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Post-Quantum Software Updates

A case study on Code Signing with Hash-based Signatures

Stefan-Lukas Gazdag! Markus Friedl! Daniel Loebenberger”

Abstract: Due to the progress in building quantum computers and the risk of attacks on cryptographic
primitives based on quantum algorithms emerging, the development and analysis, but also the
deployment of resistant schemes is an important research area. Hash-based signatures are a very
promising candidate since they have been analyzed and improved for years. Nevertheless, there are
some peculiarities that need consideration when using hash-based signatures in practice, for example
the statefulness of some of the primitives. Fortunately, by now more and more experience is gained
in real-world scenarios. In this paper we detail the troubles we encountered when using hash-based
signatures in practice and study the most important use case for hash-based signatures: software or
code signing.
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1 Introduction

With the threat of quantum computing and its effect on today’s cryptographic solutions
arising, more and more companies and agencies are looking for alternatives to secure our
current infrastructure. Well known schemes like RSA or the signature schemes DSA and
its elliptic curve based equivalent ECDSA couldn’t provide confidentiality, integrity nor
authenticity when scalable quantum computer exist. For a survey on this topic see e. g.
[BL17].

In the need for long-term security the transition to post-quantum schemes seems inevitable.
Efforts have been made not only by the post-quantum cryptography community contributing
and committing different schemes and providing security analyses but also by governmental
and standardization agencies: In February 2017 the NSA [In17] released a recommendation
to increase the security levels of currently used schemes and announced their plan to change
to post-quantum schemes in the near future. NIST [Ch16; NI16] introduced a post-quantum
crypto standardization project, the IETF has two RFCs on hash-based signatures (HBS)
[Hul8; MCF19] as well as protocol-related efforts e. g. regarding IKEv2, and also ETSI [ET]
is seeking for new post-quantum standards.
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The time needed for this transition is a major problem everyone has to face as the schedule
is tight. Introducing new schemes is not only affiliated with building them and scrutinizing
their security. They have to be standardized—which is currently a major effort—as well as
integrated into software and tested in practical use cases.

As securing our whole infrastructure may take longer than the time it takes to build a large
enough quantum computer (for a treatise of this issue we refer to [Mo15]), users long for
introducing post-quantum cryptography to the first use cases where it is applicable. One
of the use cases we can safeguard today is code signing and software updates. These are
critical for a secure migration to a fully post-quantum secure system. If quantum attacks
occur earlier than expected and systems are not yet equipped with a quantum-resistant
update mechanism, there is no easy way to secure the systems afterwards. In the worst case
a manufacturer would have to deliver updates with a secure carrier.

But even in the case that quantum computers can never be built due to foundational problems
not being known or understood today, work motivated by the transition to post-quantum
schemes will have great benefit for our understanding of applied cryptography. Furthermore,
a diverse range of cryptographic schemes based on different kinds of problems would
enhance our knowledge, since a versatile pool of well-analyzed, practically relevant and
deployed schemes would supply enough alternatives to switch to another scheme if trouble
arises for one of the currently used ones. For this a lot of questions are yet to be answered,
e. g. regarding modular design of protocols, hybrid solutions for using cryptography and
testing protocols and implementations while being confronted with so many different
combinations of cryptographic schemes.

Thus, it makes sense today to experimentally employ selected post-quantum primitives in
practice. We are in good company here: Google announced in mid 2016 that they would run
first real world experiments with post-quantum cryptography. In the announcement they
note [In16]:

“Our aims with this experiment are to highlight an area of research that
Google believes to be important and to gain real-world experience with the
larger data structures that post-quantum algorithms will likely require.”

They have pursued their efforts since and others have followed.

Motivation. But which post-quantum primitives come into consideration for such
experiments? As stated above, we need a scheme which is well analyzed and standardized.
What we mostly do have are experimental schemes which are in a process of standardization,
notably the candidates [NI17; NI19] of the NIST call [NI16] for post-quantum cryptographic
algorithms and the hash-based signatures from the informational RFCs, namely XMSS
[Hul8], Leighton-Micali Signatures, and HSS [MCF19].
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In this article we discuss a specific use case which is using hash-based signatures in the
context of software updates. The cryptographic foundations of these signatures were invented
quite early by Merkle in 1979 [Me79] and advanced in works like [BDH11; BDS08; Bu07;
HRB13]. Unfortunately, the schemes suffer some peculiarities (the size of cryptographic
keys, statefulness of the private key, etc.) which ruled them out for classical applications for
some time. On the other hand they now look promising in the post-quantum context. Most
other post-quantum schemes are comparatively recent academic developments which clearly
have not went through thorough analyses by many people over several decades, though a lot
of work is invested to enhance our knowledge. Still, the trust in those schemes is not fully
established yet and it seems too early to apply them broadly in practice, though in some
cases we already have to do so (e. g. by using hybrid solutions) to gain experience and trust.

Additionally, for hash-based signatures there are also first results on practical implementation
issues [HBB12; KMN14]. For LMS there exists RFC 8554 [MCF19] and XMSS was released
as RFC 8391 [Hul8]. The work of several authors showed how crucial a secure environment
is to the handling of the private key [CMP18; FG18; Gel8; Kal8], yet we know how to deal
with this in the case examined in this article. What is still missing, is work on the correct
use of these algorithms in real-world settings. To do so we want to exhaustively describe the
most suitable use case for hash-based signatures and the surrounding settings in which to
use these. We also evaluate the features and stress the limitations of this kind of schemes.

2 Peculiarities of hash-based signatures

2.1 Hash-based signatures

We first give a brief introduction to hash-based signatures partly following [Mc16]. Unlike
most other signature schemes, HBS require only a secure cryptographic hash function and
no other hardness assumption (about a number-theoretic problem) and are not known to
be vulnerable to Shor’s algorithm. Secure here refers to either collision resistance or mere
second-preimage resistance, depending on the specific construction.

One-time signature schemes. Hash-based signatures use one-time signature (OTS)
schemes as a fundamental building block. Common examples are the seminal one by
Lamport [La79], the Winternitz scheme [DSS05], and its recent variant W-OTS* [Hiil3].
For descriptions of current one-time signatures we refer to the respective section of [Hul8;
MCF19]. For one-time signatures, the private key is usually generated randomly and the
public key is a function of the private key, involving the underlying hash function. Advanced
one-time signature schemes feature a parameter enabling a time/memory trade-off, e. g. the
Winternitz parameter. One-time schemes are inadequate on their own in practice, since each
private key can only be used to securely sign a single message.
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Hash-based or N-time signature schemes. Merkle introduced a way to manage a
confined number of OTS key pairs in 1979 [Me79] by using a binary tree to administer
the one-time keys. A tree with height H may hold up to N = 2 key pairs and sign this
number of messages. While OTSs use hash functions just as well, it is this construct
that is referred to as hash-based signatures. It consists of the classical algorithms of key
generation, signing and verification. Several improvements have been made for hash-based
signatures, e. g.[BDH11; BDSO08; Bu07; LM95]. For each signature generation a different
OTS key pair is used. An integer counter has to keep track of the advancement of the key. A
simple way to reduce the size of an N-time key is to define it to be a short string and then
use a cryptographically secure pseudorandom function to generate the actual keys of the
underlying one-time scheme.

Hierarchical Signatures. A hierarchical signature scheme is an N-time signature scheme
that uses other hash-based signatures in its construction. In literature it is mostly referred to
as multi-tree or hyper-tree variant of classical hash-based signatures. A scheme of this kind
uses layers of trees meaning the root of a single tree is signed by an OTS key of a different
tree. That way trees of large height may be build with relatively small cost in performance
and memory demand. Concrete examples of hierarchical hash-based signatures include
XMSSMT [HRB13], a scheme by Leighton and Micali [LM95] and SPHINCS [Bel5].
XMSSMT and SPHINCS define a parameter d as the number of layers in the hierarchical
structure. Additionally, the LMS [MCF19] specification describes a hierarchical hash-based
signature variant based on Leighton and Micali’s scheme, called HSS.

2.2 Statefulness

Hash-based signatures introduce some rare properties. The most important one is the
statefulness of the private key of most hash-based signature schemes: A secret key has to
be updated with the generation of each signature, since the underlying one-time signature
scheme must only use its private keys exactly once to preserve its security features. In the
most basic case it is the index of the next OTS key pair within the Merkle tree which has to
be updated. In advanced implementations using pseudo-random generation of the OTS key
pairs and an improved tree traversal algorithm also the seed for the pseudo-random number
generator and nodes within the tree have to be updated in addition.

Another issue is the limited number of OTS key pairs. A private key exhausts due to the
limited number of signing keys. Therefore a decision about the required number of signing
keys must be made before key generation. And for the case that the HBS key has run out of
OTS keys, some form of warning and key exchange system has to be installed.

The private key therefore needs special consideration and attention. No matter if the key is
stored unguarded e. g. on a hard disk (which we definitely do not recommend) or if some
form of key management was established the private key has to be seen as a critical resource.
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An exclusive access to the private key must be enforced. Multiple processes or instances
must not access the private key at the same time. Indeed, these issues regarding statefulness
were resolved or easened, e. g. with a reservation approach [Mc16].

Yet some issues can’t be addressed in common ways. Any copy of the secret key may be
problematic. As [Mc16] show it is quite some effort already to make sure no unwanted
copies are left within a modern computer system. The wish for having a backup of the secret
key is tough as this would mean one would have to update the backup key as well. Some
approaches as for state management might be applied to a backup as well, but still lead to
complex scenarios. We rather recommend to provide several stateful keys and to deploy their
public keys altogether. Then all but one of the secret keys may remain unused and stored
in a secure place. If there’s a problem with the currently used key one may switch to the
“backup” key(s). Traditional backup mechanism may only be applied to stateless schemes.

Stateless schemes do exist, the first being SPHINCS [Be15], followed by the two submissions
to the NIST standardization process [AE17; Bel7]. Instead of one-time signature schemes
so-called few-time signature schemes are used. With a single key pair multiple signatures
may be generated with each signature generation reducing the security. That way the index
of the key pair used can be chosen at random. Signatures of such kind have bigger sizes,
while the need for handling a state is exchanged with a probability calculation.

2.3 API incompatibility

The need for an update of the private keys implies that HBS typically don’t match common
interfaces of signing operations of state of the art cryptographic tools and libraries. Even
more, stateful HBS don’t fit the definition of cryptographic signature schemes in general,
since those traditionally only consist of keygen for key generation, sign for signing a
message with a private key and verify for verification of a signature given a public key.
Now another operation is needed: the operation update which evolves the key. One solution
is to implement the function update implicitly as part of the signing operation sign.

McGrew et al. [Mc16] propose a state reservation method which grants access to a specific
state of the key. Unfortunately, every way of implementing a secure form of HBS key
management will always have some overhead due to writing operations or special key update
tactics.

2.4 Storage and speed requirements

For different use cases various key sizes and different forms of key management might be
suitable. Even a pool of HBS keys would be conceivable. This in turn has a vast effect on
the amount of memory needed for the key material, the signature itself and many temporary
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data structures which are employed during the signing/verification/update procedures. Also,
the time required for all operations might vary considerably.

In the case of hash-based signatures, there is a natural trade-off between storage size and
life-time of the secret key. A small key will have a short life-time, while a large key can be
used more often. Also, the time needed for different cryptographic operations depends on
the size of the key: Typically, the time increases when the keysize grows.

3 Software Update Authentication

We now explore one of the most suitable use cases for HBS: the authentication of software
updates or firmware. When delivering IT systems or software, manufacturers usually provide
means of authenticity. This could be a sealed package handed to the customer or a software
being installed only if it was signed by a key an operating system already knows. Once the
user trusts the system, the different applications take care of further updates.

A non-specified attacker (e. g. an intelligence agency) may be able to forge signatures for
a malicious product update and include a backdoor. To prevent attacks, software update
mechanisms as well as the updates themselves must be secured. This is especially important
when systems need to run over a long period of time. Many servers and machines are
working for years, sometimes even decades. For instance, satellites may be updated via
a wireless connection. However, while improving parts of a system via updates may be
straightforward, modifying currently used update mechanisms on older machines or systems
remotely, as satellites sometimes remain active for a long time, can be tricky.

Therefore, a mechanism and parameter settings have to be used that provide security for
at least the expected period of service. Of course advances in cryptanalysis and software
bugs may require a change of the currently used system. Therefore it is always advisable to
design the update mechanism as modular as possible and to allow easy exchange or update
of keys or the mechanism itself.

As noted, hash-based signatures are particularly well suited for software updates: On one
hand, updates are often released in an interval of at least days (e. g. to apply security fixes),
weeks (patches for newly released computer games) or even months (major product updates).
Thus, comparatively few signatures need to be generated. Even a small key with a tree of
height 10 lasts for 85 years assuming monthly updates. A key using a tree of height 20
would last 29 years, even with a hundred signatures per day (e. g. including test builds).
Another way to deal with this is to e. g. use one key pair per major release if this suits the
update policy.

On the other hand, in many update settings, neither key generation nor signature generation
or verification are too time-critical. Only the last may be limited e. g. on resource-restricted
devices, but a tailored solution with minimal verifier (only providing mandatory or necessary
parameter sets) with minimal code base should offer adequate performance and compatibility.
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Fig. 1: A simple but secure setup for software development. A key server connects to selected
development machines and handles requests for signing code.

A key pair may be generated in advance, so the process could take hours without causing
trouble. Usually it does not matter if the signature generation or verification takes a few
hundred (milli-)seconds. There might be some restrictions in size, depending on the specific
update mechanism, the used data structures and possibly memory restrictions on devices
with restricted resources. Luckily the public key of most HBS is quite small. Only the
signature size might be problematic in few cases. Also, secure updates are universally
relevant, since they may serve as a basis for realizing secure cryptographic algorithm-agility.

3.1 Software Update Environments

We now examine the process of releasing a signature for a software update. Numerous
ways of implementing a software development environment and update mechanisms exist,
one particular way is depicted in Figure 1. A typical infrastructure consists of a server
(or a distributed net of servers) holding the current version of the code, a dedicated build
server (which is sometimes in union with the code server) and a key server. Especially large
companies use more advanced systems and tools to control and manage huge amounts of
code and software, where lots of different products or services are managed, instead of a
single product (version) as described here. Ideally, changes to the code base involve at least
three persons: A software developer working on the actual change (two considering pair
programming), at least one reviewer checking the code for bugs, conceptual errors as well
as backdoors or other malicious changes and an integrator who includes the change (ideally
after another review) into the current code base. Finally, a build server takes the cleared
source code and builds a final package to be released or for test purposes. Such a software
package is to be cryptographically secured e. g. by signing the content of the package.

To this end, the build server needs a signing key which resides on a distinct key server. The
key server may hold diverse keys, but each key should be only used for one single product or
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a specific purpose. Ideally, each key is stored on a dedicated smartcard or at least provided
by a different security anchor like a hardware security module. The communication between
those systems is to be secured, even if it appears to be a separated network. This can be done
easily via TLS, SSH or other protocols securing the connection. To build a code package,
the build server takes the latest code base, builds the software, asks the key server to sign
e. g. a message digest respectively a hash value of the package using a particular signing
key and hands out the package to be released as well as the signature. The targeted system is
now able to verify the integrity and issuer of the package before installing the update.

A pleasant feature of update mechanisms is the fact that in many cases, it is possible to
establish a hybrid solution which may help increasing confidence in the use of HBS. An
update mechanism could use ECDSA [In13] or EDDSA [JL17] to verify the software and
double-check by using an XMSS key and signature. This allows us to add signatures that are
believed to be quantum-safe while still relying on well-established cryptographic primitives
such as (EC)DSA.

In some cases companies sign the same update with several keys to offer compatibility for
upgrading from older machines, though this may contain steps meaning you may have to
install a version in-between first before going to the targeted version. In such an environment
HBS could be simply another rollout of an advanced key. No matter whether a hybrid or a
successive solution is used, in a pre-quantum era, it is possible to only trust the classical
key at first and observe the behavior of the post-quantum part of the update mechanism. In
the unlikely event of a deviation in the verification process, a skeptical user (and with the
assistance and allowance of the user the manufacturer) could check for the cause. This way
HBS can be deployed, show their qualification as successor technology and be switched to
on the way before attacks by quantum computers emerge.

3.2 Our Implementation

We now discuss the integration of HBS in a currently used update mechanism and its
implications, bearing stepping-stones that have been shown before. The main drawback of
HBS is to be found in the statefulness of some schemes. Fortunately, for update mechanisms,
this disadvantage dissipates. Even relatively small tree sizes (e. g. a tree of height 20) suffice
to sign daily test builds and official software or patch releases. Typical software updates
in our case have sizes of a few to many megabytes. Often it does not matter if a signature
requires a few kilobytes. Speed is not that relevant either, as a user installing the update
will not notice a few more hundred milliseconds. As a consequence, issues typical for HBS
have less impact here. The statefulness mainly affects the key server which has to offer a
key management instance that controls the access to the actual key, like the reservation
approach proposed by McGrew et al. [Mc16]. While in a regular case one would directly
call the signing function, for HBS the reservation function is called first. It then returns the
current state of the key.
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Though some quirks of HBS seem not to be relevant, some aspects still need consideration.
One does have to think about dependencies by (automatic) test setups. While testing the
signature generation and verification may not be troublesome considering the runtime, the
generation of a key might be. This can take several minutes even for fairly small parameter
sets and result in the delay of other tests.

Another issue is providing a secure environment, which must not be neglected for classical
schemes as well. It is tricky to actually enforce such an environment on off-the-shelf
hardware. One option is to employ smartcards, which are an important security anchor for
providing cryptographic services while protecting the key material. In most cases, where
a central secure key server is not suitable, a smartcard would be the only really secure
way to use HBS. But the nature of a smartcard is not well-disposed for the use of HBS.
In conventional cases, a secret key on a smartcard only has to be read after it was written
to the memory. With HBS, some amount of data has to be rewritten, which might cause
trouble. The first constraint is that a smartcard with re-writable memory must be used, but
the memory wears out over time with each writing operation. As a result, the rewriting
of data has to be managed to avoid that some sections of the memory are used too often
and may get broken. Hiilsing et al. [HBB12] have shown how smartcards can handle HBS
schemes like XMSSMT | If a smartcard is not applicable, yet a secure environment has to be
used. First Hardware Security Modules (HSMs) are available with experimental support for
quantum-resistant schemes. At least a hardened server with corresponding restrictions has
to be used, so an attacker has no influence especially on the key generation.

We selected XMSS as described RFC [Hul8] for our implementation, since it suits our
security requirements well. To do so, a parameter set should be picked from the options
provided by the IETF specification according to personal needs: A total tree height of 20 was
sufficient for most applications in our setup, independently of whether XMSS or XMSSM 7 is
used, though bigger tree height could be used easily. Relative to other official parameter sets,
this is a large height for XMSS but a small one for XMSSMT' . We recommend XMSSM7 for
performance reasons, but XMSS can also be used and has the advantage of a simpler
implementation. In practice, we recommend

° XMSS-SHA2_20_256 or XMSS-SHAKE_20_256 for XMSS and

. XMSSMT-SHA2_20/2_256 or XMSSMT-SHAKE_20,/2_256 for XMSSMT for a more efficient
implementation.

For a higher security level and being well prepared for a post-quantum era one should opt for

. XMSS-SHA2_20_512 or XMSS-SHAKE_20_512 for XMSS

. XMSSMT-SHA2_20/2_512 or XMSSMT-SHAKE_20/2_512 for XMSSMT .

Note that some of these are optional parameter sets in RFC 8391.
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To secure the connection between the systems involved, we decided to access the servers
via OpenSSH and implemented experimental XMSS support!. Also other post-quantum
suites are tested to establish a quantum-resistant connection.

For the purpose of signing data, several open-source applications exist, . g. in the OpenBSD
context signify or its predecessor gzsig. We opted for the latter due to its greater flexibility
and simplicity. These tools are easily adaptable by introducing the use of XMSS via X.509
certificates or SSH keys and including the XMSS functionality by either using an adapted
cryptographic library like LibreSSL? or forks with a focus on quantum-resistant algorithms
like the Open Quantum Safe Project? or at least by some verified standalone solution. A
standalone solution would make it possible to offer a minimal verifier for the updated
systems, but also means that it is an individual solution for that product. In our case we use
OpenSSH to offer all cryptographic functionality.

On start-up a secure key server connects to several development machines. Access to the
key server is restricted by digital as well as physical means. As soon as a signature is needed
for a new patch, the key server is asked to sign the code package by the signing tool. As
usual instead of the whole code package a hash value is signed. The key server contains the
reservation-based key management and controls the access to the XMSS keys and other
private keys. A signing agent awaits the requests and though only one signature per signature
scheme used is needed, the signing agent uses the reservation function to reserve an interval
of keys. In this case the software solution or cryptographic library used to supply XMSS
functionality on the build server or in software itself (verifier) does not need to provide the
state management instance, as an instance on the key server takes care of this. In addition,
digests (e.g. SHA2-512 or SHA3-512) of the package or signatures may be provided via
other channels than the package itself. One alternative is to provide package digest values to
users via a web interface. A software system to be updated holds a public key that can be
used to verify the new software or update package (e.g. in the X.509, SSH or PKCS8/12
format).

As described before, the transition to post-quantum cryptography is best done by implement-
ing hybrid solutions. We highly recommend to do so in the case of adapting or extending
update mechanisms. In many cases, it should be straightforward to verify multiple signatures
of different signature schemes and check for the correct verification of all tested signatures.
Nevertheless some settings might include resource-restricted environments or deployed
software that can’t be updated easily. At least it is possible with most HBS to offer a
minimal verifier while also having a quite small public key. This easens for example the
requirements of the IoT or embedded devices. We use ECDSA as a pre-quantum solution
which might resist first attacks based on early quantum computers as standard case to trust,
while also verifying an XMSS signature. During an initial transition phase, both ECDSA
and XMSS signatures could be verified in parallel with only the result of the ECDSA

! https://www.openssh.com/txt/release-7.7; git repository https://github.com/openssh/openssh-portable
2 https://www.libressl.org/
3 https://openquantumsafe.org/
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Object/Operation | Requirements
Device Type Secret key 4363 Byte
Processor AMD Geode LX800 Public key 190 Byte
Speed 500MHz Signature 2820 Byte
Memory 256MB SDRAM Key generation 25 hours
Operating System OpenBSD 6.1 Signing 0.91s
Verification 0.75s

Tab. 1: Some characteristics of our key-server (left) as well as the corresponding benchmarking results
(right). Shown are values for the variant XMSS_SHA2_20_256 following RFC 8391. The keys were
stored in the ssh key format. Only approximate timing results are given, since the verification time is
client-dependent. Note that the results show sizes including the encoding overhead and times include
any software overhead.

verification actually being taken into account. Nevertheless we opted for trusting both
signatures, classical as well as quantum-resistant, so no update can be installed if a single
one of them fails verification. Introducing this approach to an update mechanism can mean
that no downgrade or fallback to a former software release is possible unless the update
mechanism would not check the new signatures if an old version is to be installed. This is a
serious attack vector as an adversary might forge a software patch masqueraded as an old
version. Thus we recommend to only accept with both signatures verifying positively and in
our case we have not experienced or heard about any problems even on live systems in the
field. We expect that even with sticking to an optional transition face confidence in HBS
will increase gradually and remove any impact on actual verification in the unlikely event of
an XMSS verification failure.

Also, a hybrid approach constitutes a secure solution to comply to conflicting governmental
requirements. Imagine various agencies asking for different cryptographic signature schemes
to be used in specific settings. Thanks to the hybrid approach several schemes may be used
targeting diverse specifications while each provider of requirements can be sure that each
update is checked by means of own liking.

If small trees shall be used or backup keys are wished for other reasons a key management
may provide several keys. Each major release may be shipped with several keys, so there’s
one active signing and verification key while there’s e. g. two backup keys available. If no
unforeseen events enforce the exchange of more than one key, the active key may be replaced
with the next major update. This also works for a backup key server. If a problem with the
running key server occurs one might switch to a backup system or restore the actual key
server which can use the unused, securely (and depending on the solution independently)
stored extra keys.
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4 Conclusion

We presented a working implementation of a post-quantum secure software update mecha-
nism based on hash-based signatures. The code-signing mechanism is currently run in a
hybrid fashion employing ECDSA and XMSS signatures at the same time.

This allows us to experimentally work with novel cryptographic algorithms resistant to
quantum computers in practice without compromising the well-established security of the
update mechanism. Our implementation was carried out on an OpenBSD-based kernel and
a version of OpenSSH providing basic XMSS support for the purpose of post-quantum
secure software updates.

Summarizing, we were able to realize post-quantum secure crypto-agility in practice, offering
real-world software signatures that cannot be broken by a scalable quantum computer—as
far as we know. Such a protection for software updates can and should be used today in
components for high-security areas with long expected deployment times.
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