the 28 loci which
include all loci used in the GEDNAP 30 and 31 ring experiments ([17]).

4.3.1 Assumed Probability Distribution

The entropy of a biometric template is generally limited by the size of the population from
which the enrolled individuals are chosen. For instance, for the German population the
entropy could not exceed log,(8 - 107) a2 26. In terms of security, this bound corresponds
to a brute force attack that exhaustively searches through the STR profiles of all individuals
within the population. For sufficiently large populations however, a comprehensive list
of templates is usually not available and consequently, a brute force attack on a large
scale biometric application has to be based on a much wider search space. In particular,
the relevant search space and probability distribution of the templates is implied by the
statistical data available on biometric sub-features. In other words, we must consider
the distribution of STR profiles that can be extrapolated from statistical data under the
assumption that the population is infinite.'?

As pointed out by Bohannon et. al. [2], an analysis based on this idealised probability
distribution may not be adequate in the presence of a large scale (e.g. nation wide) DNA
database. Furthermore, the potential search space for attackers being related by blood to
enrolled users is considerably smaller.

4.3.2 Entropy of a single locus

The probability of the occurrence of an allele in a given population is estimated from the
corresponding allele frequency, as observed in scientific experiments. For many popula-
tions, allele frequencies are readily available from the literature.

In order to estimate the genotype probabilities for a given locus from individual allele
probabilities, we assume that the population in question is in so-called Hardy-Weinberg
equilibrium. This assumption is fulfilled if the population is sufficiently large and panmic-
tic, i.e. the mating behaviour is random, and if there is no migration or selection (see [3],
p. 484, or [15], p. 65-67). While the assumption of the Hardy-Weinberg equilibrium is
clearly an idealisation, it is widely accepted as a method to obtain good approximations
for DNA profile distributions for the large populations of industrialised countries.

If a population is in Hardy-Weinberg equilibrium, the frequency of the homozygous geno-
type (A,A) is Py2, and the frequency of the heterozygous genotype (A, B) is 2P4 Pg, where
P4 and Pp are the frequencies of alleles A and B, respectively. We refer to [3] or [15] for

10This approach is also used for assessing the assurance of evidences based on genetic fingerprints, e.g. in
court cases.
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details. Thus, the min-entropy of the genotype G at a locus is given by

H..(G) = —log, (max (mjx(PAz),nX%xQPAPB))) .

9

4.3.3 Entropy of a Set of Loci

The frequencies of the compound genotypes at all loci used in a profile can be calculated
from the genotype frequencies of the individual loci under the assumption that the geno-
type distributions of distinct loci are statistically independent. In this case, the frequency
of a compound genotype is the product of the genotype frequencies at the individual loci
(multiplication rule) and, consequently, the entropy of an STR profile P is the sum of the
entropies of the contributing single loci genotypes G;. Consequently, we obtain

H..(P) :;Hoo(Gl),

where indices [ in the sums refer to the contributing loci.

The assumption of statistical independence of the genotype frequencies at different loci is
an idealisation, the applicability of which depends on a sufficiently high level of homo-
geneity of the relevant population, and on an appropriate choice of the loci. The assump-
tion of sufficient homogeneity is widely considered valid for populations of large western
countries (see [15], pp. 78 for a discussion). The second condition is fulfilled for the
loci commonly used in forensics because a main objective for their establishment was the
minimisation of potential dependencies.

4.3.4 Experimental Estimation of the Entropy

In [7], we have estimated the entropy for the 18 loci used by GEDNAP 30 and 31 and
10 additional loci, for which sufficient statistical data is available. In order to match the
population distribution in a potential application we have based these estimations on al-
lele frequency data from German and Austrian populations, respectively, which have been
obtained from a database of the Institute of Forensic Medicine at the University of Diissel-
dorf!'. Our estimations yield a min-entropy of 85 for an STR profile based on these 28
loci.

5 “BioKey-STR”: An Authentication System Based on STR Data

We specify a biometric encryption scheme based on the scheme of Jules and Wattenberg
(section 3.1) using templates obtained from Short Tandem Repeats (STR) in human DNA
and analyse its properties on the basis of our previous results. Justifications for our design
decisions are given in [7].

"www.uni-duesseldorf.de/WWW/MedFak/Serology/dna.html
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5.1 Encoding and Error Correction

We construct the templates from STR profiles comprising the 28 loci for which we have
estimated the entropy (section 4.3.4). In order to minimise the impact of typical measure-
ment errors in DNA fingerprinting as analysed in section 4.2, we choose the following
encoding:

e Each allele is uniquely encoded with 6 bits.!”> The actual coding of alleles into
integers can be done by any numbering of the known alleles.

e A genotype (A,B) is encoded by al||b, where a and b are the encodings of A and
B, respectively, and || denotes concatenation. In particular, a homozygous genotype
(A,A) is encoded as al|a.

e The encodings of the 28 loci are concatenated using a fixed order of the loci.

With 28 loci and 12 bits per locus, we obtain templates with 336 bits.

For the error correction we decided in favour of a [56, 54, 2]-Reed-Solomon over Fy6
which encodes words with 54 symbols of 6 bits each, introduces 2 symbols (i.e. 12 bits)
redundancy and can correct one symbol error.

5.2 Security

As stated in section 4.3.4, the min-entropy of our templates is approximately 85.!> From
section 3.2 we know that the scheme of Juels and Wattenberg leaks at most (n — k) log, ¢
bits on the biometric template f and n — Hw(F) bits of information on the secret key s.
Using Theorem 4 and ¢ = 64, n = 56 and k = 54 (section 5.1) we can estimate Ho.(F |Y) >
73. As has been shown in Theorem 1 and Lemma 2 this implies that an attacker who tries
to determine the secret key s or the template f from the reference data y has at most a
success probability of 2773, Using Theorem 3, we obtain FAR < m2~ 73, where m is the
number of enrolled individuals.

5.3 False Rejection Rate (FRR)

Our determination of the FRR is based on the error rates of STR measurements as deter-
mined empirically in section 4.2. Since this database is rather small, we can only obtain
a rough estimate for the FRR.!* As suggested by the results of the GEDNAP ring experi-
ments, we assume that measurement errors occur independently for different loci.

12For the 28 loci considered in section 4.3 the cardinality of the domains of allele numbers is limited by 64.

13As pointed out in section 4.3.1, this estimation is based on an idealized approach which neglects blood
relationships among potential users and attackers.

14 As the FRR is not a measure of security but only of user comfort, this situation is still satisfactory.
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In our setting, the BioKey system can correct up to one symbol error. With our basic
encoding (see section 5.1) most measurement errors only result in one wrong symbol (sin-
gle error); the only exception is an allelic shift in the measurement of a homozygous
genotype which results in two wrong symbols (double error). Therefore, we can estimate
FRR = pq + ps, where pq is the probability that at least one double error occurs in 28 in-
dependent measurements and pj is the probability that more than one single error occurs.

From Table 1 we can infer that double errors only occurred twice in approximately 19,000
experiments and hence we estimate pg ~ 28 -2/19,000 ~ 0.003. On the other hand, ps =
1—(1—p)*® —28p(1— p)?’, where p is the probability of a single error in a single locus
measurement. From Table 1 we conclude that p ~ 34/19,000 for good laboratories. This
yields ps = 0,001 and hence FRR =~ 0.4%.

6 Summary and Conclusion

In this paper, we have examined the feasibilty of a biometric authentication system based
on genetic fingerprints that does not store genetic data in clear. The system allows the
authentication of users, based on information encoded in their genome, and prevents a
disclosure of the biometric information from the reference data stored in databases.

Our system is based on the biometric cryptosystem of Juels and Wattenberg. We have
been able to generalize the security analysis of this scheme to the case of non-uniformly
distributed templates, and to prove an upper bound of the FAR.

Our system uses a genetic fingerprint template obtained from short tandem repeats (STRs)
on 28 loci in the DNA with an entropy of about 85 bits. The error rate of the measurement
of the genetic information has been determined experimentally using the data of existing
quality experiments for genetic labs. Error correcting codes have been applied to effec-
tively reduce the false rejection rate to the low value of 0.4%. It has been found that
approximately 70 bits of discriminatory information can be extracted using this method.
This amount of information makes an exhaustive search through the template space infea-
sible and provides a very low FAR. By adding more suitable loci the security of the system
could even be increased.

Further research activities, as for example regarding performance aspects and the unpre-
dictability of allele combinations, are necessary and actually performed by the forensic
community. Furthermore, an analysis of potential threats arising from correlations of tem-
plates among relatives could be useful.

Comparing our results with previous publications concerning schemes based on other bio-
metric information like iris images, fingerprints, etc., our proposed system shows a signif-
icant improvement of the security due to the higher entropy of the DNA data compared to
the limited information content of other biometric features.
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