
cba

Herausgeber et al. (Hrsg.): SKILL 2018,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2018 11

OIDC-Agent: Managing OpenID Connect Tokens on the
Command Line

Gabriel Zachmann 1,2

Abstract: OpenID Connect is widely used in Authentication and Authorization Infrastructures
including the infrastructures of multiple EU projects like INDIGO-DataCloud, the Human Brain
Project or the European Open Science Cloud. Due to their nature, OpenID Connect Access Tokens
are currently not straightforward to use from the command line. They have a high character count
and are short lived. Therefore, they de facto have to be copied from a source providing the access
token, most likely a web service. Considering this insufficient usability from the command line, our
goal was to overcome this by developing a tool to manage OpenID Connect tokens. We present the
design of this tool named oidc-agent and possible usages. The design is oriented at the ssh-agent,
providing the user a familiar way to handle OpenID Connect tokens. By splitting the whole service
into multiple components we also ensure privilege separation. We implemented a daemon to manage
OpenID Connect tokens (oidc-agent), a tool for generating agent account configurations (oidc-gen)
and a tool for loading and unloading these configurations from the agent (oidc-add). Additionally, we
provide application programming interfaces for agent clients through C and UNIX domain sockets.
We also provide an example agent client (oidc-token) that can be used to easily get an access token
from oidc-agent using the command line. Therefore, users do not need to handle long, unhandy
access tokens, but the application can obtain an access-token through oidc-agent when needed. All
components can be freely used and are available on GitHub3 under the MIT license.

Keywords: OpenID Connect; OIDC; oidc-agent; authorization; authentication; security; command
line

1 Introduction

OpenID Connect (OIDC) [Sa14] is an authentication protocol based on OAuth2 [Ha12]
and an important key component in many modern Authentication and Authorization
Infrastructures (AAIs) including those of several EU projects. At the Karlsruhe Institute of
Technology (KIT) we are engaged in multiple of these projects in the field of AAI. Users
and developers of these projects and other AAIs have to handle OIDC access tokens on a
regular base. While for web applications this is easy to do, handling OIDC access tokens on
the command line is currently a cumbersome and repetitive procedure requiring manual
copying and pasting.
1 Karlsruhe Institute of Technology, Steinbuch Centre for Computing, Herrmann-von-Helmholtz-Platz 1, 76344

Eggenstein-Leopoldshafen, Germany gzachmann@outlook.com
2 Baden-Wuerttemberg Cooperative State University Karlsruhe, Germany
3 https://github.com/indigo-dc/oidc-agent

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/indigo-dc/oidc-agent
gzachmann@outlook.com

12 Gabriel Zachmann

Currently there is no other tool for managing OIDC tokens on the command line. However,
there are command line tools for dynamically registering OIDC clients [Go15; Sk17], but
these tools are only for registering and managing clients and not for handling access tokens.
Therefore, our goal was to develop an architecture for a tool that can do both: registering
clients and handling OIDC tokens. By implementing the developed architecture we wanted
to integrate OIDC with the command line with just one tool chain.

2 Architecture

While developing the architecture of oidc-agent [IN18] we followed the ssh-agent [Op17]
design, because oidc-agent has a similar purpose as the ssh-agent, but for OIDC tokens
instead of ssh keys. By following the ssh-agent design, users are able to use oidc-agent in
a way they are used to from ssh-agent.

The architecture consists of multiple components:

oidc-agent: The actual agent managing the tokens and performing all communication
with the OpenID Provider (OP).

oidc-gen: A tool for generating account configuration files for usage with oidc-agent and
oidc-add.

oidc-add: A tool that loads the account configurations into oidc-agent.

oidc-token and third party applications: Applications that need an OIDC access token
can obtain it through the agent’s application programming interface (API). One
example application for getting an access token is oidc-token.

We will describe these components in the following subsections. The architecture of
oidc-agent is visualized in Figure 1.

2.1 oidc-agent

oidc-agent is the central component of the oidc-agent project. It runs as a daemon in the
background and handles all communication with the OPs. Other applications (including
oidc-gen, oidc-add, and oidc-token) have to use an UNIX Domain Socket to communicate
with the agent. To locate the socket an environment variable is used. This variable has to be
set when starting the oidc-agent. The required shell command is printed by oidc-agent on
startup. This is the same process as it is for ssh-agent [Ma16]. The access control for the
used socket is handled by the file system. Therefore, any process started by the same user
can communicate with the agent.

oidc-agent 13

Fig. 1: Architectural Design of oidc-agent

2.2 oidc-gen

oidc-gen is used to generate account configuration files. To use oidc-agent with an OP an
account configuration is needed. To be able to obtain access tokens oidc-agent needs a
registered OIDC client. Some OPs support dynamic client registration which can be used
by a client to register itself with the OP. For these providers dynamic client registration can
be used by oidc-gen and oidc-agent to register the client and then generate the account
configuration file. If the OP does not support dynamic client registration, users have to
register a client themselves and then provide the relevant information to oidc-gen to create
the configuration file.

2.3 oidc-add

oidc-add is used to add an account configuration to the agent. oidc-add will read the
encrypted account configuration file, decrypt it with the user supplied password and send the
configuration to oidc-agent. After adding a configuration an access token can be obtained

14 Gabriel Zachmann

for this configuration (e.g. by using oidc-token). oidc-add can also be used to remove an
already loaded configuration from the agent.

2.4 oidc-token

oidc-token is an example application that is able to obtain an access token through
oidc-agent. Other applications that need to get an access token can use the provided API.
There are two ways of using the API. We provide a C-API that hides the communication
details under simple function calls. Therefore, other applications do not have to handle
locating, writing and reading of the UNIX domain socket. Many languages support calling
C functions which makes it easy to integrate in any application. The C-API can be used by
including the source files or by using the provided library. oidc-token uses this C-API and
can be used as a reference implementation on how to use this API.

If an application cannot or does not want to call C functions, it can communicate directly
with oidc-agent through the UNIX Domain Socket. To do so, the application has to obtain
the socket path from the environment and connect to it. Socket communication is done
through JavaScript Object Notation (JSON) encoded messages.

2.5 Privilege Separation

By following the security by design principles and splitting the system’s functionalities
into multiple components we also achieved privilege separation. Table 1 shows the priv-
ileges every component needs. We emphasize that the only file oidc-agent reads is the
Certificate Authority (CA) bundle file needed for Transport Layer Security (TLS) encrypted
communication. So the agent - as the only component that has network access - does not
access disk (with the CA bundle file as an exception). Please also note that oidc-gen does
not need to execute any files to work correctly. However, it needs the execution right for
automatically opening the authorization uniform resource locater (URL) in a web browser
when performing the Authorization Code Flow.

component ipc network read file write file execute file
oidc-agent 3 3 (3) 7 7

oidc-gen 3 7 3 3 (3)
oidc-add 3 7 3 7 7

agent clients 3 7 7 7 7

Tab. 1: Privilege Separation in the oidc-agent project

oidc-agent 15

2.6 Usage of OpenID Connect Flows

As already mentioned, oidc-agent is able to use dynamic client registration to automatically
register an OIDC client, but oidc-agent supports more OIDC flows. Normally, the agent
uses the Refresh Flow to obtain an access token using a refresh token. This flow is illustrated
in Figure 2. The used refresh token is stored in an encrypted way and is obtained when
the account configuration is generated. oidc-agent supports multiple ways to obtain this
refresh token.

+--------+ +---------------+
	--(A)----------- Refresh Token ----------->	Authorization
Client		Server
	<-(B)----------- Access Token -------------	
+--------+ (w/ Optional Refresh Token) +---------------+

Fig. 2: Refreshing an Expired Access Token. Adapted from [Ha12]

• Out of Band: The refresh token can be obtained out of band and be provided directly.
But it is very unlikely that a user is able to obtain a refresh token for the used client,
because refresh tokens are bound to a specific client id. This functionality is included
for development and for potential advanced use cases.

• Password Flow: The Resource Owner Password Credentials can be used directly as
an authorization to obtain a refresh (and access) token [Ha12]. Obviously this flow
reveals the user’s credentials to oidc-agent. We emphasize that oidc-agent does not
store this information and that it is held in memory as short as possible, but users
might want to use one of the other flows that do not reveal the user’s credentials to
oidc-agent. However, this is the only flow that can be done entirely on the command
line; the other flows require some sort of web-based authentication. This flow is
visualized in Figure 3.

• Authorization Code Flow: The Authorization Code Flow is the most widely spread
OAuth2 / OIDC flow and is the standard web flow. No user credentials are revealed to
oidc-agent, instead the user authenticates against the OP using a web browser. This
flow requires oidc-agent to start a small web server to receive the OP’s response. Out
of the implemented flows this is the one mostly supported by OPs; thus it is also the
default flow for oidc-agent. Figure 4 shows how the authorization code flow works.

• Device Flow: The Device Flow is an OAuth2 flow specially for browserless and input
constrained devices [De17]. It uses a second device to perform the authentication
against the OP in a browser and in that way also does not reveal the credentials to
oidc-agent. Because the authentication is done on a second device, there is no web
interaction needed on the primary device, i.e. on the primary device it can be done
using only the command line. The flow is illustrated in Figure 5.

16 Gabriel Zachmann

+----------+
| Resource |
| Owner |
| |
+----------+

v
| Resource Owner
(A) Password Credentials
|
v

+---------+ +---------------+
	>--(B)---- Resource Owner ------->	
	Password Credentials	Authorization
Client		Server
	<--(C)---- Access Token ---------<	
	(w/ Optional Refresh Token)	
+---------+ +---------------+

Fig. 3: Resource Owner Password Credentials Flow [Ha12]

The Authorization Code Flow is clearly the most used flow to obtain a refresh token in
oidc-agent, because it is supported by almost any OP and because the password flow and
device flow are supported by only few OPs. Please note that the device flow specification is
currently not in the state of being an RFC but only an Internet Engineering Task Force (IETF)
draft.

2.7 General Principles

Because oidc-agent is a security related software that handles sensitive data, we have to
handle it with the necessary caution. As already mentioned, user credentials are not stored
on disk and kept in memory as short as possible. To ensure this, we clear all allocated
memory before freeing it. By clearing all allocated memory and not only sensitive data we
ensure that we do not accidentally leak information (e.g. a server response that contains a
refresh token as a sub-string).

The stored data contains sensitive elements - in particular the refresh token and client
secret. All data written to disk is therefore encrypted using the easy to use, cross-platform
encryption library libsodium [17a]. The used encryption algorithm is XSALSA20. It is a
stream cipher based on SALSA20 but with a 192 bits long nonce instead of 64 bits [17b].
XSalsa20 uses a 256-bit key, that is derived from the users’s encryption password, as well as
the first 128 bits of the randomly generated nonce to compute a subkey [17b]. This subkey
and the remaining 64 bits of the nonce are the parameters for the Salsa20 function used to
eventually generate the stream [17b].

oidc-agent 17

+----------+
| Resource |
| Owner |
| |
+----------+

^
|
(B)

+----|-----+ Client Identifier +---------------+
-+----(A)-- & Redirection URI ---->		
User-		Authorization
Agent -+----(B)-- User authenticates --->	Server	
-+----(C)-- Authorization Code ---<		
+-	----	---+ +---------------+
	^ v	
(A) (C)		
^ v | |

+---------+ | |
	>---(D)-- Authorization Code ---------’
Client	& Redirection URI
	<---(E)----- Access Token -------------------’
+---------+ (w/ Optional Refresh Token)

Note: The lines illustrating steps (A), (B), and (C) are broken into
two parts as they pass through the user-agent.

Fig. 4: Authorization Code Flow [Ha12]

3 Use Cases

Usages of oidc-agent can be categorized into two groups. An application can utilize
oidc-agent to obtain an access token or the user can obtain the access token from the agent
and provide it to an application. For both of these groups we will describe possible use
cases.

3.1 Applications Utilizing oidc-agent

Using an application that utilizes oidc-agent to obtain an access token is very easy. Instead
of manually obtaining an access token and providing it to the application (e.g. through an
environment variable) the application has to be modified to support oidc-agent natively.
The application then only needs the name of the account configuration to be used. In
addition, oidc-agent has to be running and the account configuration has be loaded, i.e. by
using oidc-add. Then the application can be used as normal.

18 Gabriel Zachmann

+----------+ +----------------+
	>---(A)-- Client Identifier --->	
	<---(B)-- Verification Code, --<	
	User Code,	
	& Verification URI	
Device		
Client	Client Identifier &	
	>---(E)-- Verification Code --->	
	polling...	
	>---(E)-- Verification Code --->	
		Authorization
	<---(F)-- Access Token --------<	Server
+----------+ (w/ Optional Refresh Token) | |

v | |
: | |
(C) User Code & Verification URI | |
: | |
v | |

+----------+ | |
End-user		
at	<---(D)-- User authenticates -->	
Browser		
+----------+ +----------------+

Fig. 5: Device Flow [De17]

An example of an application that can utilize oidc-agent to obtain access tokens is wattson.
wattson [IN17b] is a command line client for WaTTS [IN17a], the INDIGO [18d] Token
Translation Service (TTS) that translates OIDC credentials to non-OIDC credentials (e.g.
an X.509 certificate). An example on how to use wattson with oidc-agent is shown in
Listing 1. Lines 1–3 initialize the environment variables needed by wattson; lines 4–8
startup oidc-agent and load the “indigo-iam” account configuration; line 10–16 show the
actual wattson call and the resulting output.

3.2 Using oidc-agent to Obtain an Access Token

If an application does not use our API, but needs an OIDC access token, oidc-token can be
used to obtain the access token from oidc-agent. Most likely the application will read the
access token from an environment variable. Setting this variable with oidc-token is very
straightforward as can be seen from Listing 2. Again lines 1–6 show the agent startup and
the loading of the account configuration. In line 7 the environment variable is filled with the
requested access token; after that it can be used by the application.

oidc-agent 19

1 user@oidc:~$ export WATTSON_URL=https://watts.data.kit.edu
2 user@oidc:~$ export WATTSON_ISSUER=iam
3 user@oidc:~$ export WATTSON_AGENT_ACCOUNT=indigo-iam
4 user@oidc:~$ eval ‘oidc-agent‘
5 Agent pid 2018
6 user@oidc:~$ oidc-add indigo-iam
7 Enter encrpytion password for account config indigo-iam:
8 success
9

10 user@oidc:~$ wattson request x509
11 connecting to https://watts.data.kit.edu/api/v2/iam/ using protocol version 2
12 received token from oidc-agent
13 requesting credential for service [x509]:
14 Credential [a2fa1b39-8723-4385-aae1-6d768a5a2f88]:
15 [Certificate (textfile)] => Certificate:
16 ...

List. 1: Using wattson with oidc-agent

1 user@oidc:~$ eval ‘oidc-agent‘
2 Agent pid 2018
3 user@oidc:~$ oidc-add indigo-iam
4 Enter encrpytion password for account config indigo-iam:
5 success
6
7 user@oidc:~$ export WATTSON_TOKEN=‘oidc-token indigo-iam‘

List. 2: Using oidc-token to pass an access token through an environment variable

Of course oidc-token may as well be used to get the access token and then use it in any
other way necessary. To obtain an access token from oidc-agent with oidc-token a simple
call to oidc-token providing the account configuration name is enough.

One scenario in which this access token might be used is inside the Human Brain
Project (HBP). The HBP [18c] is a Future and Emerging Technologies (FET) flagship
project as part of the Horizon 2020 programme [Eu] of the European Union (EU) and aims
at a better understanding of the human brain. Users of the HBP can use a High Performance
Computing (HPC) system consisting of supercomputing sites in Jülich, Barcelona, Bologna
and Lugano and a cloud storage system in Karlsruhe [Be16]. This HPC system can be
accessed through the UNiform Interface to COmputing REsources (UNICORE) [18e] by
using OIDC. This means that oidc-agent can be used to get an access token for accessing
the HPC system.

20 Gabriel Zachmann

4 Conclusion

With oidc-agent we developed a tool for managing OIDC access tokens on the command
line. The architecture is based on ssh-agent and provides the user a way to handle OIDC
tokens similar to ssh keys. The oidc-agent architecture also supports privilege separation
and secure memory deallocation.

Users can easily generate new account configurations with oidc-gen. After the account
configuration is loaded into oidc-agent using oidc-add, an application that needs an access
token can request it using the API. Additionally oidc-token can be used to get an access
token on the command line.

oidc-agent supports several OIDC flows like the password flow, authorization code flow
and device flow. This allows oidc-agent to be widely used with many different OPs. We
verified our implementation with B2Access [EU16], EGI-Checkin [18b], Elixir [18a],
Google [Go], HBP and INDIGO IAM.

oidc-agent is released under the MIT license as part of the INDIGO-Datacloud project.
Source code and releases are available at GitHub4. To improve the installation process we
want to add the oidc-agent package into the repositories of the major linux distributions.

Acknowledgments

This project was done has part of my dual study at the Baden-Wuerttemberg Cooperative
State University Karlsruhe within the practical phase at the KIT-SCC.

I want to thank my supervisors Bas Wegh and Marcus Hardt for their feedback, guidence,
and advise throughout the project.

Additionally, I want to thank the anonymous reviewers for their comprehensive feedback.

References

[17a] libsodium | A modern, portable, easy to use crypto library, 2017, url: https:
//github.com/jedisct1/libsodium.

[17b] The Sodium crypto library (libsodium), 1.0.13, libsodium, July 2017, url:
https://www.gitbook.com/book/jedisct1/libsodium/details, visited on:

[18a] ELIXIR | A distributed infrastructure for life-science information, 2018, url:
https://www.elixir-europe.org/.

[18b] European Grid Infrastructure, 2018, url: https://www.egi.eu/.

4 https://github.com/indigo-dc/oidc-agent

https://github.com/indigo-dc/oidc-agent
https://github.com/jedisct1/libsodium
https://github.com/jedisct1/libsodium
https://www.gitbook.com/book/jedisct1/libsodium/details
https://www.elixir-europe.org/
https://www.egi.eu/

oidc-agent 21

[18c] Human Brain Project, 2018, url: https://www.humanbrainproject.eu/.
[18d] INDIGO DataCloud, 2018, url: https://www.indigo-datacloud.eu/.
[18e] UNICORE | Distributed computing and data resources, 2018, url: https:

//www.unicore.eu/.
[Be16] Benedyczak, K.; Schuller, B.; Sayed, M. P.-E.; Rybicki, J.; Grunzke, R.: UNI-

CORE 7 - Middleware Services for Distributed and Federated Computing. In:
2016 International Conference on High Performance Computing Simulation
(HPCS). Pp. 613–620, July 2016.

[De17] Denniss, W.; Google; Bradley, J.; Identity, P.; Jones, M.; Microsoft; Tschofenig, H.;
Limited, A.: OAuth 2.0 Device Flow for Browserless and Input Constrained
Devices, tech. rep., Oct. 2017, url: https://tools.ietf.org/html/draft-
ietf-oauth-device-flow-07.

[Eu] European Commission: Horizon 2020 - European Commission, url: https:
//ec.europa.eu/programmes/horizon2020/.

[EU16] EUDAT: B2ACCESS - EUDAT, Nov. 2016, url: https://www.eudat.eu/
services/b2access.

[Go] Google: Google Identity Platform, url: https://developers.google.com/
identity/.

[Go15] Goering, B.: openid-cli: A CLI for interacting with an OpenID Connect provider,
2015, url: https://github.com/gobengo/oidc-cli,%20visited%20on:
%20June%206,%202018.

[Ha12] Hardt, D.: The OAuth 2.0 Authorization Framework, RFC 6749, RFC Editor,
Oct. 2012, url: http://www.rfc-editor.org/info/rfc6749.

[IN17a] INDIGO-Datacloud: WaTTs - the INDIGO Token Translation Service, 2017,
url: https://github.com/indigo-dc/tts.

[IN17b] INDIGO-Datacloud: wattson: the watts command line client, 2017, url: https:
//github.com/indigo-dc/wattson.

[IN18] INDIGO-Datacloud: oidc-agent for managing OpenID Connect tokens, 2018,
url: https://github.com/indigo-dc/oidc-agent.

[Ma16] Manual, L. P.: SSH-AGENT(1) BSD General Commands Manual, Nov. 2016,
url: http://man7.org/linux/man-pages/man1/ssh-agent.1.html.

[Op17] OpenBSD: OpenSSH, 2017, url: https://www.openssh.com/.
[Sa14] Sakimura, N.; Bradley, J.; Jones, M.; de Medeiros, B.; Mortimore, C.: OpenID

Connect Core 1.0 incorporating errata set 1, tech. rep., Nov. 2014, url: http:
//openid.net/specs/openid-connect-core-1_0.html.

[Sk17] Skokan, F.: openid-client-cli: CLI for managing dynamic OpenID Connect client
registrations. 2017, url: https://github.com/panva/openid-client-cli.

https://www.humanbrainproject.eu/
https://www.indigo-datacloud.eu/
https://www.unicore.eu/
https://www.unicore.eu/
https://tools.ietf.org/html/draft-ietf-oauth-device-flow-07
https://tools.ietf.org/html/draft-ietf-oauth-device-flow-07
https://ec.europa.eu/programmes/horizon2020/
https://ec.europa.eu/programmes/horizon2020/
https://www.eudat.eu/services/b2access
https://www.eudat.eu/services/b2access
https://developers.google.com/identity/
https://developers.google.com/identity/
https://github.com/gobengo/oidc-cli,%20visited%20on:%20June%206,%202018
https://github.com/gobengo/oidc-cli,%20visited%20on:%20June%206,%202018
http://www.rfc-editor.org/info/rfc6749
https://github.com/indigo-dc/tts
https://github.com/indigo-dc/wattson
https://github.com/indigo-dc/wattson
https://github.com/indigo-dc/oidc-agent
http://man7.org/linux/man-pages/man1/ssh-agent.1.html
https://www.openssh.com/
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
https://github.com/panva/openid-client-cli

	Introduction
	Architecture
	oidc-agent
	oidc-gen
	oidc-add
	oidc-token
	Privilege Separation
	Usage of OpenID Connect Flows
	General Principles

	Use Cases
	Applications Utilizing oidc-agent
	Using oidc-agent to Obtain an Access Token

	Conclusion

