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Message from the Chairs

The conference on Architecture of Computing Systems (ARCS) has a long and prestig-
ious history in computing systems. Five workshops are co-located with the conference
covering a large field of topics. The papers of the following workshops are included in
these proceedings:

ASPRIT
Workshop on Architectures for Self-Organizing Private IT-Spheres

CSECS
Workshop on Complex Sciences in the Engineering of Computing Systems

PARMA
3rd Workshop on Parallel Programming and Run-Time Management Techniques
for Many-core Architectures

PASA
10th Workshop on Parallel Systems and Algorithms

VERFE
8th Workshop on Dependability and Fault-Tolerance

For each of these workshops, the workshop committees selected high quality contribu-
tions within a competitive peer review process. Many thanks go to the organizers of the
workshops: Detlef Krömker, Ralf Dörner, Uwe Brinkschulte, Ingo Scholtes, Claudio J.
Tessone, Jacob Beal, Alex Bartzas, Giovanni Agosta, Jörg Keller, Rolf Wanka, Karl-
Erwin Großpietsch, and Jörg Henkel.

In addition to the workshops, the conference also features tutorials on "Organic Compu-
ting: Status and Outlook" as well as on "Partial Reconfiguration of FPGAs in Practice -
Tools and Applications". A paper related to the latter tutorial is included in this proceed-
ings. We are grateful to the people that made these tutorials possible: Christian Beck-
hoff, Volker Breuer, Christopher Dennl, Michael Feilen, Dirk Koch, Christian Mueller-
Schloer, Hartmut Schmeck, Walter Stechele, Juergen Teich, Jim Torresen, and Daniel
Ziener.

The workshop and tutorial program would not have been possible without the help of
many people: The program co-chairs Uwe Brinkschulte and Kay Roemer, the local and
publication chair Walter Stechele and the financial chair Thomas Wild.
We would also like to thank Cornelia Winter (GI) and Jürgen Kuck (Köllen Verlag) for
the uncomplicated and flexible handling of the proceedings publication process.
Our final thank goes to all the authors for their contributions that make this an attractive
workshop program. We wish you all interesting discussions during the two days of
workshops and tutorials.

Gero Mühl ARCS 2012 Workshop Chair
Jan Richling ARCS 2012 Tutorial Chair
Andreas Herkersdorf ARCS 2012 General Chair
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Abstract:
The importance of context-awareness is constantly increasing. Users want systems

to react dynamically to their current context (e.g. their location). For emerging home
service platforms, this represents a key element, as it allows systems to increase the
users’ comfort tremendously by acting on sensed and deducted situations. As such
systems feature a lot of dynamic interaction between services, it has to be ensured
that service selections and bindings simply work. This paper proposes an approach for
QoS-based testing and selection of semantic services, which employs a service tester
that uses genetic algorithms to check and monitor QoS properties. These properties
are used to complete the semantic descriptions of services running on the platform,
which are managed by a semantic service registry.

1 Introduction

The increasing amount of IT hardware and software (e.g. “apps”) in personal living spaces

allows users to experience more and more services both online via the Internet and off-

line in their homes: personal computers, smartphones, tablets, home theater devices and

smart homes are becoming more and more intertwined with each other and online services

(Internet and/or cloud services) forming an Ambient Assisted Living (AAL) home service

platform. The term Ambient Assisted Living (AAL) was coined by the European Commis-

sion’s Information Society in 2004, as AAL research activities were prepared in a special

support action project that was part of the 6th European Framework Programme [Gmb04].

AAL-related technologies introduce a complexity that users can or do not want to admin-

istrate themselves anymore. The increase of networked electronics and software can be

compared to the increase of assistive and media technologies in cars during the last two

decades. Unlike in cars, however, personal electronic devices and applications are much

more open to (deliberate) modifications and data exchange, which makes securing their

handling even more difficult. Finding and selecting the right service when using this home
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service platform can become a time-consuming and even dangerous process (from an IT

security perspective), if there are multiple service providers and a malicious or malfunc-

tioning service is selected. In addition, usually multiple applications are active in parallel

requiring binding decisions almost constantly.

Static binding between client consumer and provider, which usually takes place once at

the application’s compile/link time, is not a feasible approach here. Even dynamic bind-

ing with its implementation-dependent, tight coupling between consumer and provider is

not sufficient. As smart homes consist of heterogeneous, distributed systems with varying

computation capabilities, they represent an ideal environment for service-oriented comput-

ing with its loose coupling thus supporting the required runtime dynamics, which explains

the advent and propagation of home service platforms in general. However, the service

interface descriptions and, even more importantly, any existing service properties offered

by service providers (typically name-value pairs) are still statically defined, as they do not

reflect the runtime state of the provided implementations. This results in syntactic service

look-ups, in which the binding only depends on the service interface and its statically de-

fined properties. To support the definition of extended and dynamic service descriptions

that are integrated with a common context model – an ontology – for the platform, the abil-

ity to define and process semantics is needed. The approach presented here allows clients

to define semantic queries for services, which can be processed by the service platform.

As these queries can use the semantics of both services and platform, it is possible to build

adaptive, context-aware applications, in which clients can react to changing service and

context properties, as service properties reflect the runtime state of the platform and its

components.

With respect to the functional properties a service defines (e.g. regarding its input and out-

put parameters), clients (i.e., users or applications) might require non-functional service

capabilities such as Quality of Service (QoS) properties. In this case, the clients’ needs can

be formulated explicitly or as part of their preferences. Service properties, on the other

hand, are typically either defined statically or dynamically gathered at runtime (e.g. by

application instrumentation). The first approach is both hard to achieve and insufficient as

it doesn’t reflect the user experience: a service might be fast if accessed in one geographic

region but slow in another. The second approach, however, might also be inapplicable

as ongoing runtime instrumentation might lower the service’s performance too much im-

pairing end user experience. This paper proposes a third approach: The integration of

semantic service descriptions with service testing and probing capabilities. Here, service

implementations register a test interface, which is used to determine runtime QoS proper-

ties, before the service is used for the first time. The resulting QoS properties become part

of the service’s description and can be used either for service look-up or selection of the

fittest service if multiple services fulfill the client’s requirements. The subsequent service

probing adapts automatically to the currently offered services as well as to the usage of

these services. We also consider to keep the testing effort within reasonable bounds.

This paper is structured as follows: Section 2 presents required background information

and is followed by Section 3, which presents related approaches. The subsequent Sec-

tion 4 introduces the approach for QoS-based testing and selection of semantic services.

Section 5 discusses the current state of and the next steps for the work presented here.
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2 Background

2.1 The Web Ontology Language

The W3C specification for the Web Ontology Language (OWL) [Gro09] defines a family

of languages to support the Semantic Web vision. While RDF already allows addressing

resources and their properties via URIs thus creating a formal, triple-based representa-

tion of information, OWL adds machine-processable semantics enabling automated in-

terpretation of this information by computers. Furthermore, OWL supports an inference

mechanism – so-called reasoning – that allows the automated derivation of new informa-

tion from existing descriptions of things and their relationships. To support reasoning and

limit its complexity, which leads to increasing processing times, the OWL specification

defines three OWL sublanguages with different levels of expressiveness: OWL Lite, OWL

DL (includes Lite) and OWL Full (includes DL), where OWL DL was designed to pro-

vide maximum expressiveness while retaining computational completeness. Apart from

these sublanguages, the OWL specification also supports several exchange syntaxes for

specification and exchange purposes with varying degrees of human readability.

An OWL ontology contains statements consisting of Resource-Property-Value triples (e.g.

Father hasName ’John’). A resource has a Class definition and features a number of Indi-

viduals, which represent the actual objects in a domain. Properties may feature Domains

and Ranges: Data Properties associate resources with constants, whereas Object Prop-

erties associate resources with each other. In addition, properties may possess more de-

tailed logical capabilities such as being functional, transitive, symmetric, reflexive, inverse

and/or disjoint.

2.2 Genetic Algorithms

Genetic Algorithms are used for solving optimization problems and are based on the bio-

logical evolution theory. Terms that are often used for genetic algorithms are listed in table

1. Furthermore, the table shows the biological and IT specific translation of these terms.

Term Biological Translation IT Translation

Population Set of individuals Set of solution candidates

Parents Mating subset of population Selected individuals for generating new solu-

tion candidates

Fitness Conformity of an individual Quality of candidate solution

Chromosom Properties of a individual String

Gen Part of a Chromosom char

Allele Characteristic of a gen value of char

Locus Location of a gen Position of a char

Table 1: Genetic terms

From random variation new advantageous properties develop and will establish oneself in
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the current environment. As the environment changes, properties can become disadvan-

tageous. They may get replaced by properties that better fit to the current environment.

For generating new solutions, genetic operators are used. Before using a genetic operator,

individuals have to be selected. There exist many different types of selection methods.

Fitness proportionate selection also called roulette-wheel selection is used as basis for our

selection method, which is introduced in Section 4.4. After selecting two individuals,

the genetic crossover operator can be used. Furthermore, random variation can be ac-

complished with the mutation operator. After creating the new population, the mutation

operator can be used to choose randomly an allele and change its value. The reproduction

operator is used to take individuals unchanged into the next generation. For the testing

method, we have developed specific crossover, mutation and reproduction operators. A

detailed explanation of these newly defined operators can be found in Section 4.4.

3 Related Work

With maturing tool support and increasing processing power, semantic (context-aware)

services have gained enormous interest in recent years. Several approaches to seman-

tics definition have been developed and compared in the last decade [CDM+04, ZKN06].

However, OWL-S, the Semantic Markup for Web Services extension for OWL, which pro-

vides additional concepts for specifying semantic processes and services, remains the one

most widely used today, although it focuses on Web services environments. Due to its

modularity, however, it allows the definition of Service Groundings for other service ar-

chitectures.

Even before semantic services were examined in particular, several context modeling ap-

proaches for home service platforms emerged. Gu, Pung, Zhang [GPZ04] propose using

layered ontologies for context models in the home domain. It covers widely-acknowledged

concepts that also appear in more recent publications (e.g. activities, locations, persons,

devices including a custom service concept). However, the interaction of formal service

definitions with runtime systems (actual groundings) and how user preferences influence

the platform’s behavior are not discussed. Daz Redondo et al. [RVC+08] propose the

combination of OWL-S with an OSGi grounding called OWL-OS, although neither QoS

properties nor semantic queries for service selection are supported (only key-value pairs).

However, the authors use OWL-S service categories as a means to group services into

aspects (e.g. Lighting), which can be used by clients during service look-up. Romero et

al. [RHT+11] propose a platform based on the Service Component Architecture (SCA),

which provides similar service and component abstractions as OSGi. The paper focuses on

device integration over heterogeneous communication protocols into an event processing

architecture, which is able to process data from a wide collection of devices (including sen-

sor networks). However, a semantic abstractions for implementation details and support

for the deployment of additional (3rd party) services are not presented.

Apart from home service platforms, a broad collection of service discovery and binding

approaches have been developed in the past. The most widely used specifications for this

today, especially in living environments, is Universal Plug and Play (UPnP) [UPn11].
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Apart from its convincing technical capabilities, it lacks OWL’s modeling capabilities as

well as support for rules, queries and reasoning. Thus, it rather can be seen as a potential

grounding for OWL-S services.

4 Approach

The work presented here proposes enhancements to home service platforms, which allow

extending, testing and integrating the collection of applications and services dynamically

based on semantic descriptions of service properties.

4.1 A Platform for Semantic Services

The approach presented here proposes adding semantic interfaces and continuous test-

ing to applications and services that integrate with common OWL ontologies provided by

a Semantic Service Registry. This registry allows extending an existing service registry

for non-semantic services by adding the capability to manage ontologies and supporting

semantic service queries. This extension supports the installation of non-semantic and se-

mantic services in parallel. An overview of the surrounding platform is given in [Sch10].

In addition, the Service Tester component uses the descriptions of registered services to

gather runtime QoS properties once after service registration. After that, the Service Tester

is able to probe services on demand. The Knowledge Module stores the context and ap-

plication ontologies including related rules, which are accessed by the other components.

With changing system context, the contained ontologies are updated by incoming events

resulting in constantly changing facts and, thus, also changing service properties. This

dynamic can be used by clients in service look-ups, as bound services can differ between

two subsequent look-ups due to interim model changes (e.g. state, location or performance

change). The interaction between the involved components is displayed in Figure 1.
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Figure 1: Service Registration and Testing

The context model has been constructed around the core concepts Person, Computational

Entitiy, Location and Activity and is based on the context model from Gu et al. [GPZ04]

introduced in Section 3, which has been extended with more detailed concepts for compu-

tational entities, services, activities and user preferences (among others) for this approach,

19

19



although the latter two are not covered here. Figure 2 presents a condensed version of

the context model, in which the colored shapes represent some of the additions to the

original model. The service-related ontologies contain service descriptions from service

groundings (implementations) to formal service models and are defined using OWL-S. The

Service Registry is responsible for registering and looking up services in the knowledge

module and the platform’s registry mechanism.
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Figure 2: Context Model (condensed)

4.2 Service Registration

If a service implementation is installed by a service provider, it registers its implementa-

tion details – the service grounding – with the service registry assuming that the ontology

describing the implementation integrates with the context and service ontologies. Sub-

sequently, this integration allows the registry to find the service implementation, if the

associated service is looked-up.
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Figure 3: Service Registration Process

Apart from functional service properties (interfaces and parameters), services register ad-

ditional context-related or QoS-related properties that can be specified as requirements by

clients during service look-up. If these properties are dynamic, they are updated by the

registry at runtime (e.g. by testing as described in Section 4.4). The registry is also re-

sponsible for removing service groundings, if service implementations are uninstalled or

unavailable (e.g. caused by service failures). It is also possible for clients or services to

register and update context or service ontologies without providing an implementation for

them, as ontologies and implementations are decoupled.
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4.3 Service Selection

If clients require a service, they can query the service registry for implementations of that

service. This can be done using the platform’s own service selection approach (if one

exists), or by executing SPARQL queries [PE08] on the semantic service registry. The

latter approach is required, if semantic properties are used for the service look-up. For

the definition of look-ups, clients can use both functional and non-functional properties

resulting in comprehensive queries. This can lead to situations, in which no service is

able to meet these requirements. However, typically clients only define a limited set of

requirements and end up with a selection of functionally equal services. In this case, the

registry relies on the results of the service tests to select the fittest service. The service

selection process is shown in Figure 4.
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Figure 4: Service Selection Process

As an example, a client might look for a service providing off-site health monitoring. Here,

services might feature more or less static properties such as the service provider’s general

trustability or service cost. Properties such as availability or response time, on the other

hand, are dynamic properties, which would be collected by the service tester.

4.4 Service Testing

Given the new situation of being able to dynamically extend the service platform by ser-

vices from different providers results in a great responsibility for testing these services.

The need of testing is rooted in the fact that services can be added, deleted or substituted.

Therefore no proven information exists how they perform on given client requests. As

services of different service provider are supposed to interact, it is necessary to be able

to rely on information given for these services (for example QoS Properties). Hence, a

testing method should fulfill the requirements of adapting to currently offered services and

client requests as well as being independent from the service provider offering a service.

Therefore, we combine the approach of using a knowledge module with the approach of

using genetic algorithms [MB10] for creating test sets.
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QoS Property Category Valid Values

Response Time

1 ≤ 5ms

2 6ms− 10ms

3 11ms−20ms

4 ≥ 21ms

Table 2: Category Example

4.4.1 Test Case Adaption

In the following, a test set denotes a number of l different test cases. It should be taken

care that a test set does not contain too many test cases because every test case results in

a service-request and every service-request generates load for the service provider system.

Therefore, it is necessary to find a suitable selection of test cases to compare and test

services. As suggested in [Xia06], test cases are categorized by QoS properties and quality

levels. Therefore, every QoS property is divided into different quality categories on the

test system. These categories are used to distinguish between different QoS requirements.

The test system manages m test sets for one category. A QoS property is e.g. the response

time. Table 2 shows an example for such response time categories.

If a client discovers a non-functional error,
Crossover Oper-

ator

Modified

Crossover

Operator

Two offspring One offspring

Locus of a gen is

important

Locus of a gen is

not important

All alleles are

handed on to the

offspring

A distinction is

made between

dominant and

recessive allels

Table 3: Crossover Operator Modifications

he has to send the ID of the service caus-

ing this error to the test system, the cor-

responding input, and the violated require-

ments. The test system uses these errors as

test cases and generates test sets with this

information. An error counter is attached

to every test case. The value of the error

counter reflects the up-to-dateness of a test

case. When an error is reported, the corre-

sponding error counter will be increased.

In case of a new error, a test set will be

chosen randomly and a test case to be sub-

stituted will be selected. For the selection,

it has to be checked if the test set contains test cases having an error counter of value zero.

In this case, one of them will be chosen randomly to be substituted. Otherwise, the selec-

tion of a test case will be based on a probability reverse proportional to its error counter.

Test sets cannot be generated by errors only, but also by recombination of existing test

sets. The advantage of recombinations is that good test cases can be unified to one test set.

Hereby, is it possible to create better test sets from already existing ones. The approach

presented in this paper is based on a genetic algorithm. This algorithm shows differences

to standard genetic algorithms to reflect the considered application. Individuals are given

by test sets of a QoS property category.

Test cases form the alleles and the fitness of a test set (individual). tj is denoted as f(tj)
and equals the sum of the error counters belonging to test cases of tj . Let eci be the
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error counter of test case i. Using the fitness, we can calculate the probabilities of the

individuals. The probability pj of an individual j depicts its possibility to survive, because

an individual is chosen for the reproduction operator as well as for the crossover operator

with probability pj =
f(tj)
F

, where f (tj) =
l�

i=1

eci and F =
l�

j=1

f (tj)

For the crossover operator, two individuals have to be chosen. The crossover operator will

produce one offspring from these two individuals. Not all alleles will be handed to the

offspring, it will be distinguished between dominant and recessive alleles. The selection

of alleles, which will be part of the subsequent generation, is affected by the probabilities

calculated based on the error counters. The probability to include a test case (allele) in

the next generation is proportional to the value of its error counter. First of all, the sum

S of all error counters for both test sets has to be provided to calculate the probability

S =
2�

j=1

l�

i=1

ecij , where ecij is the error counter of test case i in test set j. Afterwards,

the probability pCij =
ecij
S

can be calculated. Because we do not put back a selected

allele, the values of S and pCij change after every selection. Test cases handed on to the

next generation by the crossover operator are called dominant alleles while the others

are called recessive. Changes made to the crossover operator compared to the standard

crossover operator are listed in Table 3.

The reproduction operator moves
Mutation Operator Modified Mutation

Operator

Random selection of an

allele which is to be

mutated

The probability of se-

lecting an allele to be

mutated depends on its

error counter

New allele is chosen

randomly

New allele is chosen

from parent generation

with the help of the Fit-

ness and error counters

Mutation is not can-

celled

Mutation will be can-

celled if it causes a du-

plicate allele

Table 4: Mutation Operator Modifications

an individual to the next genera-

tion without any changes. The only

modification of this operator is not

to allow an individual to be cho-

sen twice. Therefore the value of

F as well as pj change after ev-

ery selection. A major problem of

the crossover and reproduction op-

erator is their seldom appliance to

test sets having a low fitness value.

Even with this low fitness value,

these test sets might contain some

test cases with high error counter

values. Due to low error counter

values of the majority of test cases,

the overall sum nevertheless would be low. These high rated test cases would rarely have

a chance to be handed on to the next generation without the mutation operator. For every

mutation a test set has to be chosen from the current generation. The selection of test set

j from all available test sets is done with probability pMj = 1− pj , where pj is defined as

described before. A test set is chosen for mutation with a probability reverse proportional

to its fitness. This allows to extract test cases with high error counter values from test sets

with a low fitness. From the chosen test set, a test case si will be taken with the probability

pMST
i . This probability is proportional to the value of the corresponding error counter eci
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of test case si : p
MST
i = eci

l�

j=1

ecj

. A test case ek from the next generation has to be chosen

to be substituted by test case si. The test set in which the substitution takes place is chosen

randomly. If the test case si is already an element of this test set, the mutation will be

cancelled. This avoids the presence of duplicate test cases in a test set. Test case ek, which

has to be substituted, will be chosen with probability pMET
k = 1 − eck

l�

j=1

ecj

. This results

in test cases with a low error counter having a higher probability to be substituted. The

modifications of the mutation operator are summarized in Table 4.

Genetics provide a solution for adaption of individuals to a changing environment. This

is one reason for taking genetic algorithms to address the issue of test case adaption. An-

other important issue is that genetics only takes the sum of all properties of an individual

to calculate its fitness. This means an individual having a high fitness may even have low

rated properties. The importance of handing on properties with a low rating is given by

the changing environment. The rating of a property can improve as the system context

changes. This reflects the changing ability of test cases to detect faults as the offered ser-

vices and the requests change. We are confronted with the problem of an always changing

search space and the consequence of never reaching a final optimum. The goal is to keep

a variety of test cases and also to consider their rating changes over time. This implies

giving newly registered test cases a chance to improve. Therefore, test cases with a low

error counter should also get a chance to be integrated into the used test set.

4.4.2 Initial Test Setup

Initially, no test sets exist. However, services have to be tested from the start to find

out which requirements they fulfill. Therefore, this phase will be conducted similarly to

[TPC+03]. When a service is registered to the test system, the service provider has to

deliver test cases for this service. Furthermore, the service provider has to deliver infor-

mation about the service’s QoS properties. Optionally, the service provider can specify, for

which QoS property a test case is especially applicable. If no information is given, the test

case will be seen as relevant for all QoS properties. The QoS property category of a test

case is given by the QoS properties of the corresponding service. These initial test cases

will be put into a pool belonging to the corresponding QoS property and category. There

is a dedicated pool for every type of service and QoS property category. Furthermore, the

pool can have test cases sent by a client. These test cases might not have caused any errors

yet, but the client favors them to be tested. In this case, the client has to act like a service

provider. The client has to send the type of service to be tested, the QoS property and

the QoS property category. This enables testing a service not only with its own provided

test cases, but also with other test cases provided by services of the same category or by

clients.

The m test sets are generated with randomly chosen test cases from the corresponding

pool. Test cases are removed from the pool as soon as they are used in a test set. As

an improvement to the work of [TPC+03], services are also tested with inputs, which are

currently used by clients and already have caused errors.
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The step of generating a pool and m test sets is only necessary, if a service of a not existing

functional domain is registered. Errors and inputs can be reported continuously to the

service registry. Furthermore, the adaption and testing is a continuously repeating process

of our test system.

5 Current State and Outlook

The approach presented in this paper is part of ongoing research, which focuses on enhanc-

ing the (self-)management capabilities of emerging home service platforms. Although the

context model and the semantic service extensions presented here are fundamental ele-

ments of context-aware systems, they are just the basics for the creation of these self-

management capabilities. As the introduction of semantics, just like service-orientation,

decouple concepts from implementation technologies, the semantic service registry con-

cept presented here is not limited to a specific implementation technology. For the pro-

totypical implementation, however, the OSGi service platform [OSG09] was selected in

combination with the Jena Semantic Web Framework [jen08] and the Pellet OWL 2 Rea-

soner [SPG+07] for ontology and SPARQL query processing. Here, the semantic service

registry extends the default OSGi service registry and offers an additional client API for

semantic service selection. Service registrations use either distinct or default OSGi API

methods. In the case of the latter, OSGi service registration calls are intercepted and their

associated bundles inspected for ontologies using OSGi’s Event Hook mechanism that

allows the inspection of OSGi services, whenever their runtime state changes (i.e., they

are registered or unregistered). As clients have to formulate specific queries for seman-

tic service look-ups, the semantic API offers an additional query-based method for this.

At the current stage, however, the client still has to address the OSGi service interface

of the targeted semantic service as part of the invocation, as abstract service queries in-

cluding parameters cannot be mapped to arbitrary OSGi services currently, yet. For goal-

or intention-driven semantic services, the service semantics have to be decoupled from

service interfaces as well.

Part of this research focuses on the development of a self-management module for ser-

vice platforms, which relies on dedicated management ontologies and associated rules to

manage the platform – applications, services and devices – autonomically. As monitoring

and state assessment are critical for this task, this management module relies on sensors

and tests (as described in Section 4.4) to gather runtime information required to compute

an appropriate management action to improve the managed system’s state. Here, the ap-

proach for service testing with test sets plays an important role, as the effectiveness of

management actions could be tested in this setup as well. Apart from the self-management

module, test sets are generated by occurring faults and with a genetic algorithm. This re-

sults in test sets, which adapt to the current faults and offered services. The advantages

of this testing method, therefore, lie in dynamic service environments. Future work will

implement, test, and compare this approach with other solutions. Furthermore we think

about expanding the fitness function to include other parameters besides the error counter.
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Abstract: We have proposed an adaptive content distribution network (CDN), FCAN
(Flash Crowds Alleviation Network), which changes its structure dynamically against
a flash crowd, that is a rapid increase in server load caused by a sudden access concen-
tration. FCAN in our preceding studies responds only to static content delivery. In this
paper, we extend FCAN to alleviate flash crowds in video streaming. Through some
experiments, we confirmed that FCAN for video streaming is effective to alleviate
flash crowds.

1 Introduction

When a Web site catches the attention of a large number of people, it gets an unexpected
and overwhelming surge in traffic, usually causing network saturation and server malfunc-
tion, and consequently making the site temporarily unreachable. This is the “flash crowd”
phenomenon on the Internet. An example of a flash crowd is Figure 1, which shows the
traffic volume of Web site during the solar eclipse based on a real access log provided
from “LIVE! ECLIPSE 2006” [LE06]. During the solar eclipse, the accesses from clients
increased several times higher than the normal condition by flash crowds.

We have proposed an adaptive content distribution network (CDN), FCAN (Flash Crowds
Alleviation Network), which changes its network structure adaptively depending on a load
fluctuation against flash crowds [Pan06, Yos08]. FCAN only focused on static content
delivery in our preceding studies, thus in this study, we extend FCAN to video streaming.

A large amount of clients receive a sequential stream from a streaming server, therefore
network traffic is concentrated on a specific site on the Internet. To assure resilience in
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Figure 1: Flash Crowds on “LIVE! ECLIPSE 2006” site

P2P video streaming, the FCAN framework is thought to be promising. There is a survey
paper on resilience in P2P video streaming [Abb11], however, there is no system which
changes its network structure dynamically according to load fluctuation.

In this paper, we describe FCAN’s extension. It uses Apple’s HTTP Live Streaming
[AD11a] for stream segmentation and distributed delivery. This paper is organized as
follows: Section 2 provides a brief overview of HTTP Live Streaming. Section 3 presents
an overview of our previous FCAN for static content delivery. Section 4 gives FCAN’s
extending design for video streaming. Section 5 describes preliminary experiments with a
simple prototype. Section 6 contains some concluding remarks.

2 HTTP Live Streaming

Conventional standard streaming protocols such as progressive download and real-time
streaming do not allow switching of stream source servers on the client side dynamically.
Therefore, massive accesses from clients concentrates on a particular site on the Internet.
Accordingly, the server and its surrounding network choke up, and a flash crowd occurs.

In order to resolve this problem of conventional protocols, Apple has introduced a new
protocol for video streaming, HTTP Live Streaming (also known as “HLS”). It has been
proposed as a standard draft for the Internet Engineering Task Force [Pan11]. Figure 2
shows an overview of this protocol.

The server starts providing a video stream with the following procedure: (1) Encodes an
audio/video inputs; (2) Divides the encoded stream into a set of media segments (“.ts”
files), and makes an index (“.M3U8” file) which refers them; (3) Delivers them to clients
using HTTP on the Internet.

This protocol enable a client to switch the source server dynamically as opposed to the
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Figure 2: HTTP Live Streaming Overview

conventional streaming protocols. The delivery system archives load distribution easily
with additional servers.

As another key feature, HTTP Live Streaming supports “adaptive bitrate.” The server
provides alternative streams with different quality levels of bandwidths, so as to enable
a client to optimize the video quality according to the network situation, as the load on
the network and CPU, both on the server side and the client side, fluctuates on a frequent
basis.

3 FCAN

FCAN is an adaptive CDN which takes the form of C/S or CDN depending on the amount
of accesses from clients. Specifically, in the C/S mode, a server provides contents to
clients as in a traditional C/S. In the CDN mode, when the server detects a coming of a
flash crowd, volunteer cache proxies in the Internet construct a temporary P2P network
and provide the content on behalf of the server. These volunteer proxies are recruited in
advance out of providers and organizations. In case servers in such providers and organi-
zations suffer from flash crowds, they will be helped by other volunteer proxies. FCAN is
built upon this mutually-aiding policy. Figure 3 shows an overview of FCAN.

In our preceding studies, we summarized some researches to alleviate flash crowds [Yos08].
These researches are divided into three categories: server-layer, inter-mediatelayer and
client-layer solutions, according to typical architectures of networks. FCAN is an inter-
mediate-layer solution, which employs an Internet infrastructure of cache proxies to or-
ganize a temporal P2P-based proxy cloud for load balancing. However, FCAN has some
extensions with some dynamic and adaptive features. Our FCAN studies achieved very
promising results regarding static content delivery on the real Internet [Miy11].
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4 FCAN for Streaming

4.1 Structure Transition

First, We changed the behavior of structure transition in the previous FCAN design.

The server and the cache proxies in the proxy network always monitor the amount of ac-
cesses they receive from clients and evaluate the load on the network. The system switches
to the CDN mode if all nodes’ loads are higher than a certain threshold, and switches back
to the C/S mode if lower. Each cache proxy sends its own load information to the server
periodically, and the server determines whether to perform structure transition.

We use two thresholds to prevent “thrashing” between the two mode. The threshold for
transition from the C/S mode to the CDN mode is set to higher than the one for transition
from the CDN to C/S.

In peaceful times, the conventional C/S architecture satisfies most of the client requests.
A server and cache proxies, both of which comprise FCAN, do little more than what
normal ones do. When a flash crowd comes, the server detects the increase in traffic
load. It triggers a subset of the proxies to form an overlay, through which all requests are
conducted. All subsequent client requests are routed to this overlay.

The server-side procedure is outlined as follows: (1) Selects a subset of proxies to form a
CDN-like overlay of surrogates, and builds a distribution tree; (2) Pushes the index file and
stream segments to the node of the distribution tree, so as to meet the real-time constraint
of the video streaming; (3) Prepares to collect and evaluate statistics for the object from
the involved proxies, so as to determine dynamic reorganization and release of the overlay.

The proxy-side procedure is outlined as follows: (1) Changes its mode from a proxy to a
surrogate (or, in the strict sense, a mixed mode of a forward proxy and a surrogate); (2)
Stores flash-crowd objects (except the index file) permanently, which should not expire
until the flash crowd is over; (3) Begins monitoring the statistics of request rate and load,
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and reporting them to the server periodically.

In the live streaming, the index file is updated periodically, therefore the server monitors
its composition, and pushes the segments at an appropriate time. Meanwhile, when the
proxy is released by the server, it discards the index so as to keep the consistency among
the nodes.

When the member server detects the leaving of the flash crowd, the involved proxies are
dismissed one by one with the following procedure: (1) The server notifies the proxy to be
dismissed; (2) The server requests the related proxies to modify the relation of connection;
(3) The proxy changes its mode from a surrogate to a proxy.

The CDN-like overlay transits back to the normal C/S mode when all the proxies are
dismissed. They are not all dismissed at once, since the low load may be just temporary,
and the system should therefore remain in the anti-flash-crowd mode for a while.

4.2 Dynamic Resizing and Quality Restriction

The proxy network is a pure P2P network. Therefore, it is highly fault-tolerant and scal-
able. Unlike traditional P2P systems, it does not include clients into the network itself in
order to assure reliability and security.

FCAN resizes a scale of the proxy network depending on a load fluctuation adaptively in
order to avoid troubles such as server down by massive access concentration. Figure 4
shows how the system works in the CDN mode.

When the server detects a coming of flash crowds, it forms a temporary proxy network as
shown in the lefthand side of Figure 4. If the initial network cannot handle increasing an
amount of accesses, the server recruits a new member proxy one by one as shown in the
middle of Figure 4.

If the server cannot recruit temporary proxies any more, it degrades the quality of the video
stream as shown in the righthand side of Figure 4. For example, in the situation that the
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system provides video streams of two different qualities, high and low, it delivers the low
quality content as substitute for the high quality one under this quality restriction. The
network occupancy per client decreases so that the server can alleviate the load of whole
delivery network.

If the proxy network can easily handle all the incoming loads, the server may lift the
restriction of the stream quality at first. After the derestriction, it releases temporarily-
recruited proxies one by one until all proxies are dismissed. Finally, the system all turns
back to the normal condition.

4.3 Access Redirection

In our preceding studies, FCAN uses DNS-based redirection, i.e. the authoritative DNS
server redirects an access to an appropriate node depending on the network structure. We
use TENBIN [Shi00] for the authoritative DNS server. It is a high-performance DNS
which allows server selection policies and DNS lookup entries to be changed dynamically.
DNS-based redirection works transparently to users, however, we confirmed “cache ef-
fect” problem which is caused by some DNS servers somewhere in the world which make
caches of the address resolution at their own discretion.

In this study, we make the client access redirect to an appropriate server through the medi-
ator. The mediator works on the same machine as the client software and relays requests
from the client to the servers. It handles client requests with the following procedure: (1)
Receives a list of working servers from the origin server; (2) Receives the content from a
certain server in the list, and provides it to the client; (3) When the mediator get a request
from the client next time, it receives new list from a certain server; (4) Return to (2).

Using the mediator, we eliminate the cache effect problem, and even utilize geographical
information-based redirection for example. While the mediator works non-transparently to
users, we expect that the function of the mediator can be implemented in browser cookies
in the future.

5 Preliminary Experiments

We conducted some preliminary experiments on a real network with a prototype of the
system. Figure 5 shows an overview of the experiments.

In our experiments, we use some hosts in Saitama University and Kyushu Sangyo Uni-
versity for a server, proxies, a pseudo client, and a client node. We use Apple’s stream
segmenter (mediastreamsegmenter) for the segmenter, and QuickTime Player for Quick-
Time X in the client.

The pseudo client is to trigger the FCAN’s functions against flash crowds. It submits
requests for randomly chosen segments to the server following the pattern shown in the
Figure 6. In the rest of this section, CP1, CP2 and CP3 are the proxies shown in the Figure
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Table 1: Segments for On-Demand Experiment
Quality Resolution Average size Duration

High 480 × 360 960 [KB] 10 [sec]
Low 320 × 240 410 [KB] 10 [sec]

5.

We made two experiments with two delivery methods, live and on-demand. In the on-
demand streaming experiment, the server provides high and low quality contents with
adaptive bitrates. We use segments shown in Table 1, which are samples of HTTP Live
Streaming in the Apple Developer’s site [AD11b]. The client software, the client has a
master index file indicating these two quality contents, and the QuickTime Player requests
segments of an adequate quality depending on load fluctuation following the master index.
On the other hand, in the live streaming experiment, the server provides contents in a single
quality in real time.

The server computes a load value regarding the size of requested segments. In the exper-
iments, thresholds for load detection are defined beforehand based on some experiences.
Workloads on the real Internet varies, and automatic and dynamic configuration of the
thresholds is difficult. We suppose they may be configured based on the server capacity
and the network bandwidth around the server.

Table 2 shows the time-line of the live experiment. We confirmed that the structure transi-
tion and dynamic resizing were performed depending on load fluctuation.

Table 3 shows the time-line of the on-demand experiment. In addition to the result of the
live streaming, the stream quality was limited during server load growth.

Table 4 shows the sequence of the stream segments which the client played in the on-
demand experiment. The client consistently requested the high quality contents until the
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Figure 6: Request Pattern of Pseudo Client

Table 2: Time-line of Live Experiment
Time Actions

0 [sec] Start experiment
Pseudo client request start

30 [sec] Client request start
130 [sec] Structure transition to CDN

Recruit the core proxies (CP1, CP2)
220 [sec] Recruit the additional proxy (CP3)
490 [sec] Dismiss the additional proxy (CP3)
550 [sec] Structure transition to C/S

Dismiss the core proxies (CP1, CP2)
600 [sec] End experiment

end of the experiment. In the on-demand streaming, the segmentation is done before the
beginning of the experiment and the composition of the index does not change, therefore,
clients received some number of segments before playback. After the number 27, the
server degraded the stream quality for load alleviation, so the client received low quality
segments as substitutes for the high quality ones. As the server load decreased, the server
lifted the restrictions on the quality. After the number 45, the client herewith received high
quality segments as required again. During the experiment, no malfunctioning, such as
interrupt in the playback, was observed when the quality changed.

Figure 7 shows the load transitions of the server with FCAN and without FCAN in the
on-demand experiment. The case of the server with FCAN shows the average loads of
member nodes in the distribution network. The first peak at the 40th second shows that
“buffering” was done when the client started the playback as mentioned above. The load
on the server exceeded the higher threshold at the 130th second, then structure transition
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Table 3: Time-line of On-Demand Experiment
Time Actions

0 [sec] Start experiment
Pseudo client request start

30 [sec] Client request start
130 [sec] Structure transition to CDN

Recruit the core proxies (CP1, CP2)
220 [sec] Recruit the additional proxy (CP3)
250 [sec] Quality degradation
430 [sec] Quality improvement
490 [sec] Dismiss the additional proxy (CP3)
550 [sec] Structure transition to C/S

Dismiss the core proxies (CP1, CP2)
600 [sec] End experiment

Table 4: Playback Time-line of Client
Segment Name Size Quality

fileSequence0.ts 926 [KB] High
fileSequence1.ts 946 [KB] High
fileSequence2.ts 950 [KB] High

... ... ...
fileSequence26.ts 958 [KB] High
fileSequence27.ts 414 [KB] Low
fileSequence28.ts 410 [KB] Low

... ... ...
fileSequence44.ts 414 [KB] Low
fileSequence45.ts 958 [KB] High
fileSequence46.ts 958 [KB] High

... ... ...
fileSequence60.ts 967 [KB] High
fileSequence61.ts 958 [KB] High
fileSequence62.ts 963 [KB] High

to the CDN mode occurred so as to alleviate load concentration. However, the load on the
member nodes continued to increase even after the transition, a new member proxy was
recruited at the 220th second, and additionally the quality of segments was degraded at the
250th second, and consequently the server withstood the heavy load condition.

On the contrary, in the case of the server without FCAN, we observed that load values were
far exceeding ones of the server with FCAN consistently. We, therefore, confirmed that
FCAN’s features against flash crowds were performed as a result of the increase of client
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Figure 7: Comparison of load transitions in On-Demand Experiment

requests, and FCAN archived dynamic load balancing. We obtained equivalent results also
in the live streaming experiment.

6 Conclusion

In our preceding studies, FCAN only focused on the static content delivery, however, flash
crowds occur also in the video streaming. In order to alleviate flash crowds in the video
streaming, both live and on-demand, FCAN adopts a new features such as dynamic resizing
and quality restriction so as to raise a resilience of the system. In this paper, we proposed
FCAN’s extension for video streaming and demonstrated a prototype of the system on the
real Internet. Through some experiments, we confirmed that FCAN’s extension works
effectively to alleviate flash crowds.

We are still at a starting point toward practical implementation and promotion of FCAN.
Future research directions include: (1) quality guarantee in the CDN mode in the situation
that multiple proxies deliver the same stream content, (2) appropriate thresholds assign-
ments, and (3) implementation of dynamic access redirection using browser cookies.
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Abstract: We present an efficient protocol which, under certain assumptions, provides
a suitable level of security and anonymity in the ideal cipher model when computing
the intersection of two private data-sets containing lists of elements from a large do-
main. The assumptions are that each node is pre-loaded with a set of pseudonyms,
signed by the network’s trusted authority; that the cardinality of each data-set is glob-
ally known. Our protocol first establishes a secure, trusted connection between two
partners, then uses lightweight, symmetrical key operations for encoding and privately
comparing the elements of two sets. Given a cryptographically secure symmetric en-
cryption scheme, our protocol is safe for both semi-honest and malicious adversaries.
The primary target platform for this protocol are Wireless Sensor Networks (WSNs),
specifically those used in Ambient Assisted Living (AAL) scenarios, which almost
entirely consist of a heterogeneous mix of devices, providers and manufacturers.

1 Introduction

Self-organizing WSNs consist of a multitude of small-scale devices with sensing proper-

ties and with wireless communication capabilities. The size and cost of such nodes makes

them easy to be manufactured and distributed, but an inherent implication is the fact that

they are resource restricted devices: low energy, low CPU processing power, small mem-

ory and storage space. WSNs are used to collect, process and distribute data from an

environment. This makes them usable in projects related to military or surveillance tasks,

vehicular networks communication, body and environment monitoring with AAL applica-

tions.

The AAL technologies are meant to help create and maintain a safe environment (both

medical and socially) that addresses the needs of elderly or impaired people. The scenario

is even more relevant considering that the current trend in Europe sees a rise in the percent-

age of elderly people [Ste05]. A cost-effective, unintrusive care, that would allow them to

retain their autonomy is an appropriate, welcomed solution.

The use of WSNs in the AAL context implies that important security and privacy re-
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quirements, that address both legal and personal needs, have to be fulfilled for them to be

commercially and legally accepted (i.e. patience confidentiality needs maintaining). The

public’s acceptance, as they are social projects, is also a key aspect.

The WSN security is a broad research domain with specific challenges: privacy protocols

and algorithms have to suit their hardware restrictions, but this has to be done without

sacrificing the security level and without hindering other applications from performing

their tasks, as the security should be a discrete, intrusive layer. Even more, in case of AAL

projects, there are some additional, notable requirements:

• For certain AAL use case scenarios, the trade-off between performance and security

needs to not surpass certain metrics, like the response time needed for a system to

respond to the input of a user. Such interactions between the users and the system

should be felt as instantaneous, i.e. users shouldn’t have to wait in the seconds or

minutes range if they want to remotely trigger a light-switch.

• Concerning groups of sensors and devices, an AAL scenario is implicitly heteroge-

neous, as several users and their devices might join or leave the network: visits from

friends and technical or medical personnel.

• The anonymity of the user, of his processes and requests is another important as-

pect - a TV, light switch or energy measurement system should be oblivious of the

identity of its users, but at the same time it should retain the ability to validate their

authorization of using its services.

Problem Statement and Our Contribution Suppose node A is a data aggregator or end

device (i.e. a display) that queries node B. Because of the multi-hop, ad hoc nature of the

network, one could consider two relevant scenarios: (i) node A cannot reach B directly,

and (ii) node A has to make sure (i.e. by checking a list of permissions) that it only accepts

data readings from a node affiliated with the network. In the scenario (i), node B would

have to initiate a route through trusted nodes only, while in the latter (ii) A would have to

check whether B’s permissions match its own access list. In both scenarios, this is ideally

done without any of the involved parties revealing any additional information except a

list of common group memberships in the data routing scenario, or the list of common

permissions in the access control scenario. This is known as the Private Set Intersection

[FNP04] problem .

The goal of this paper is to offer an efficient private set intersection algorithm, usable on

resource restrained sensor nodes. We make the following assumptions: that there exists

a trusted authority (TA), that the number of elements in each node’s data-set is relatively

small, and that there is a global domain from which the elements were extracted and which

is large enough. It is beyond the scope of this paper to provide suggestions regarding

changes to the sets on the nodes in the WSN after deployment, like the revocation of an

element.

Returning to the previous AAL scenario, let node A and B each have k elements from

a common domain whose size is n. These elements could stand for groups inside the

40

40



network or different access permissions. It is required to securely and privately compute

the intersection of the two groups belonging to A and B. Given A = {a1, ..., ak} and

B = {b1, ..., bk}, compute A ∩ B without disclosing any other information about the

identity of the other elements.

We propose a resource-efficient solution which preserves the anonymity of the involved

nodes, the anonymity of the elements that are not part of the their sets intersection, and

which uses lightweight cryptographic operations for its methods. Briefly described, the

core of the protocol uses the value of each element in a set, it’s signature generated by

the overall TA, and a secure, shared session key. Both parties will encrypt each of their

set elements by computing, from the element’s corresponding signature and the shared

session key, a one-time symmetric key.

The role of the signature associated to each element, and it’s actual form, is to prevent the

creation or unauthorized association of elements by a node. A detailed explanation is not

in the scope of this paper and will be explained in a future publication

An important note is that, since there is not real need for decrypting the generated, en-

crypted values, the use of a message authentication code like HMAC [19802] or AES-

CMAC [TIETF06] would yield an even faster protocol, with fewer resource requirements.

Paper Organization The rest of the paper is organized as follows. Section 2 briefly

describes the related work and the general functionality of alternative solutions. Section

3 describes the cryptographic blocks used in the current form of the protocols. Section 4

contains the detailed description of our protocol, together with its prerequisites and explicit

assumptions. Section 3.3 lists the behaviour of different possible malicious nodes; Section

5 offers an overview of future plans and changes to the protocol, security wise.

2 Related Work

Freedman, Nissim and Pinkas (FNP) proposed in [FNP04] a Private Disjointness Test,

achieved by using a scheme that preserves the group homomorphism of addition, as well

as of multiplication with a constant.

An additive homomorphic, public key cryposystem (Paillier’s cryptosystem [Pai99]), al-

lows a party to oblivious compute Epk(x)·Epk(y) = Epk(x+y) or to compute (Epk(y))x =
Epk(x · y) being given only Epk(x) and Epk(y), where x, y are some plain-text messages

and Epk is the additive homomorphic function.

The basic structure of the FNP protocol consists of defining a polynomial P whose roots

are the elements of private set X = {x1, . . . , xn} of size kc:

P (y) = (x1 − y) · (x2 − y) · . . . · (xkc
− y) =

�kc

u=0
αuyu.

The αu coefficients are then encrypted using a Paillier’s cryptosystem and sent by the

verifier A to the prover B, whose role is to evaluate the polynomial for each of his private

elements. Each result is randomized by multiplying it with a non-zero constant r. An
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optional final step is to also add the element to the randomized polynomial result. The

resulting cipher-text will thus have the form Epk(r · P (y)) or Epk(r · P (y) + y) for each

element y of B. Once the verifier A receives the encryptions back from the B, he only needs

to check if any of the decrypted values are zero, since any common element would be a

root of P. If the latter encryption was used, A will need to check if the decryption matches

an element from his own set.

Agrawal, Evfimievski and Srikant (AgES) proposed a different approach in [AES03], for

information sharing accross private database. For it to work, a commutative encryption

scheme is needed [Gam85], [MVO96]. Informally, a commutative encryption schemes

uses to a pair of cryptographic function E1 and E2 with the property that EA(EB(m) =
EB(EA(m)). If just EA(EB(m)) is known, neither A or B will be able to retrieve m.

AgES works as follows. Both partners A and B apply a hash on their private sets. Each

then generates a secret key and encrypts each hashed element. The resulting sets of en-

cryptions {EA(H(xA
1 )), . . . , EA(H(xA

n ))} and {EB(H(xB
1 )), . . . , EB(H(xB

k ))} are ex-

changed, where H is a cryptographic hash function, E is the encryption function using A’s

and B’s secret keys, n and k are the cardinalities of the two sets. Each party then encrypts

all the elements it received from the communication partner. In A’s case, this means com-

puting EA(EB(H(xB
j )), for all 1 ≤ j ≤ k. For B, EB(EA(H(xA

i )), for all 1 ≤ i ≤ n. A

then proceeds to send pairs of the form Pj = �EB(H(xB
j ), EA(EB(H(xB

j ))� back to B.

By intersecting the commutative encrypted set received from A with his own, B will get a

subset of elements for which EA(EB(H(xB
i )) = EB(EA(H(xA

j )). xB
j is then found by

using Pj .

Both the FNP and the AgES protocols and their variants imply the use of public-key oper-

ations, whose number is directly proportional with the size of the elements in the groups

of the involved parties. This is problematic especially for sensor networks.

3 Preliminaries

3.1 Bilinear Pairings

Let (G1, +) and (G2, ·) denote two cyclic groups of order q (some large prime), in which

the Discrete Logarithm Problem (DLP) is considered to be hard.

An admissible bilinear pairing ê : G1 × G1 → G2 has the following properties:

1. Bilinearity: ∀g1, g2, g3 ∈ G1, ê(g1 + g2, g3) = ê(g1, g3) · ê(g2, g3) and

ê(g1, g2 + g3) = ê(g1, g2) · ê(g1, g3).

2. Non-degeneracy: ∃g1, g2 ∈ G1 : ê(g1, g2) �= 1.

3. Computability: ∀g1, g2 ∈ G1, ê(g1, g2) is efficiently computable.

In practice, the known implementations of these pairings - the Weil ([Jou00]) and the Tate

pairings - prove that such constructions exist and involve fairly complex mathematics.
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Typically, G1 is an elliptic-curve group and G2 is a finite field.

3.2 Identity-based Encryption

Following the definition given by Boneh and Franklin [BF03], an identity-based encryp-

tion scheme (IBE) is specified by the following four algorithms:

Setup Given a security parameter k ∈ Z
+ as input, the algorithm returns the system

parameters params and the master − key.

Step 1: A randomized algorithm (known as a Bilinear Diffie-Hellman parameter gen-

erator), running on input k in polynomial time, generates: a prime q, the description

of two groups G1 and G2 of order q, and the description of an admissible bilinear map

ê : G1 × G1 → G2. A random generator P ∈ G1 is also chosen.

Step 2: A random s ∈ Z
∗

q is picked and Ppub = sP is set.

Step 3: The cryptographic hash functions H1 : {0, 1}∗ → G
∗

1 and H2 : G2 → {0, 1}n for

some n are chosen.

Then, the message space is defined as M = {0, 1}n and the cipher-text space as C =
G

∗

1 × {0, 1}n. The system parameters params = {q, G1, G2, ê, n, P, Ppub, H1, H2} are

published, and the master − key s ∈ Z
∗

q is kept secret.

Extract Using params, master − key and an arbitrary ID ∈ {0, 1}∗ (the public key)

as input, a private key dID is returned by:

1. computing QID = H1(ID) ∈ G
∗

1, and

2. setting dID = sQID, s being the master − key.

Encrypt With params, ID and M ∈ M as input, the cipher-text C ∈ C is returned by

doing the following:

1. compute QID = H1(ID) ∈ G
∗

1,

2. pick a random r ∈ Z
∗

q , and

3. set C = �rP, M ⊕ H2(g
r
ID)� where gID = ê(QID, Ppub) ∈ G

∗

2.

Decrypt For params, C = �U, V � ∈ C a cipher-text encrypted using the public key ID

and a private key dID ∈ G
∗

1, M = V ⊕ H2(ê(dID, U)) ∈ M is returned.

To note is that the masks used during encryption and decryption are the same since:

ê(dID, U) = ê(sQID, rP ) = ê(QID, P )sr = ê(QID, Ppub)
r = gr

ID
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Each of these four algorithms must satisfy the standard consistency constraint: when dID

is a private key generated by the Extract algorithm for a given ID as public key, then

∀M ∈ M : Decrypt(params, C, dID) = M where C = Encrypt(params, ID, M)

3.3 Adversary Models

The definition of the adversary models, as defined in [Gol96], follows.

The Semi-honest Adversary Model The semi-honest model of an adversary assumes

that both parties act according to their defined action in a protocol, but they may store all

intermediate results and computations, and use this to learn more than what they would

know after working in an ideal model. In this case, only the initiator A of the protocol

receives an input from the responder B. Thus, A’s anonymity means that the responder B

is not able to determine if the sender has different inputs. B’s anonymity means that A will

not get more information from its output than that defined by the protocol.

The Malicious Adversary Model A malicious model permits an adversary to not follow

the protocol’s description. In this case, this would mean the responder B not replying to A’s

request, sending random generated elements or aborting the protocol at any point. Security

in the malicious adversary model means not revealing more information than in an ideal

model.

4 Protocol Description

The set for each entity that takes part in the protocol is assigned to it by a central secure

and TA. The initialization of each party consists of the following steps:

4.1 Initialization Stage

Both the network owner (the TA) and each of the nodes have to perform an initial setup

procedure. The two entities are described as follows:

Trusted Authority Bilinear Maps Setup The TA starts by generating the system pa-

rameters �q, G1, G2, ê, n, P, Ppub, H1, H2� and retaining the private master-key gTA as

previously described in Section 3.2. Additionally, a cryptographically safe symmetric en-

cryption scheme E is included into the system parameters.
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Element List Setup The TA defines a large enough domain, from which the elements are

randomly chosen. The TA also sets the global constant value kc, which represents the

maximal cardinality of each set loaded on a node.

Nodes Pseudonyms Generation for Each Node On every node, the TA deploys the public

system parameters. It then generates and loads a set of pairs of the form {PSAi

i , SPAi

i },

where PSAi

i is a collision-resistant pseudonym associated to node Ai, and SPAi

i =

gTAH1(PSAi

i ) is the secret point associated to it. [ZLLF06] and [BDS+03] have a more

elaborate description of such a key agreement; since we have a similar implementation,

the same notation is used.

Element List Loading The TA loads, on every node Ai, a set of pairs of the form {xAi

i , CSAi

i },

where CSAi

i represents the commitment signature (CS) for the value xAi

i , with the prop-

erty that for any two nodes, only identical elements will also have a common CS. Formally,

for any two nodes Ai and Aj , CSAi

i = CS
Aj

j iff xAi

i = x
Aj

j . The commitment signature

has two roles: first, to prove that an element was created and distributed by the TA. Sec-

ond, it is used to prove that a certain set of elements was created and assigned to a specific

node by the TA.

Because the cardinality of each set is set to size kc, the TA will also generate unique

random values and corresponding CSs to fill all the sets to the requested size, in those

cases when the representation of a node’s functionality would require less than kc different

elements.

4.2 Message Exchange

There are two distinct phases (see Figure 1) needed by the protocol: the first stage creates

trust between the two communicating parties. The second stage handles the private set

intersection and elements obfuscation.

Network Affiliation Proof and Shared Key Creation The network affiliation proof and

session key agreement both work by using an adapted IBE scheme, like the similar one

used in [ZLLF06] and [BDS+03]: let there be two nodes, A and B. The messages exchange

takes place as follows:

1. A initiates the protocol by selecting an unused pseudonym of his PSA
i , together

with a random generated number nA, and sending both to B:

A → B : PSA
i , nA

2. Upon receiving the message, B generates a random number nB , selects an unused

pseudonym PSB
j , and computes the key KB→A = ê(H1(PSA

i ), SPB
j ),

which forms the value

VB→A = H2(nA || nB || 0 || KB→A).
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The message is then:

A ← B : PSB
j , nB , VB→A

3. A generates his own key KA→B = ê(H1(PSB
j ), SPA

i ),
then checks if

H2(nA || nB || 0 || KA→B)
?
= VB→A.

4. The equation holds, according to Section 3.1, only if both nodes, A and B, had their

pseudonym and corresponding secret key issued by the same TA, owner of gTA:

KB→A = ê(H1(PSA
i ), SPB

j )
= ê(H1(PSA

i ), gTAH1(PSB
j ))

= ê(gTAH1(PSA
j ), PSB

i )
= ê(SPA

j ), PSB
i )

= KA→B

If the verification succeeds, A knows that B is under the same TA as him, and sends:

VA→B = H2(nA || nB || 1 || KA→B).
A → B : VA→B

5. B performs the same test as in the previous step and, if it succeeds, it will trust A.

Private Set Intersection As a result, not only did A and B authenticate themselves as

trusted (in a certain degree) nodes, they also established a shared key KA→B = KB→A =
K, that is used for establishing the private set intersection as follows:

1. Using the public symmetric encryption scheme E, B computes for every element

of his set the following output: ECKB
j

(xB
j ), where CKB

j = CSB
j ⊕ K is the

commitment key.

It then sends the resulting set set(B)K = {ECKB
j

(xB
j ), ∀xB

j ∈ set(B)} to A,

ordered lexicographically.

2. Upon receiving set(B)K
s , A creates its corresponding set set(A)K by computing:

ECKA
i

(xA
i ), where CKA

i = CSA
i ⊕K for each of its elements. The intersection of

set(A)K and set(B)K will then contain only their common elements.

4.3 Security

The security requirements are stated for the private set intersection part of the protocol -

regarding the anonymous authentication and key agreement stage, the proof is given by

the fact that given the difficulty of solving DLP in G1, given any pair {PSAi

i , SPAi

i }, it is

computationally unfeasible to deduce gTA. Detailed proofs on bilinear maps can be found

in [BF03].
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Network Affiliation Proof and Shared Key Creation

1. A → B : PSA
i , nA

2. B : KB→A = ê(H1(PSA
i ), SPB

j )
VB→A = H2(nA || nB || 0 || KB→A)

A ← B : PSB
j , nB , VB→A

3. A : KA→B = ê(H1(PSB
j ), SPA

i )

H2(nA || nB || 0 || KA→B)
?
= VB→A

VA→B = H2(nA || nB || 1 || KA→B)

A → B : VA→B

4. B : VA→B
?
= H2(nA || nB || 1 || KB→A)

Private Set Intersection

A and B share the common key KA→B = KB→A = K

E is a symmetric encryption scheme

1. B : set(B)K = {∀xB
j ∈ set(B), ECKB

j
(xB

j ), with CKB
j = CSB

j ⊕ K}

B → A : set(B)K

2. A : set(A)K = {∀xA
i ∈ set(A), ECKA

i
(xA

i ), with CKA
i = CSA

i ⊕ K}

set(A)K ∩ set(B)K will contain A’s and B’s common elements.

Figure 1: Message Exchange

The Semi-honest Case The protocol satisfies the correctness requirement in the semi-

honest model, as A receives an encryption of an element xi as long as it is part of As ∩Bs,

where As is the set of elements in A and Bs is the set of elements in B. For all the rest A

receives, in the ideal cipher model, what looks like random values .

A’s privacy requirement is automatically preserved, as it doesn’t expose any of its data-set

elements to B in the current scenario.

B’s privacy, given an A∗ that operates in an ideal model and given A that operates in a semi-

honest model, means that their view of the protocol is indistinguishable. Informal, the case

is represented by a curious adversary in the following example: by issuing a valid request

to another node, the attacker receives the encrypted list of its elements, then exhaustively

goes through the entire domain from which the values x and CSs were generated, an

computes all possible results. If the domains are small enough, the attacker succeeds in

finding all of the senders elements. As the assumption is that the TA uses a sufficiently

large domain, the proof is direct and holds as long as the chosen E is a secure symmetric

key scheme.
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The Malicious-Adversaries Case The meaningful attack of a malicious node means

trying generating random or carefully crafted elements instead of using the ones assigned

by the certification authority. More specifically, in the current context, without knowing

the signature key used to generate CS for a value x, it means having to find two correct

random numbers s, t with the property that for a i, (xi, ECi) = (s, t). The same proof as

in the semi-honest case applies.

5 Conclusions and Future Work

We presented an resource efficient, secure private set interaction protocol, while assuming

certain conditions, meant to be used in WSNs, more specifically in the context of AAL

environments. The protocol also authenticates trusted nodes and performs all the com-

munication anonymously (sender and receiver anonymity). It is secure against malicious

attacks by using an efficient, symmetric encryption schemes where the actual value, as

well as they key (commitment signature) are both unknown to a malicious attacker.

The protocol is not suitable for disjointness tests, as the cardinality of the intersection set,

as well as the elements that form it, are known. We hope to offer a viable, WSN solution

to this this problem, too.

A desirable feature is the ability of a party to detect the cases when the partner does not

contain a valid set of elements prior to performing the private set intersection routine. By

our definition, valid means assigned by the TA. This would prevent nodes from trying to

assume a false list of elements or to request a list without having a certified one of their

own. We will present our proposed solution in the near future.
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Abstract: In this paper, we focus on monitoring environments with wireless sen-
sor networks in which mobile sink nodes traverse sensing fields in a specific spatial-
temporal manner and aggregate various types of environmental data with different
deadline constraints distributed over sensor nodes. For such environments, we propose
an energy-efficient data aggregation method that reduces intermediate transmission in
multi-hop communication while guaranteeing predetermined deadlines. The basic ap-
proach of the proposed method is to temporarily gather (or buffer) the observed data
into several sensor nodes around the moving path of the mobile sink that would meet
their deadlines at the next visit. Then, the buffered data is transferred to the mobile
sink node when it visits the buffering nodes. We also propose a mobile sink-initiated
proactive routing protocol with low cost (MIPR-LC) that efficiently constructs routes
to the buffering nodes on each sensor node. Moreover, we simulate the proposed ag-
gregation method and routing protocol to show their effectiveness. Our results confirm
that the MIPR-LC method can reduce energy consumption by up to 23% when com-
pared with a simple routing protocol. In addition, the mobile sink nodes can gather
almost all of the observed data within the deadline.

1 INTRODUCTION

Based on recent advancements in micro-electro-mechanical systems (MEMS) and wire-

less communication technologies, wireless sensor networks (WSNs) have emerged as a

promising tool for monitoring environments in a wide range of applications [1]. A WSN

is generally composed of sensor nodes for observing environment data and sink nodes for

aggregating the data distributed over the sensor nodes. In WSNs, aggregation mechanisms

are often very dependent on multi-hop communication, i.e., because of limited radio ranges

of sensor nodes, data transmission between sensor-sink pairs are routed through several in-

termediate sensor nodes. An increase of such intermediate transmission leads to obvious

power consumption concerns, especially in large-scale WSNs, since it is widely recog-

nized that data transmission is responsible for a large part of the total power consumption

in sensor nodes [2]. Thus, as a means to reduce intermediate transmission, a mobile sink
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approach has attracted considerable attention over the last decade [3, 4, 5, 6, 7, 8].

In the mobile sink approach, a mobile sink node traverses a given sensing field and ag-

gregates data observed in sensor nodes when it moves close to them. This approach can

achieve an energy-efficient aggregation of data since it does not always use multi-hop com-

munication, i.e., the mobile sink node can gather data directly from the sensor nodes with-

out intermediate nodes. However, this approach increases the time delay that is required

for the mobile sink node to visit the sensor nodes. To overcome the delayed aggregation,

it is necessary for the sensor nodes to frequently use multi-hop communication in order

to reach the mobile sink node, which also contributes to their large power consumption,

as described above. Hence, the two objectives of realizing low power consumption and

shortening the delay time appeared to be mutually exclusive during the aggregation of the

observation data.

In this paper, we focus on monitoring environments with WSNs that require source-to-

sink delay bounds according to the observation data. More specifically, in our system

model, multiple mobile sink nodes exist to traverse a sensing field in a specific spatial-

temporal manner and aggregate various kinds of environment data with different dead-

line constraints. For such environments, we propose an energy-efficient data aggregation

method that reduces intermediate transmission in multi-hop communication while guaran-

teeing the delay bounds.

The basic approach of the proposed method is to temporarily gather (or buffer) the ob-

served data into several sensor nodes that exist around the moving path of the mobile sink

node. The buffered data is then transferred to the mobile sink node when it visits the

buffering nodes. For these buffering nodes, the proposed method uses sensor nodes that

would meet the deadline at the next visit of their mobile sink node. In addition, we also

propose a mobile sink-initiated proactive routing protocol with low cost (MIPR-LC) that

efficiently constructs routes to the buffering nodes on each sensor node, i.e., the routing

table contains routes from the sensor node to the shortest buffering nodes for all the mobile

sink nodes. Moreover, we evaluate the proposed aggregation method and routing protocol

by performing simulation to show their effectiveness. As a result, we confirm that the

MIPR-LC method can reduce energy consumption by up to 23% when compared with a

simple routing protocol, and the mobile sink nodes can gather almost all of the observation

data within the required deadline.

The paper is organized as follows. Section 2 describes the system model. Section 3 dis-

cusses related work. Section 4 presents the proposed aggregation method considering the

data deadline and the energy-efficient routing protocols. Section 5 presents the simulation

results. Section 6 concludes this paper.

2 SYSTEMMODEL

In this section, we show the system model used in this paper. In our model, multiple mo-

bile sink nodes traverse a given sensing field in a certain pattern and gather various kinds

of observation data with different deadline constraints. For example, typical applications
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include environment monitoring systems in a farm, for which various data such as tem-

perature, humidity, and sunlight are collected for the primary purpose of monitoring crop

growth. In this model, we assume farmers and farm machines to be mobile sink nodes.

Next, we explain the details of sensor nodes, mobile sink nodes, environmental data, and

performance metrics.

In this model, many homogeneous sensor nodes are deployed in a sensing field. A sen-

sor node is static and battery powered. In addition, a sensor node periodically generates

observation data that are then stored into its own local buffer that is sufficiently large (in

terms of capacity) to store data until the next visit of a mobile sink node. Furthermore,

two sensor nodes can directly communicate if they are within each other’s radio range.

The wireless communication between sensor nodes is generally stable, although at times,

sensor nodes may fail to receive packets owing to packet collision and radio noise.

In this model, existing mobile elements in a sensing field, such as farmers, farm machines,

and so on, are diverted to mobile sink nodes, i.e., mobile sink nodes are uncontrollable

and act with a specific spatial-temporal pattern. Furthermore, we define their patterns as

periodic with a given period for each mobile sink node. Mobile sink nodes move while

broadcasting beacons at fixed intervals and gather data from the beacon-received sensor

nodes.

A sensor node measures different kinds of environmental data. These data are gathered by

the mobile sink nodes within specific deadlines according to their type. Then, the mobile

sink nodes immediately transmit the collected data to a control center over a mobile phone

network such as 3G or WiMAX. In this paper, the delay time is the time that elapses

from the instant a sensor node measures data to the instant at which a mobile sink node

receives the data. For example, in the environment monitoring system, we consider that

there are no problems even if the delay time of the aggregation is approximately one day.

However, in the case of mechanical controls (e.g., the opening or closing of the windows

of a greenhouse based on results of the gathered data), the deadline of the data must be set

to approximately one hour.

Finally, we describe two performance metrics for aggregation methods in our system

model:

Energy consumption: Energy consumption is an important performance metric in data

aggregation. The network lifetime of the WSNs can be drastically extended by real-

izing an energy-efficient aggregation method. The energy consumption of a sensor

node is mainly dependent on the number of data transmission, including intermedi-

ate transmission, which are required for the multi-hop communication and message

propagation for routing construction. Thus, increasing the energy efficiency of a

data aggregation method leads to fewer data transmission for the collection of data.

Delay time: Another performance metric is the delay time for data aggregation. The delay

time occurs owing to the nature of the mobile sink approach. The delay time is

dependent on the cycle period of a mobile sink node. There is no problem if the

delay time for gathering the data is within the deadline.
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3 RELATEDWORK

Over the last decade, a number of approaches have been proposed for exploiting mobile

sink nodes for data aggregation in WSNs. From the perspective of data aggreagation ar-

chitecture, these approaches can be broadly classified into three types: mobile base station

(MBS)-based approach, mobile data collector (MDC)-based approach, and rendezvous-

based approach. In this section, we introduce the three approaches.

3.1 MBS-based and MDC-based approaches

In the MBS-based approach, a mobile sink node gathers observation data directly from

sensor nodes using multi-hop communication. In [3], the authors address the problem of

determining the sojourn times on the moving path for the mobile sink node using the lin-

ear programming (LP) method in order to maximize the network lifetime, i.e., to balance

the energy consumption of all of the sensor nodes required for the intermediate transmis-

sion. In [4], the authors propose a two-tier data dissemination mechanism for large-scale

WSNs in which multiple mobile sink nodes are deployed in the sensing field. With this

approach, sensor nodes transmit data to the nearest mobile sink node. For this MBS-based

approach, the delay time is short because the data are directly delivered from the sensor

nodes to the mobile sink node. However, many sensor nodes require more frequent inter-

mediate transmission for the multi-hop communication. In addition, with this approach,

the sensor nodes must update the route information to the mobile sink nodes by frequently

propagating control messages.

With the MDC-based approach, a sensor node stores data into its own local buffer and

waits for a mobile sink node to arrive within its transmission range. When the mobile sink

node arrives, the sensor node transmits the stored data to the mobile sink node in a single-

hop communication. In [5], the mobile sink nodes randomly traverse the sensing field to

gather the data from the sensor nodes. Moreover, to minimize the energy consumed by

the entire network, the authors in [6] solve a path selection problem in delay-guaranteed

sensor networks by exploiting path-constrained mobile sink nodes. With the MDC-based

approach, the sensor nodes can transmit data to the mobile sink nodes without the multi-

hop communication. However, the delay time increases because the sensor nodes need to

store the data in local buffers until visited by the mobile sink node. In addition, it cannot

gather data that have been generated by sensor nodes that do not have contact with any

mobile sink node. Although a controllable mobile sink node may solve this problem, the

installation of such a controllable node would incur additional costs.

3.2 Rendezvous-based approach

The rendezvous-based approach is a hybrid approach that combines the MBS-based and

MDC-based approaches. This approach introduces several rendezvous points (nodes) for a
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mobile sink node at which data are gathered from sensor nodes through multi-hop commu-

nication. These points then transmit the buffered data using the single-hop communication

to the mobile sink node that visits them. In [7], the mobile sink nodes pass through pre-

determined anchor nodes (i.e., rendezvous points) while collecting data. To gather data

at the anchor nodes, a tree structure-based aggregation method has been proposed. This

method organizes a tree structure from a cluster node to its child sensor nodes using a

routing protocol MintRoute [9]. The MintRoute protocol establishes the shortest route

from the cluster node to each child. In addition, in [8], the authors assume that the mobile

sink nodes can change their moving paths over time. Hence, they have proposed a data

aggregation method that selects as the rendezvous nodes the sensor nodes that are to be fre-

quently contacted by the mobile sink nodes. The rendezvous-based approach improves the

energy efficiency relative to that of the MBS-based approach, in the sense that it reduces

the number of intermediate transmission for multi-hop communication. Furthermore, it

can also reduce the delay time relative to that of the MDC-based approach.

Our proposed approach can be considered to be a rendezvous-based approach. In this

paper, we assume that observation data has a deadline time according to its type, and

multiple mobile sink nodes with different cycle periods exist in the sensing field. For

such a model, we need an energy-efficient aggregation method to satisfy the deadline for

gathering the sensing data.

4 PROPOSED AGGREGATION METHOD

In this section, we propose an energy-efficient data aggregation method that reduces inter-

mediate transmission in multi-hop communication while guaranteeing a maximum delay

time for the observation data. Moreover, we propose the MIPR-LC protocol used in the

proposed aggregation method to efficiently construct the routing paths for the aggregation

on each sensor node.

4.1 Data aggregation

The basic approach of the proposed method is to buffer the observed data into several

sensor nodes that exist around the moving path of the mobile sink node. The buffered

data is then transferred to the mobile sink node when it visits the buffering nodes. The

proposed method identifies sensor nodes that would meet the deadline at the next visit of

their mobile sink node, and uses these sensor nodes as the buffering nodes. The identifica-

tion is based on the predicted cycle periods recorded in its routing table. To reduce power

consumption, it also uses the nearest buffering node out of all discovered ones. Then, the

sensor node transfers the observation data to the shortest buffering node using the multi-

hop communication. In this paper, the buffering nodes that exist around the moving path

of a mobile sink are called mobile sink-path neighbor (MN) nodes. In addition, an MN

node is said to be the shortest if it is the nearest one among all the MN nodes.
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Fig. 1 shows an example of the proposed aggregation method. In this example, we assume

that there are two mobile sink nodes: mobile sink node M1 with cycle period T1 and
mobile sink nodeM2 with cycle period T2, where T2 < T1. Furthermore, a sensor node
S transmits data with a deadline. In Fig. 1, if the deadline is longer than T1, S transmits
data to A. The destination node of the transmission is D1, which is reachable in a small
number of hops (H1). If the deadline is shorter than T1 and longer than T2, S transmits
data to B bound for D2, which needs a large number of hops (H2).

S

D1

A

Mobile sink:M1

Cycle period:T1

Routing table

B

C

D2

Data with

Deadline

T1<Deadline T2<Deadline<T1

Fast speed

Slow speed

Mobile sink path

Many hops(H2)A few hops(H1)

E

F

G
Mobile sink path

Mobile sink:M2

Cycle period:T2

Data with

Deadline

Entry number Mobile sink Cycle period Destination node Next hop node Hop count

1 M1 T1 D1 A H1

2 M2 T2 D2 B H2

Figure 1: An overview of the proposed method

4.2 Route construction

To achieve the proposed aggregation method described in the previous section, each sensor

node needs to construct routes to the shortest MN nodes for all mobile sink nodes. To

construct routes, in this study, we propose two routing protocols: MIPR and MIPR-LC.

The MIPR-LC method improves the MIPR method by reducing the routing cost required

for constructing routing tables used in the MIPR method.

4.2.1 MIPR

The MIPR method is a proactive routing protocol that is initiated by a mobile sink node,

i.e., the traversing mobile sink node periodically transmits trigger messages to one-hop

neighbor sensor nodes (i.e., MN nodes). The received MN nodes broadcast control mes-

sages to the whole sensor network by employing flooding-based communication. More
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detailed steps in the route construction are shown below.

1. A mobile sink node sends trigger messages to neighbor sensor nodes while travers-

ing the given sensing field, i.e., the message can be received by the sensor nodes that

exist within its single-hop communication range.

2. The received sensor nodes recognize themselves as the MN nodes and broadcast a

control message to all the sensor nodes.

3. Upon receiving the control message, each sensor node constructs the route to the

source node of the message using the distance vector algorithm.

4. Each sensor node can construct routes to all MN nodes because all MN nodes broad-

cast the control messages. The sensor node therefore selects the nearest MN node

from all of the MN ones.

5. Each sensor node can construct routes to the shortest MN nodes for all of the mobile

sink nodes because each mobile sink node transmits trigger messages while moving.

The proposed method adopts a mobile sink-initiated protocol in order to realize the high

maintainability of routing tables and to quickly construct routing tables even in large-scale

WSNs.

4.2.2 MIPR-LC

In the MIPR method, a routing table is constructed for each sensor node by employing

flooding-based broadcasts. The broadcasts increase the energy consumption of the sensor

nodes owing to repeated retransmission of control messages in the sensor nodes. The goal

of the MIPR-LC method is to reduce these retransmission. In the MIPR method, all MN

nodes broadcast control messages and the received sensor nodes retransmit the messages

(on the left side in Fig. 2). However, in the proposed aggregation method, it is sufficient

that each sensor node constructs routes to the shortest MN node. Therefore, in the MIPR-

LC method, a sensor node retransmits the message only when the coming path length for

the received control message is the shortest (on the right side in Fig. 2).

We now consider the trigger timing when a mobile sink node sends a trigger message. Fig.

3 shows the transition of the propagation region in the MIPR-LC method in chronological

order. In this figure, sensor nodes A, B, and C are MN nodes for the same mobile sink

node. A, B, and C receive a trigger message at t = t1, t = t2 and t = t3, respectively. In

this figure, sensor nodes that have retransmitted a control message are marked as p, while

sensor nodes that have not retransmitted any message are marked as f . It can be seen

that the propagation region changes depending on the sending order, i.e., the propagation

region is the narrowest when C sends the last control message. Thus, we consider the

trigger timing of control messages to minimize the propagation region.
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5 PERFORMANCE EVALUATION

In this section, we evaluate the proposed aggregation method by performing simulation.

The routing protocol and aggregation method proposed in this paper are implemented on

the network simulator platform QualNet version 5.0.1[10].

5.1 Routing protocol

First, we evaluate the average energy consumption for sensor nodes, i.e., the number of

control message retransmission that is required to construct routes to the MN nodes that

are the shortest of all mobile sink nodes. We describe our results and compare them to
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Figure 4: Simulation environment for evaluating routing protocols

Table 1: Evaluation results for the proposed routing protocols

(1) (2)

(1-1) (1-2) (1-3)

Transmission energy consumption[nJ] 0.58 0.43 0.36 2.52

Received energy consumption[nJ] 3.08 2.30 1.97 13.44

Total energy consumption[nJ] 3.66 2.73 2.33 15.96

those obtained using the MIPR-LC method (called (1) hereafter) and the MIPR method

(called (2) hereafter). As shown in Fig. 4, in this simulation, 10 × 10 sensor nodes and
20 MN nodes numbered from 1 to 20 are regularly placed at intervals of 150 m. Each

sensor node can communicate with its neighbor nodes. In addition, the transmission rate,

transmission power, and received power for transmitting one control message are 1 Mbps,

100 mW, and 130 mW, respectively. The MN nodes transmit control messages once every

second. Furthermore, in (1), we evaluate the impact of the change of the trigger timing

on the results. More specifically, we implement the three trigger timings, (1-1), (1-2), and

(1-3) and represent the control messages sent by each node (1, 2, 3, · · ·, 19, 20), as well as
by all three nodes (1, 4, 7, · · ·, 15, 18) in a diagonal manner (1, 11, 6, 16, 2, 12, 7, 17, · · ·,
10, 20).

Table 1 shows the result. From the table, the energy consumption of (1) is 23% lower

than that of (2). This is because the sensor nodes do not retransmit unnecessary control

messages in (1), i.e., they retransmit control messages only when the next path length is

shorter than previous path lengths, as described in Section 4.2.2. Furthermore, we confirm

the effect of the trigger timing on the energy consumption. From the table, the timing (1-3)

has the lowest energy consumption of all the timings. This is because in (1-3), the sensor

nodes can transmit control messages in the most spatially distributed manner.
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Table 2: Simulation parameters

Parameter Meanings Value

Nsensors number of sensor nodes 200

Nmobilesinks number of mobile sink nodes 2

TmobilesinkA cycle period of mobile sink node A 200[s]

TmobilesinkB cycle period of mobile sink node B 600[s]

λ data arrival rate 12[packets/hour]

P packet size 100[byte]

DdataA deadline of data A 300[s]

DdataB deadline of data B 700[s]

5.2 Aggregation method

Next, we evaluate the proposed aggregation methods. In this simulation, we measure the

number of data that has been stored within the deadline and the energy consumption of

the sensor nodes. We compare the results of three methods: our proposed data aggrega-

tion method (called (3) herafter), an MDC-based aggregation method that always uses the

shortest mobile sink nodes regardless of the delay bound constraints (called (4) herafter),

and an MDC-based aggregation method that always uses the fastest mobile sink nodes re-

gardless of the energy consumption (called (5) herafter). In this simulation, the route for

each sensor node is constructed by the MIPR-LC method.

The simulation parameters used in our experiments are summarized in Table 2. Further-

more, 10 × 20 sensor nodes are placed at fixed intervals of 150 m. Each sensor node can
communicate with its neighbor nodes. In addition, the sensor nodes generate two sets of

data (A,B) with different deadlines. The deadlines of the data are longer than the cycle

periods for mobile sink nodes. In this simulation, two mobile sink nodes are positioned:

mobile sink node A with a short cycle period is placed on the left side of the field, and

mobile sink node B with a long cycle period is placed on the right side. The mobile sink

node traverses the field at a constant speed. In addition, the transmission rate, transmission

power, and received power for transmitting one control message are 1 Mbps, 100 mW, and

130 mW, respectively. The simulation time is one hour.

Table 3 shows the summarized results of the measurements. In this table, the data aggre-

gation ratio is the number of data generated divided by the number of data aggregated,

and the data aggregation ratio within the deadline is the number of data generated divided

by the number of data aggregated within the deadline. All of the aggregation methods

achieve aggregation ratios of over 94%. However, for (4), the data aggregation ratio within

the deadline is about 80%. This is the worst performance of all the aggregation methods,

since (4) does not consider the delay bounds. On the other hand, (3) and (5) achieve good

performance. Moreover, the energy consumption of (3) is lower than that of (5). Thus,

we conclude that the proposed method (3) improves the energy consumption of (5) while

guaranteeing the deadline, as in (5).
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Figure 5: Simulation environment for evaluating aggregation methods

Table 3: Evaluation results for the proposed aggregation methods

(3) (4) (5)

Number of data generated 2400 2400 2400

Number of data aggregated 2326 2257 2380

Data aggregation rate [%] 96.9 94.0 99.1

Number of data aggregated within the deadline 2326 1926 2380

Data aggregation rate within the deadline [%] 96.9 80.2 99.1

Total energy consumption in transmission [nJ] 191.8 113.5 280.0

6 CONCLUSIONS

In this paper, we proposed a data aggregation method that reduces intermediate transmis-

sion in multi-hop communication while guaranteeing a bounded delay. In our proposed

approach, the observed data with deadlines are gathered for a set of MN nodes having a

mobile sink node that can satisfy the deadline at the next visit. More specifically, each sen-

sor node selects a mobile sink node that meets the deadline of the observed data, which is

based on a prediction of arrival interval. The observed data is then transmitted to the short-

est MN nodes that correspond to the selected mobile sink node. In addition, we propose

a MIPR-LC protocol that is required for the proposed aggregation method that efficiently

constructs a routing table on each sensor node. As a result, we confirm that the MIPR-LC

method can reduce energy consumption by up to 23% when compared with a simple rout-

ing protocol, and the mobile sink nodes can also collect almost all observed data within

the data deadline.

In future, we will study a data aggregation method that can reduce intermediate transmis-

sion even if the deadline is longer than the shortest cycle period of mobile sink nodes.

In addition, we will examine in more detail the trigger timing for control messages. Fur-

thermore, we will evaluate the proposed aggregation method and routing protocol in more

generated situations.
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Abstract: While using mobile telephony networks, the serving network infrastructure
is able to determine the mobile station’s location. Until now, cellular telephony has
been built on self-contained infrastructure, i.e. all network components have been
certified and especially users have been unable to take over control over their mobile
equipment’s behavior. With the rising awareness on privacy issues, software-based
mobile phone network stacks became available and thereby a new freedom degree for
mobile subscribers is introduced.

While slight modification to the mobile phones behavior will not impair with the
general functionality of the network, cellular location determination becomes less re-
liable and trustworthy. We discuss user imposed measures to detect external location
determination attempts and to obfuscate generated location information. With a dedi-
cated testbed setup, the effects of location obfuscation were evaluated.

1 Introduction

Digital wireless telephony networks have become a core communication infrastructure

within the past 15 years. GSM and its successors have significantly changed the commu-

nication landscape both in developed and, with only a slight delay, in developing market

economies, by far outnumbering landline connections (e.g. in Germany [Ger10]). Mobile

telephony and data are a crucial part of today’s communication infrastructure; moreover,

they can contribute to security and safety. The mobile telephony network and its phys-

ical characteristics help to locate mobile phone users in cases of emergency 1 and may

be a valuable tool for search and rescue (SAR) [CLR10]. For instance, Bengtsson et

al. analyzed post-disaster population’s displacement using SIM-card movements in order

to improve allocation of relief supplies [BLT+11]. Due to regulatory requirements but

also driven by commercial opportunities, locating mobile phones gained the attention of

research and industry. Furthermore, location information gathered through mobile tele-

phony networks is now a standard tool for crime prosecution and it is enforced by the EC

1US Regulation on location determination in case of a emergency call: FCC Enhanced 911 Wireless Service,

http://www.fcc.gov/pshs/services/911-services/enhanced911, [12/15/2011].
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Data Retention Directive with the aim of reducing the risk of terror and organized crime

[EP06]. Additionally, commercial services are based on the availability of live mobility

patterns of large groups 2 or location-aware advertising [Kru10].

In general, law enforcement and commercial agencies exploiting location information have

two options for utilizing location determination in mobile telephony networks: an active

and a passive method. While active positioning yields immediate and more accurate re-

sults (e.g. through Uplink Time of Arrival [rGPPG02]), there are additional costs involved

(e.g. network utilization) and thus, an incentive and dedicated target is required. This

method is usually used to track identified individuals in criminal investigations. For in-

stance, the police of North Rhine-Westphalia issued 225.784 location determinations on

2644 different subjects in 778 preliminary proceedings in 2010 [Min11]. Germany’s fed-

eral police forces initiated 440.783 so called silent text messages. 3 On the other hand,

with passive location determination techniques, all required information is generated from

normal communication with the subscriber’s mobile station, thereby causing no additional

costs.

In this paper we investigate the user’s possibilities to detect active location attempts and

we lay out a scenario in which a user takes measures to provide a false position. Fur-

thermore, measures for passive positioning methods are proposed which are capable to

reduce location determination accuracy and potentially obfuscate position information in

case of passive location monitoring. Finally, we evaluate and verify the location obfus-

cation method. For this purpose a test environment reflecting all components of a mobile

telephony network was developed and deployed. The resulting mobile network infrastruc-

ture is based on real-life hardware and open-source software in order to create a realistic

and defined environment which includes all aspects of the air interface in mobile telephony

networks. The network is fully functional and thus provides a defined and fully controlled

environment for analyzing all aspects of subscriber-provider interaction.

2 Localization Determination in Cellular Communication Networks

As an example we discuss the GSM infrastructure, because it is widely deployed and

recently software and analysis tools have become available. Its successors UMTS (3G)

and LTE (4G) still share most of its principal characteristics.

There is a variety of possibilities for determining a mobile station’s location from the

view point of the infrastructure, e.g., by Cell Origin with timing advance (TA) and Uplink

Time Difference of Arrival (U-TDOA) for GSM [rGPPG09]. 4 While the latter method

requires sophisticated network infrastructure, Cell Origin and TA are available in any

network setup. However, both methods work without special requirements for the mo-

2Commercial traffic monitoring service, http://www.vodafone.com/content/index/press/

local_press_releases/germany/2008/tomtom_and_vodafone.html, [12/15/2011].
3Letter of the Federal Ministry of the Interior by request of a parliamentarian,

http://www.andrej-hunko.de/start/downloads/doc_download/

185-stille-sms-bei-bundesbehoerden, [12/15/2011].
4For location determination options for UTRAN cf. [rGPPG10]
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bile station and achieve a positioning accuracy of up to 50 m for U-TDOA in urban areas

[SCGL05].

Another (non-standard) method to determine a mobile stations’s (MS) location makes use

of measurement results. Usually based on databases built from signal propagation models

used during the planning phase of the infrastructure, this data can be used to create a

look-up table for signal measurements to determine the MS’s location. Based on the cell,

TA and received signal strength of the serving cell as well as the six neighboring cells,

Zimmermann et al. achieved positioning accuracy of below 80 m in 67% and 200 m in

95% in an urban scenario [ZBL+04]. With a similar method but more generic setup,

Peschke et al. report a positioning accuracy of 124 m in 67% [HUP07].

While the mobile phone is in idle mode, network-assisted positioning is not possible. The

network either has to wait for the next active period of the MS (e.g. phone call, location

update) or has to initiate the MS’s activity. This can be done by transmitting a so called

silent message to the MS in order to force an active communication without raising the

user’s awareness. The procedure is used for instance by law enforcement authorities or by

location-based services based on cellular positioning [Min11].

2.1 Interference by User Controlled Mobile Network Stack

With the development of OsmocomBB 5 GSM baseband implementation, the basic work

has been done for a fully user controlled mobile phone. For instance, such a mobile station

could be modified to log and expose the location data to its user that has been gathered by

the mobile communication infrastructure [RMB+11].

2.1.1 Active Location Determination

A fully user controlled mobile device requires software interfaces with a network stack

which controls and exposes signaling attempts (e.g. by detecting silent text messages).

However, such a signaling attempt does not provide information on the purpose of pag-

ing the mobile station. Hence, it is difficult for a subscriber to decide whether the paging

attempt is legitimate (i.e. incoming call or text message) or a (hidden) location determina-

tion attempt was triggered. Only after the device has reacted to the signaling the originator

and the purpose of the paging becomes visible. However, by answering to the signaling,

the mobile phone is getting active (i.e. sending network packages) and therefore a location

measurement unit is able to determine the MS’s position (e.g. through TDOA).

While active positioning requires a dedicated target and some costs, concealing the mobile

station’s location is also possible with some effort. Due to the usage of a full software

network stack, lower network layers could be decoupled from the mobile phone. By lever-

aging a second communication channel, the user and his mobile station can be at a different

place than the device running the physical layer and antenna, communicating directly with

5Open Source GSM Baseband implementation, http://bb.osmocom.org, [12/15/2011].
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the mobile network infrastructure. This way the location of an individual SIM-card can be

forged.

2.1.2 Passive Location Determination

In order to take over control on passive location monitoring, access to measurement results

and the occurrence of location updates is required. Especially the density of periodic

location samples makes a significant difference in the provider’s possible knowledge on

the user’s movement pattern and thus on the user’s present and future privacy risks. Such

a monitor feature enables the users to select a mobile telephony provider that requests

location updates less frequently or the user demands compensation for his or her loss in

location privacy.

A second step to improve a user’s location privacy is to reduce the observer’s observa-

tion accuracy (obfuscation). A possible way to blur the exact location is to send empty or

significantly altered measurement reports. Normally, the measurement reports include sig-

nal strength measurements of the surrounding BTS to support handover decision-making

during active connections. Since a periodic location update requires only a very brief com-

munication with the network, a handover between different cells is very unlikely. Thus,

sending measurements of neighboring stations is technically not always required. By re-

ducing the number of transmitted measurements the accuracy of the network’s position

estimation is significantly decreased. In the best case scenario (if no or false measure-

ments were transmitted) the accuracy is decreased to the cell of origin combined with the

timing advance parameter. To further decrease the accuracy of the estimated position, the

MS may send with a slight timing offset. Such offsets have a direct impact on the timing

advance calculation of the BTS. Consequently, this leads to an incorrect distance estima-

tion between MS and BTS. It is also possible to report a wrong MS transmission power

to the network. This influences any estimation the network draws based on the received

signal strength of the MS.

The combination of manipulating measurement results, timing advance and reported trans-

mission power makes it possible to conceal the actual position of the MS. Nevertheless,

the rough location of the MS is still available through the coverage area of the serving

BTS.

3 Evaluation Setup

To evaluate the proposed measures and their effects, a full mobile telephony network

testbed is required. Different scenarios can be tested without interfering with the pub-

lic network infrastructure.

The testbed consists of three basic components: the Mobile Network, the Testbed Serv-

ing Mobile Location Center (TB-SMLC) and the Mobile Stations. Figure 1 provides a

schematic overview on the structure of the testbed. In combination, these components al-

low us to analyze all aspects of the communication between network and mobile station in
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Figure 1: Overview of testbed network and transmission of measurement results.

a realistic scenario. Since the testbed implements a standard GSM network, it can simply

be extended with standard GSM network components, for instance by the addition of any

arbitrary mobile station. In contrast to a software simulation, such a setup allows for direct

interaction with the network as a subscriber in order to get immediate feedback on status

and events within the network. Since complete control over all components in the network

is achieved, the subscriber’s behavior as well as the impact on the infrastructure can be

evaluated within the testbed. Special hardware and software is needed for the practical

implementation of the testbed. A detailed description of hardware components used and

the software implementation is given in earlier work [MWRv11].

3.1 Training Phase

A training phase is needed before localization can take place. For the training phase, a

person equipped with a GPS receiver and a mobile phone was continually walking within

the testbed’s covered area. While walking, the MS was working in dedicated mode, con-

tinuously generating measurement reports that have been stored by the BSC, respectively

the associated logging component. Each measurement report was assigned to its GPS

coordinates. In a second step, the resolution of the measured coordinates is set. Measure-

ments have been aggregated into tiles, with the size of the tile is the resolution of the map.

However, the tile size can be set arbitrarily to a certain degree [ELM04]. An average is

commuted among measurements with coordinates within the the same tile. Finally, out-

liners have been removed using Grubb’s test [Gru69]. For our experiments the tile size of

8.52 m x 6 m have been chosen, which results in 6200 tiles for the covered testbed area. In

total 171654 measurements were recorded and analyzed.

Measured received signal levels are considered as gaussian distributed. During an exper-

iment with a stationary mobile phone 1500 MRs were created and analyzed. Results in

Figure 2 show the histogram of the experiment and a fitted normal distribution. A standard
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Figure 2: Histogram of observed received signal strength (RSS) of a stationary MS measuring a
single BTS versus scaled Gaussian distribution with µ =-88.5 and σ =5.

deviation of σ = 5 dBm has been assumed throughout the localization calculation.

3.2 Interpolation

Since it is not feasible to take measurements for any place within the testbed coverage

area, interpolation is used to approximate the RSS for places with no measurements. For

this step, a Voronoi (or natural neighbor) interpolation was chosen because it shows the

lowest error margin and results in a smooth interpolation (except at data points) [Suk01,

LPA10]. The coordinate for which interpolation is required (denoted as point N ) gets

inserted into the Voronoi diagram. The resulting Voronoi region surrounding N “steals”

some area from neighboring points. The stolen area size is expressed as fraction of the size

of the Voronoi region of point N and treated as weighting factor. For every measurement

point from which an area is stolen, the corresponding measurement is multiplied with

the weighting factor. Hence, the interpolated value for point N is the sum of individual

weighted measurements. Let a, b, c, d be the area size of the stolen areas by the Voronoi

region of point N , with n denoting the size of N ’s Voronoi region, the interpolated signal

strength for point N yields to NRSS = a
n
· ARSS + b

n
· BRSS + c

n
· CRSS + d

n
·DRSS .

An interpolated map is depicted in Figure 3.
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Figure 3: Interpolated GSM-map. The color denotes the receivable signal strength at that coordinate.

3.3 Location Determination

Localization calculation used is based on the Bayes’ theorem. For every tile lx,y of the

GSM map and for every receivable BTS BTSi with i ∈ 1...n and n denoting the number

of receivable base stations, the available information is a vector of the received level of

n base stations as RSS := (BTS1, . . . , BTSn) for the location (tile) of the MS. The

probability distribution for the received signal strength RSSi is estimated using every

measurement observed within a tile: P (RSSi|lx,y) = N x,y
i (µx,y

i , σ
x,y
i ). We assume a

Gaussian distribution of the signal strength measured in dBm. Figure 2 shows a histogram

of observed RSS values of a stationary MS. Signal strengths from different BTSs are con-

sidered to be independent. The mean µ
x,y
i was already computed for every tile during

training phase by averaging and outliners’ removal. The variance σ
x,y
i was chosen as

5 dBm, based on experiments (as shown in Figure 2).Usually, the network provides a list

of the neighboring cells to the mobile phone to be monitored during an active connection

in order to support a communication handover between two BTSs. In our testbed setup

only one additional BTS is located on the campus, leading to limited localization possibil-

ities. To cope with this shortcoming, we extended the neighbor list by adding additional

public GSM cells receivable on the campus. By this, the mobile phones measure signal

strengths of those other cells and sends the additional readings to the testbed network.

In order to locate a phone, the corresponding measurement entries are used from a pre-

recorded GSM signal map. An area based probability algorithm (ABP − α) is used for

location lookup [ELM04, YAUS03]. This group of algorithms return a set of the most

likely map tiles, matching the actual and predetermined RSS fingerprints controlled by

a confidence value α. The summed probability of the resulting set of tiles matches the

required confidence value. Hence, the α-value controls the trade-off between positioning

accuracy and methodical precision.
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Given a received signal fingerprint vector (RSS), first we compute the probability at being

at each tile’s location lx,y using Bayes’ equation

P (lx,y|RSS) =
P (RSS|lx,y) · P (lx,y)

P (RSS)
, (1)

with P (RSS|lx,y) computed as multiplication over the probability distribution of BTSi

as

P (RSS|lx,y) =
�

i∈1...n

�

NRSS
i ∩N x,y

i dRSS ,

and NRSS
i as the derived Gaussian distribution of the MS’s received signal strength of

BTSi.
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Figure 4: Results of localization experiments with different mobile phones. (a) “X” mark the lo-
cations on which localization were carried out. At some places three phones were used for testing
while on other places only a subset of the available phones were tested. (b) shows the resulting
localization error versus its occurrence.

A priori P (lx,y) is considered to be equally distributed. Its value is the reciprocal of

the number of tiles within the map. The probability of the fingerprint vector RSS being

measured within the GSM-map is calculated as

P (RSS) =
�

x∈X,y∈Y

P (RSS|lx,y) · P (lx,y) .

Equation 1 yields the probability of being at tile lx,y given the fingerprint vector RSS.

Since we want to return an area with a given confidence-value α, the algorithm outputs

the top probability locations lx,y until they sum up to α. For our purposes a dedicated

LMU is not necessary since the required measurement reports are generated during normal

operation.
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(a) (b) (c)

Figure 5: Comparison of a localization results with different number of reported base stations. The
marked areas depict possible whereabouts of the mobile station. Fig. (a) shows the localization with
a set of two measurement, (b) shows a reduced set of four measurements and (c) a shows the result
of a full set of six measurements.

3.4 Evaluation

Localization accuracy of was measured based on thirteen different locations and a set

different mobile phones. In total, 33 experiments were done. A short phone call was made

with every phone and location. The actual coordinates were derived from a GPS receiver.

Localization error is considered as the distance between the GPS coordinate and the most

probable calculated location by the ABP-α algorithm. As shown in Figure 4, the average

position error is 67 m and a median error of 47 m. With this accuracy and the possibility

to locate any phone call originated in the past it is feasible to extract movement patterns of

the network’s users.

3.4.1 Effectiveness of Location Obfuscation

From the user’s perspective it is not possible to recognize if a phone call is or will be

localized. With common normal phones, a user cannot influence the creation and data

hold in a MR and is therefore incapable of regaining his location privacy.

With mobile phones running a user controlled GSM network stack it is possible to fabricate

and send false MRs. A strategy to regain location privacy would be trying to decrease the

obtainable localization accuracy. This goal can be achieved by sending only a subset of

the measurements of surrounding BTSs. Uncertainty in the position calculation rises with

With less information available for the ABP-α to process, the uncertainty in localization

rises. The results are shown in Figure 5.
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4 Conclusion

Until now, cellular telephony was built on self-contained infrastructure, i.e. all network

components were certified and especially users were unable to take over control over their

mobile equipments behavior. With the rising awareness of privacy issues, software based

mobile phone network stacks became available and thereby a new freedom degree for

mobile subscribers is introduced.

While slight modification on the mobile phone’s behavior will not impair with the general

functionality of the network. However, the network based location determination becomes

less reliable and trustworthy. First, attempts of law enforcement agencies are observable

by using an open and user controlled mobile station. Second, by modifying the mobile

phone’s behavior, reliability of location information is reduced to cell size or worse, since

explicitly false positions may have been generated.
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Abstract: In this paper we develop three ideas for possible scenarios in future living
environments. These ideas are based on technology which is present at the moment but
may be deficient or not used in living environments. This paper focuses on showing
possibilities, while knowing but neglecting actual practical problems. After introduc-
ing the potentials of physiological data, we present ideas for different scenarios. The
first is concerned with games, trying to neglect the age differences of users and even
up the difficulties in game-play. In the second scenario we show a concept for a sup-
portive kitchen utilizing a brain computer interface and gesture detection. In the last
scenario we present a draft for smart notification based on mental load. The ideas in
this paper are not limited to elders or handicapped people, but most of them can be
used to improve their lives.

1 Introduction

In future living environments many different users have to be addressed, when realising

a user interface. In addition a new complexity of controlling all the devices in a living

environment arises. Such a fusion of devices may lead to synergetic effects, but will also

induce higher demands on the user. In the following we explore the potentials of using

physiological data in the context of living environments. We explain several physiological

measures and show how these can be used for different ways of interaction. This paper is

structured as follows: After introducing the technology used and setting some fundamen-

tals, we present different more or less futuristic scenarios based on actual technology. In

the first scenario, differences in age and skills while playing computer games get neglected

using in-game adaptations based on physiological data. In the second we show an auto-

mated kitchen and how table top, gesture detection and brain computer interface (BCI)

technology can be combined and integrated. In the third scenario a concept for smart no-

tifications based on the user state will be presented. Finally we draw conclusions implied

by this paper.
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2 Background

Different physiological signals of a user can be obtained. In our work we focus on car-

diovascular activity, electrodermal activity and BCIs. In this section we present related

methods and devices.

(a) Chest strap with radio transmitter (b) ECG with 3 electrodes

(c) Portable EDA device with 2 electrodes (d) The Emotiv EPOC headset (left rear view)

Figure 1: The different devices used in this work for measuring the physiological data.

2.1 Cardiovascular Activity

The cardiovascular activity of a user can be measured with an electrocardiogram (ECG).

Several components of an ECG can be analyzed to determine the user state. The most

common used are heart rate and heart rate variability.

2.1.1 Signals and Measurements

Heart Rate The heart rate (HR) is defined as the number of heart beats per minute. The

HR can be affected by different factors like age, illness, physical training and breathing

[Man08]. It can also be influenced intentionally by the user.
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Heart Rate Variability To measure the heart rate variability (HRV), the time between

two R-peaks in an ECG is measured. The variability of this measured time intervals is

defined as the HRV. The HRV is one of the most used measures for determination of a

user’s mental load [SFM+01]. Several methods exist to conclude on this status [MBC+96,

RSI98, Man08]).

2.1.2 Devices

To measure an ECG several devices exist; for example, stationary ECG devices, with 3

electrodes or more (figure 1b). The shown device needs a wired connection to a computer,

for submitting data online. The 3 electrodes have to be attached to the chest of the user

according to specific positions, depending on the chosen method of measurement. For the

purpose of measuring HRV and HR, heart rate monitors, commonly used in sports, are

applicable (figure 1a). An example setup, calculating the low frequency power spectrum,

is described in [SK10]. In comparison to stationary devices, heart rate monitors used in

sports are very comfortable to wear and allow wireless data transmission.

2.2 Electrodermal Activity

2.2.1 Signals and Measurements

Beside the cardiovascular measurements electrodermal activity (EDA) is one of the most

commonly used physiological measures. The signal arises from electrical changes on

the skin surface and can be split into tonic and phasic values [Bou88]. Tonic values are

represented by the skin conductance level (SCL). The phasic component is called skin

conductance response (SCR) and relates to certain stimuli. Every person shows a cer-

tain amount of non specific electrodermal reactions (NS.SCRs) per time. EDA is linearly

correlated with a persons arousal [Lan95] and stands for emotional reactions and mental

activity [Bou88].

2.2.2 Devices

The most common way of measuring EDA is by placing 2 electrodes on the palm. Devices

can be stationary or portable (figure 1c). EDA measuring in general is unobtrusive. Recent

work towards more comfortable devices led to the design of the Q-Sensor [PSP10]. This

device is wearable at the wrist like a watch. Additionally the next generation will support

wireless data transfer. This creates new opportunities for long term measurement in a

living environment while people can follow their daily activities.
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2.3 Electroencephalography

In this work we use electroencephalography (EEG) as base for a BCI. A BCI provides a

direct way of communication between a user and a computer. In this case, direct commu-

nication means without the detour of using any muscular movement. This direct link is for

some people (e.g. locked-in-patients) at this time the only possible way of communica-

tion with their environment [Moo03]. There are different approaches for obtaining signals

from the brain. At the moment the EEG-based approach is the most promising, not only

based on the fact, that it is the only portable one. A BCI can be used as an active and

passive interface. This differentiation is based on how signals can be influenced by the

user. An active signal needs a direct mental action produced by the user, such as focusing

an object or thinking of something special. A passive signal can not be influenced directly,

an example is the emotional state.

2.3.1 Signals and Measurements

P300 A P300 is an event related potential (ERP) and describes a wave of positive-going

scalp-recorded brain potentials. In detail a P300 is a complex of waves and consists at

least of a P3a and a P3b wave [Pol03, Pol07]. The first is best measured with frontal

and central positioned electrodes and has its peak in a range of 250 to 280 ms after the

stimulus. The second is best measured over parietal brain areas and has a task depending

latency of 250 to 500 ms [CMC+09]. In case of this work, the P300 is a response to

an infrequent, task-related stimulus, often evoked by using the oddball paradigm [SSH75].

The basic principle of an oddball paradigm is presenting a composition of high-probability

non-target elements mixed with low-probability target elements. The latter will invoke the

P300 response, which most likely can be detected after some repetitions.

Steady State Visually Evoked Potentials The steady state visually evoked potentials

(SSVEPs) are the brain’s response to a visual stimulation given at a specific frequency

[WZGG04, CGGX02]. The response to this specific frequency is measurable as electric

activity in the same or a harmonic frequency [BPS+03].

2.3.2 Devices

At the moment there are a variety of different electroencephalography (EEG) devices used

for BCIs. A useful subdivision for this paper is probably a division in portable and not

portable devices. All medical EEG devices are for stationary use and not portable while

recording data. Medical EEGs also disqualify in terms of usability, because of their com-

plicated set-up procedure, even if they have a better resolution. Non-medical BCIs are

primary used for gaming and marketing research. These BCIs lack in accuracy, but can be

used more easily. At the moment the Emotiv EPOC BCI (figure 1d) describes some sort

of compromise. The Emotiv BCI can be mounted in a short time by a single user and is

usable for more complex tasks, though some restrictions apply [PK10].
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3 Possible Interactions

Physiological data leads to new ways of interaction. In this chapter we show several pos-

sible interactions in the context of living environments.

3.1 Raise/Drop Heart Rate

A possible interaction is raising and dropping of the HR. Raising the HR can for example

be achieved by doing physical exercises. The raise of the HR could be used bound to a

specific time interval, so that the user has to raise the HR to a certain level, holding it for a

given time. Then the user has to calm down and relax, to achieve a dropping of the HR. To

ensure that a user does a certain amount of sports, a possible interaction for, example for

games or health applications, would be to raise the own HR to a certain level for a given

time. On the other hand the interaction to drop the HR could be used for relaxation.

3.2 Adaptation to Mental Load

Based on the HRV the mental load can be used as a passive interaction. The HRV can not

be influenced directly by the user. The mental load could be used as a part of the user state

to indicate if a user is under mental stress. Depending on the level of mental stress, the

user interface can adapt to this state. In contrast to many other possibilities of measuring

the mental load, measuring the HRV does not require a direct user interaction.

3.3 Adaptation to Arousal

An increasing number of specific electrodermal reactions per time frame indicates a change

in the user’s arousal. As succeeding SCRs add up, the overall EDA signal is increasing if

a user is exposed to continuous stimuli. While relaxing the signal drops back to a certain

baseline.

3.4 Selection

When using an EEG-based BCI a selection mechanism can be implemented at least in

two different ways. The first is utilizing the P300 waves and the oddball paradigm, the

second is by using SSVEPs. If using the first way the principle is the same used in a P300-

Speller [FD88, PK10]. The focused object gets selected by flashing empty spaces or spaces

surrounding objects in contrast to flashing the surrounding space of the chosen object,

which evokes a P300 response. This works for physical and virtual objects [YDTS10].
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The approach based on SSVEPs highlights all objects of the selection at once, but uses

different flashing frequencies for each highlight. The flashing frequency of the object

focused by the user produces a measurable response in the brain. The given response

consists of brain activity in the same or a harmonic frequency as used by the stimulus

[BPS+03]. Both approaches can be used to implement a selection.

4 Possible Scenarios

In this chapter we introduce some scenarios based on physiological data. These scenarios

are a selection based on our previous and recent work.

4.1 Adaptive Age Neglecting Games

People in living environments are of different age and have different knowledge and pref-

erences regarding entertainment technologies. Therefore playing together or using game

based learning, targets different audiences, sometimes even at the same time. Physiolog-

ical measures can be used to cope with the differences. They provide input for creating

more adequate and constantly modulating experiences, specifically tailored to the users

needs and interests. The task is to detect and interpret the user state in order to create a

supporting or challenging response of the system.

4.1.1 Adaptation to Player Status

The usual way of adapting a game to its player is by calculating the game performance

based on game statistic values. According to this approach the game can react to the fact

that a player is rather successful in achieving certain goals. However this method does not

take into account the player’s status. A high performance level can either be a result of

constant stress (the player is nearly at his skill limits) or mental underload (the player is

not challenged sufficiently). In contrast physiological feedback can adapt the game more

specifically and can therefore be way more effective than performance feedback [RSL05].

Additionally the quality in game adaption through physiological feedback is independant

of the amount and quality of statistic values available through the game context. Findings

of our recent work [Rei11] show that the implementation of a smartphone game based on

physiological data results in an individually adapted gameplay. A significant difference

in EDA measurement was detected by comparing the adaptive game to a version without

integrated physiological feedback. In case of the non adaptive version the plotted EDA

value of each player tends to rise. The adaptive version shows a more flatened and in

clonclusion adapted EDA curve.
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4.1.2 Scenario

In this scenario, two people with different gaming experience and of different age play a

multiplayer game on separate devices. One player has no experience with the game device

or with gaming at all. The other player is an experienced player, enjoys playing games on

different platforms and uses the device on a daily basis. Normally this leads to frustration

on the side of the inexperienced player and boredom on the side of the gaming enthusi-

ast. Therefore the game has to adapt to the divergent characteristics of the players. To

achieve this, physiological parameters of both players are used as additional input modal-

ities. Based on these measurements a feedback controller in the game can interpret and

react to the current user state. The resulting reaction of the system is generated through

visual, acoustical or haptic feedback. This feedback influences in turn the physiological re-

actions of both players. A so called closed feedback loop is generated [PBB95]. The game

can support the inexperienced player while exposing the gaming enthusiast to greater chal-

lenges. It compensates the differences in learning curves and adapts to constantly changing

demands.

4.2 A BCI extended On and Around the Surface-Tabletop Kitchen

At this point, we create a kitchen scenario, which is possible today. In this kitchen we

combine elements from more than four different disciplines, which are normally separated.

The main elements are borrowed from classical table top, gesture recognition, automated

(self organized) storage and transport systems and BCI.

4.2.1 The Main Kitchen Elements and their Advanced Functionality

The Counter Top In this scenario the counter top is a large table top. We assume the

counter top as a large display, where information can be shown on every free, uncovered

spot. This can be realized through hidden projectors mounted under the kitchen cabins or

by integration of displays into the counter top.

The Kitchen Cabinets The cabinets are much alike normal kitchen cabinets, except all

cabinets are connected and have continuous shelves. Dividing walls on the inside have

been removed. Somewhat special is an elevator system, which connects the shelves of the

cabinets to the counter top. This elevator system can be realized as some sort of gripper

system or as a traditional elevator system. The first is more complex, but can be useful for

other purposes. The refrigerator should be constructed and integrated in the same manner.

The Storage and Transport Units Everything that is stored in the kitchen cabinets is

stored in mobile storage units. These storage units consist of two elements. The upper

element is a nearly normal kitchen storage container, maybe like the famous Tupperware

containers. The bottom element is basically an autonomous transport unit. The main
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function of this unit is to transport the storage unit on a given path through the system. To

avoid getting stuck or collision problems, the whole unit should be as rounded as possible.

As an extension, every transport unit is equipped with a kitchen scale to gather weight

information. Each transport unit is connected to a central control unit, which organizes

and controls the movement of the units and all other actions taking place in the kitchen.

The Central Control Unit All control, organisation and communication tasks concern-

ing the kitchen are handled by the central control unit. This unit delegates as much work

as possible to autonomous self-organized units, like the storage and transport units. Some

tasks are handled directly by the central unit or are only supported by other units. An

example for a central unit task is keeping track of the supplies, based on the kitchen scales

data transmitted by the transport units and the best-before date gathered when supplies

enter the system.

The User The most important part of the system is the user. This scenario can be seen as

a support system for users with constrained movement, but it can also be seen as a system

of comfort. However, the user in this scenario has a special feature, the user is wearing a

portable (EEG-based) BCI.

4.2.2 User Perspective: Support for a Rather Normal Cooking Task

At first the user chooses a recipe. A selection of possible dishes will be presented by the

central system at the nearest free space on the counter top near the user. The selection

is based on the availability and weight information provided by the storage and transport

units. After completing the selection, the chosen recipe, including a timeline, will be

projected next to the hob. When the recipe is chosen the system starts arranging the needed

supplies at the counter top. The directly needed supplies are arranged within reach around

the hob, while the later needed supplies and possible alternatives are arranged within sight.

If there are more than one eligible supplies within sight, a selection can be made based on

a combination of on and around the table gesture recognition and a BCI. The selection is

divided into two parts. In the first part a group of supplies is identified by a long distance

pointing gesture [HLL+12]. In the second step the user picks the required unit using a BCI

based selection. Depending on the circumstances a P300-based [YDTS10, PK10, FD88]

selection or a SSVEP [WZGG04, CGGX02] approach can be used.

The selected unit will be moved within reach immediately. It is possible to distinct be-

tween a selection for usage, transporting it to the cooking area and just gathering some

information about the ingredients without moving the transport and storage unit. This can

be done by using a pull-gesture (gathering information) or a pick-gesture (selecting as in-

gredient) after completing the selection [HLL+12]. After usage, the storage units move

out of direct reach, but stay within sight. When the cooking is finished the storage and

transport units move back to their storage positions in the kitchen cabinets.
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4.2.3 Central System Perspective: Hidden Background Tasks

The first task for the central system is to analyse the available supplies and present possible

recipes based on this data. After a recipe is selected, the system has to coordinate the

movement and the ordering of the transport and storage units from the storage spaces to

the counter top. This can be done easily with reserved fairways and parking lots used as

shunting routes. Storage systems of this kind can be found nowadays in pharmacies or

warehouses. Depending on the realisation, the central system can pass some tasks to the

autonomous or self organized transport and storage units. All the ingredients of the recipe,

which are not for direct use, taken as possible alternatives or for spicing up, are placed

within sight but not within range of the cooking area. The cleaning, especially after the

cooking, can be supported by autonomous hoovering and wipe robots.

Special Cases and Side Effects In this scenario we concentrated on transport and stor-

age units for ingredients, but they can also be used for dishes, cutlery, pots and pans. The

system works similarly with respect to the weight and size of the object. A positive effect

could be an automatic ordering system if some supplies are depleted or expired the best

before date. It is also easily possible for the system to make order suggestions based on

the actual offerings of the preferred supplier.

4.3 Smart Notification

Notifications can have a different level of importance or can occur in different situations.

In some situations it might not be appropriate to notify the user about an unimportant

message. In our scenario we describe how the state of the user for a notification system

could be determined. Furthermore we will describe what ways of notification could be

used in a living environment.

4.3.1 User State

Different possibilities for determination of the user state exist. As described in 3.2 the

mental load can be determined by HRV and used for adaptations. Other possibilities to

determine mental load are pupil dilatation [IZB04], questionnaires or performance mea-

surements. Physiological measures have the advantage, that they are unobtrusive and do

not need interaction by the user. Questionnaires have the disadvantage that they interrupt

the user during the task. Performance measurements need interaction on a task [SFM00].

Today many HRV sensor devices are comfortable to wear, like the chest strap used in

[SK10]. Most likely they will get even more comfortable in the future. For example it

could be possible, that measures like temperature or HR are collected by a patch on the

skin or a tiny chip under the skin. To improve the determination of user state, context

information, e.g. if the user is moving, is needed. For this context information the sensors

of mobile phones or a motion tracking of a person could be used.
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4.3.2 Ways of Notification

In living environments notifications are not limited to one device. In our previous work

[SSK11] we describe an email notification icon changing its highlighting and visual ap-

pearance. In this case the icon is in the system tray of a Windows desktop computer and

HRV is measured. A first study was conducted and showed a correlation between time

needed to recognize the icon and mental load based on HRV. Another realisation of a noti-

fication system based on the interruption level of the user was realized for mobile phones

[CV04]. These examples and ideas can be carried on for living environments. In our

following scenario, we describe how the notification of an important email or any other

message could be done under different levels of mental load in a living environment. In

this scenario we distinguish between high and low mental load.

High Mental Load Based on the position of the user in the living environment the way

of notification could be chosen. With the help of person tracking or eye tracking, a notifi-

cation could be displayed at the current position and it could be determined which way the

user was looking. For example, instead of showing a notification icon for a very important

email on the system tray of the desktop computer, the notification could be shown on the

display of the refrigerator in the kitchen, if the user is in the kitchen. In the same way, the

notification could be in the form of a voice notification, if the user has a high mental load,

and would not recognize the notification in any other way or is not near any device that

could display the notification. The intensity of the notification can be adapted to the level

of mental load.

Low Mental Load When the mental load of the user is low, a simple notification is

appropriate. Similar to the scenario for high mental load, the position of the user can be

used to choose the device for displaying the notification. In contrast to the high mental

load scenario a visualization with a low intensity should be sufficient.

5 Conclusion

Physiological data has great potential in living environments, even if there are some lim-

itations. We proposed several possible interactions based on physiological data in the

context of living environments and introduced different scenarios where they prove to be

beneficial. Our previous work concerning physiological data in games [Rei11] and for

notification [SSK11] support this statement. In the context of physiologically enhanced

gaming it will be possible to compensate the differences of age and experience in gaming.

This can open the field of gaming to new groups of users, which could not participate

because of their lack of skills. As research in adaptive gaming evolves, physiological data

as additional or even as main game control can help to integrate disabled people who are

nowadays unable to use standard controls. We proposed a system for notifications which

adapts to the user state, e.g. mental load. This addresses the heterogeneous user group in
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living environments. Reaching the targeted user without distracting the surrounding users

stays an open problem. By fusing physiological data and especially BCIs into the living

environment the environment gets more sensitive to its user. Additionally, uncomfortable

situations can get more comfortable, not only for handicapped persons. A current usability

problem is the mounting of the measurement devices. We strongly believe, that the stand

alone systems, as they currently exist, will not survive in future. Most of the nowadays

separate systems will fuse into ubiquitous support systems. In this matter, important el-

ements concerning the acceptance of such systems will be usability, especially a simple

configuration and a trustworthy handling of sensible user data. This will result in better

system usability and more capable computer systems which will result in enhanced quality

of life.
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Abstract: We present “Goal-snapping”, a novel approach for applying snapping tech-
niques to tangible and multi-touch interfaces. It can be used to support users in accom-
plishing basic tasks such as aligning, sorting or grouping of virtual objects. As using
snapping on large surfaces poses challenges in interaction design, we identify and dis-
cuss according parameters in Goal-snapping. For sorting and aligning, we propose
to use snappers that attract objects within a target zone and visually arrange them to
present an overview. For exchanging objects among users, we propose that each user
has a target snapper that acts as a goal to which objects can be flicked. A user study
has shown that although participants embrace the use of snapping to automatically
group objects in a sorting task, snapping does not accelerate the completion time and
increases the error rate by accidently snapped objects. In a long distance positioning
task, the use of snapping significantly increases task completion.

1 Introduction

Tangible user interfaces (TUI) make use of real-world objects to interlink between a virtual

and the physical world by allowing to detect physical artifacts (so-called props). TUIs can

utilize a person’s interaction capabilities with real-world objects in order to manipulate

digital information. Multi-touch interfaces allow to detect multiple simultaneous touches

on a display. This enables to use specific multi-finger gestures and interaction techniques

[LPS+06]. The combination of TUIs and multi-touch interfaces constitute the field of

hybrid surfaces (for instance, in [TKR+08]).

Hybrid surfaces have a large potential for being employed in future living environments

as they are able to seamlessly enrich peoples surroundings with ICT. For instance, elderly

people can use this technology in order to communicate and stay in contact with family

members as these user interfaces allow for natural communication and sharing of artefacts

in remote collaboration ([MHPW06] gives an example). Families can gather around an

87

87



interactive surface integrated in a table in order to manipulate documents such as photos

or play games ([SCH+06] provides an example). As these user interfaces possess the

potential to make interactions more intuitive, more natural and easier to grasp, hybrid

surfaces can provide in particular an easy access to complex information systems, their

configuration and administration. Users could, for example, facilitate these interfaces to

specify the security policies for their private IT-sphere through sorting priorities that are

visually represented on a hybrid surface.

Sorting or grouping are basic tasks that need to be supported on such hybrid surfaces. Since

these surfaces might become large or could be operated from a distance, an additional basic

task will be long-range positioning that enables users to comfortably use the complete

surface for sorting and grouping. In this paper, we introduce a new user interface (UI)

technique we call Goal-snapping that can be applied with hybrid surfaces and provides a

novel realization alternative for the three basic tasks mentioned. It contributes not only

to the easy and safe usage of the private communication and information infrastructure;

it mirrors also the abilities of self-organizing and self-adapting IT-systems as it supports

users in organization and adaptation tasks.

Goal-snapping builds on the commonly used method of snapping. Snapping refers to

different techniques in various application fields. In general, it has been introduced in

[BS86] as application-based assistance to place and align virtual objects or cursors on a

display and has since then been thoroughly investigated for mouse and keyboard-based

user interfaces. Goal-snapping employs snapping in target zones that automatically attract

virtual objects that remain within the boundaries of that zone.

We show how to employ Goal-snapping to assist users in sorting and grouping tasks on

interactive surfaces. Target zones can attract objects that have been dragged or flicked to it

and arrange them clearly in piles in order to provide an overview of the documents. We also

show how to use Goal-snapping to facilitate long range positioning tasks. If several users

work together with shared documents on the same surface, users might want to exchange

documents with each other. Due to the size of larger interactive surfaces, users may not be

able to reach all regions from their location. Thus, for instance, each user can have their

own Goal-snapper to which other users can flick documents.

This paper contributes an in-depth consideration and evaluation of design and interaction

issues of Goal-snapping. For evaluation purposes, we conducted a user study with 20

participants allowing us to give qualified statements about the impact of alternative design

aspects on Goal-snapping.

2 Related Work

In the area of multi-touch and tangible interface computing, snapping can be used for dif-

ferent purposes. [NBBW09] empirically evaluates interaction techniques for translating,

rotating and scaling single objects on a multi-touch surface. Here, snapping is used for a

more accurate alignment of objects. Hancock et al. also present techniques for the rotation

and translation of virtual objects on a tabletop system [HCV+06]. They discuss the role
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of snapping and state that snapping could simplify the alignment of objects to one another.

Still, they only discuss the possibility and suggest that it could be used in systems that em-

ploy any of their techniques. [SCH+06] introduces a technique to move virtual objects to

related groups. Here, snapping is realized in combination with arrows that appear close to

objects that can be added to a group. When tapping an arrow, the related object is moved

to the according group. This concept is based on existing textual metadata, describing the

photos and videos. Therefore, it assists the users by offering only certain target groups

for an object. However, it does not support grouping and sorting tasks where no prior

metadata has been defined. In [AB06] Agarawala et al. describe the use of snapping in a

virtual desktop environment that can be manipulated by pen-based interaction. Objects on

the virtual desktop can be grouped together by tossing them towards piles. Still, they nei-

ther describe their snapping approach in further detail nor do they evaluate it empirically.

[RGS+06] introduces flicking as a long-distance positioning technique for a pen-based

interactive surface. However, they do not investigate how flicking can be employed on

multi-touch surfaces in combination with snapping.

3 Goal-Snapping

We now introduce the properties of our Goal-snapping concept. First, we give a definition

of Goal-snapping and introduce the related terminology. In section 3.2, we discuss various

design issues for a concrete realization of Goal-snapping.

2

Snapper

Snapping Area

1

3

Snappables

Figure 1: Basic Goal-snapping concept including a snapper object with it’s related snapping-area
and snappable objects which can be snapped torwards the Snapper

3.1 Basic Concept

For the basic concept of Goal-snapping we regard two different kinds of UI elements,

namely “snapper” and “snappable”. Figure 1 illustrates this concept: Similar to the func-

tionality of a magnet that attracts a piece of metal, a snapper attracts snappable objects.
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If a snappable object comes within range of the “snapping area”, the snappable is being

snapped by the related snapper. An essential aspect of Goal-snapping is that an object is

either snapped by a snapper or not at all. This means that once a snapping is detected there

is no way to interrupt this process. Furthermore, the snapping scope is locally restricted to

the snapping area only. In the scenario in Figure 1, snappables 2 and 3 would be snapped

by the snapper while snappable 1 would not be snapped.

3.2 Design Issues of Goal-Snapping

Our basic definition makes neither suggestions about how a snapper object is represented

on a hybrid surface nor what further properties it may have. As a result, the introduced

concept for Goal-snapping leaves space for various design decisions when considering a

concrete realization. In this section, we identify several design parameters that have to be

considered when implementing Goal-snapping and give design advices where appropriate.

3.2.1 Snapper Design

The snapper itself can be represented graphically or by a physical object. For instance, the

snapper in Figure 1 is a graphical object that has a circular shape. Alternatively, a physical

prop of an arbitrary shape (for instance, in the shape of a magnet) could be employed. In

order to create snappers, there are several possible approaches. For instance, they could

be created automatically when an application starts or manually by a user. A user could

perform a gesture to create a snapper under their fingers. If a prop is employed, it can

be simply put on top of the interactive surface to activate its snapping behavior. After the

creation of a snapper, it could also be possible to move a snapper around or to change its

size.

3.2.2 Designing the Snapping Area

Similar to the snapper, the snapping area can have different properties regarding size,

shape and behavior. As a snapper resembles a magnet that attracts virtual objects, it is

recommendable to use a circular snapping area to represent the snapper’s magnetic field

that usually has spherical characteristics. The snapping area size defines the strength of the

snapper’s magnetic field. Hence, the snapping area needs to exceed the snapper’s bound-

aries. At runtime a user could be allowed to enlarge or shrink the area. The snapping area

needs not necessarily to be visualized. Basically, a visible snapping area could be useful

as to ascertain users when they have moved an object into the boundaries. Alternatively,

snapping areas could only be displayed at a certain moment. For instance, if a snappable

approaches a snapper, the according area could be faded in. Furthermore, the area can

be visualized with different aspects concerning alpha, color or texture. If an object enters

overlapping snapping areas, the conflict to which snapper it will be moved needs to be

settled. Normally, the object should be attracted to the snapper to which center it is nearer

or which has the stronger “magnetic field”. Alternatively, snappers with overlapping areas
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could reject each other like they had the same magnetic poles in order to prevent areas

from overlapping. However, this will be rather complicated to establish if the snappers are

physical props.

3.2.3 Designing the Snapping Process

This section discusses aspects of the actual snapping process that can comprise up to three

phases. In the first phase, a snappable object is recognized, in the second phase the snapper

attracts it and finally in the third phase – the after phase – the object may be automatically

arranged and grouped within or manually removed from the snapper.

In the first phase – the recognition phase – of the snapping process the snapper will decide

if an object that resides within the snapping area’s boundaries will be attracted to the snap-

per. In order that a snappable object will not be pulled from a user’s hand while dragging

it, interaction with the object must be finished. Basically, each snapper attracts all kinds

of snappables. For instance, if snappables are geometric objects like squares and circles

with different colors, a snapper does not discern between shapes and colors it recognizes.

However, it is conceivable that snappers attract only certain snappables. For instance, in

a tabletop application in which different kinds of documents like photos and videos are

used, a snapper could deliberately attract only photos and not videos. For instance, a tool

set of prop snappers could be provided for a TUI that provides Goal-snappers with dif-

ferent behaviors. Alternatively, a user could configure constraints for a standard snapper

to create custom behavior. If an object has been recognized in the first phase, the snap-

per attracts it in the second phase. In order to clarify the attraction process, the attraction

process should be performed in an animated movement. In the third phase the snapper

may automatically group, arrange and process snapped objects. For instance, if a snap-

per has attracted different kinds of documents like photos or videos, the snapper should

group each kind of document in a pile. Within the piles, miniatures of snapped documents

give a visual cue, which documents have been snapped. Additionally, miniatures provide

interaction affordances that allow manual removing of accidently snapped objects. Addi-

tionally, it is conceivable to provide a possibility to release all snapped objects at once, for

instance, with a shaking gestures on the snapper. The snapper could be coupled with fur-

ther program logic. For instance, it could be thought of a shrink snapper that automatically

downsizes snapped documents.

Summing up, Goal-snapping brings the basic snapping concept to hybrid surfaces. Due

to the extended properties of interactive displays, compared to a classical desktop, Goal-

snapping also implicates a vast design-space for concrete application scenarios.

4 User Study

We carried out a user study to make qualified statements about the Goal-snapping concept.

20 subjects participated (13 male, 7 female), who were aged between 20 and 28 years

(25.15 years in average). 95% were familiar with using touch sensitive interaction devices
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like a touch pad, 100% were familiar with using single-touch display devices like a public

ticket machine, 65% were familiar with using multi-touch display devices like multi-touch

enabled mobile devices and 45% were familiar with hybrid surfaces.

We created two different test setups to consider different aspects of the Goal-snapping

concept. The first task consisted of a general grouping task where objects had to be sorted

into pre-defined target areas. The second task took place in the area of collaborative work

and tangible user interfaces. Here, we analyzed how Goal-snapping can support the posi-

tioning of virtual objects over a long distance.

The study was carried out on a hybrid surface called “TwinTable” that we have developed

(see Figure 2). Its projection area has a size of 80×45 centimeters where a full HD reso-

lution (1080p) is provided. The TwinTable supports multi-touch and tangible interaction.

4.1 Test1: Evaluating Object Grouping

In the first test, we examined the performance of Goal-snapping for the task of grouping

virtual objects into pre-defined target areas. For this purpose, we compared the grouping

task for snapping and non-snapping areas and tested it with different combinations of

interaction techniques.

(a) The Twin Table consists of a hybrid surface and a

passive display

(b) Goal-snapping without (left) and with snapped ob-

jects (right)

Figure 2: (a) Our Twin Table (b) Our realization of Goal-snapping

4.1.1 Snapping Design

We designed the snappers as circular objects with a circular, surrounding snapping area

(see Figure 2). The participants generally could not move snappers. As long as a par-

ticipant dragged an object over a snapper, it did not attract the object. Only if an object

was dropped within or flicked to the boundaries of a snapping area, it was snapped. If the
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snapping process had triggered, the object was arranged in the snapper according to Figure

2. As illustrated, snapped objects were stacked together and squares, circles and triangles

were arranged in different rows. Snapped objects could also be removed from a snapper

by using drag & drop interaction.

4.1.2 Test Setup

The object grouping test consisted of five different tasks. At the beginning of each task,

four target areas in the colors red, yellow, green and blue and 40 objects each with a

random color out of red, yellow, green, blue and a shape out of square, circle, triangle were

automatically positioned at random positions on the surface. This initial arrangement of

target zones and objects was realized in a way that none of the objects were overlapping

each other. Figure 3 shows an example distribution of target zones and objects at the

beginning of a task. The 40 objects had to be grouped into the four different target zones

according to their color. The different shapes of the objects indicated diversity among

them, but did not have to be regarded for the tasks. The test scenarios differed slightly

regarding the characteristics of the target zones as well as the allowed interaction with the

objects. As different characteristics of the target zones were “passive target zones” (areas

that did not snap), “snapping target zones with visible snapping area” and “snapping target

zones without visible snapping area”. These different target types are illustrated in Figure

3.

(a) A typical setup of target zones and objects right

after the beginning of a tests scenario

(b) Passive target zone (left), snapping target zones

with visible snapping area (middle) and snapping tar-

get zones without visible snapping area (right)

Figure 3: (a) Setup of the first test (b) Target zone designs for the user test

To evaluate the influence of flicking on grouping with Goal-snapping, either “drag & drop”

or “drag & drop and flicking” interaction was allowed in the tasks. The subjects were

allowed to use both hands and any number of fingers of each hand. This enabled to drag

or flick more than one object at a time. If an object had hit the border of the interactive

surface, it was automatically rebounded. The table in Figure 4 shows the five test scenarios.

The participants had to perform the tasks in random order to compensate for training ef-

fects. Prior to each scenario, the upcoming kind of target areas and the allowed interaction
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Test

Scenario

Target

Zone

Drag&Drop

enabled

Flicking

enabled

Snapping-Area

visible

1A Passive Yes No Not Available

1B Passive Yes Yes Not Available

1C Snapping Yes No Yes

1D Snapping Yes Yes Yes

1E Snapping Yes Yes No

Figure 4: Properties of the five test scenarios for color grouping tasks

were introduced to the participants.

Within each scenario, the color grouping task could be performed with any of the enabled

interaction techniques. The time to complete each task was measured. Although the snap-

pers had different colors, each snapper attracted every object within its snapping area no

matter which color or shape it had. The number of objects that were temporarily sorted

into wrong snappers was recorded. After the five tasks participants had to fill-out a ques-

tionnaire. The questionnaire mainly consisted of questions that had to be answered based

on a semantic differential scales and on Likert scales, each having seven items. Also, the

different target area types had to be ranked by the participants according to their prefer-

ence. Finally, the participants were asked to give additional textual feedback.

4.1.3 Results

Regarding the measured completion time, we could not make any significant observations

about an acceleration of task completion caused by snapping as compared to non-snapping

target zones. The completion times are illustrated in Figure 5. The data we gathered on

accidentally wrongly snapped objects leads to more significant insights. Here, we could

verify that with snapping target zones, flicking increases this error rate. This could be

proved as well for the snapping target zones with visualized snapping area (binomial test,

p <0.02) as well as for snapping targets without visualized snapping area (binomial test,

p <0.01). The corresponding data is shown in Figure 5. Furthermore, we could perceive

from the questionnaire that the subjects clearly preferred snapping target zones as com-

pared to passive target zones for object grouping (binomial test, p <0.01). Additionally,

participants found the grouping of objects into snapping target zones more comfortable as

compared to grouping into passive target zones (binomial test, p <0.01). The visual feed-

back, that the snapping target zones offered, gave the participants a stronger impression

of actually having added an object to a group (binomial test, p <0.01). The automatic

arrangement within the snapping target areas was perceived as more clearly arranged than

the arbitrary arrangement within non-snapping target zones (Wilcoxon signed rank test, p

<0.01). We regarded flicking to be helpful for sorting objects into snapping zones if the

participants chose one of the two most agreeing items of the seven items on the Likert

scale. We could verify that flicking is helpful (binomial test, p <0.01). However, it could

not be verified that snapping was regarded as helpful for the grouping task.
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Figure 5: Measured data from the color grouping tasks

4.2 Test2: Evaluating Long Range Object Positioning

In contrast to object grouping, the second test focused on long range positioning of objects

into a target that is out of a participant’s reach.

4.2.1 Snapping Design

The snapping design for this test was almost equal as for the object grouping test. As

it was not important to permanently group snapped objects, we changed their handling

in the after phase. Snapped objects had been moved to the center of the snapper in an

animated movement and were faded out afterwards. Additionally to the target zone types

from the first test (Figure 3), we also employed props as snapping targets (Figure 6). These

physically represented snappers were designed similar to virtual snapping zones.

(a) Physical props as snapping target zones – with and

without a visualization of the snapping area

(b) The setup for the long-range positioning scenario

Figure 6: (a) Snapping Props (b) Setup of the second test

95

95



4.2.2 Test Setup

The setup for this test is illustrated in Figure 6. Participants had to flick objects into target

areas on the opposite side of the table. In order that tall participants could not just bend

over the table and drop objects into the target area, participants were not allowed to cross

an interaction boundary with their fingers, which was located after one third of the surface.

During each task, participants had 15 attempts to flick an object to the target. After every

attempt, the target moved to a new random position on the far side of the surface. If a prop

was employed, it was manually moved to the new position. In Figure 7, the five tasks are

listed in a table. The tasks differed only in the target zone characteristics.

Test

Scenario

Target Zone Snapping-Area

visible

2A Passive Not Available

2B Virtual Snapper Yes

2C Virtual Snapper No

2D Prop Snapper Yes

2E Prop Snapper No

Figure 7: Properties of the five test scenarios for long-range positioning tasks

Like in the first test, the order of the scenarios was randomized to compensate for training

effects. We considered a passive target zone to be hit if the object stopped at least touching

its boundary. In contrast to the grouping test, the rebounding of snappables from surface

edges was disabled in order to make sure that the subjects had to hit the targets in a direct

way. If the objects did not hit the target, they faded out at the position they stopped after

flicking. For each task, the amount of objects that were successfully placed in the target

area was determined. After the participants completed all tasks, they were asked to answer

a questionnaire, which was structured accordingly to the object grouping test questionnaire

in section 4.1.2.

4.2.3 Results

In this test, we could clearly measure a significant improvement of the hit rate within the

snapping scenarios 2B (Wilcoxon signed rank test, p <0.01), 2C (Wilcoxon signed rank

test, p <0.01), 2D (Wilcoxon signed rank test, p <0.01) and 2E (Wilcoxon signed rank

test, p <0.01) as compared to the non-snapping scenario 2A. This result is also presented

in Figure 8. In the questionnaire, the participants ranked snapping target areas over pas-

sive target areas concerning the time they needed to get accustomed to the positioning

task (Wilcoxon signed rank test, p <0.01) as well as to the easiness of the task (Wilcoxon

signed rank test, p <0.01). We regarded the subjects to evaluate the visualization of the

snapping area as helpful if they chose one of the two most agreeing items on the Likert

scale. However, it could not be verified that the participants found visible snapping areas

helpful (Wilcoxon signed rank test, p <0.03). Additionally, it could not be verified that the

participants estimate a prop snapper’s location better than the position of a virtual snapper.
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In general, the participants preferred snapping zones to the passive target zones for long

range object positioning (binomial test, p <0.01). The question whether they preferred

the virtual snappers or the prop snapper was not answered significantly. Concerning as-

pects between both tests, we can state that visible snapping areas were ranked more useful

for long range object positioning than for object grouping (Wilcoxon signed rank test, p

<0.03).
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Figure 8: Number of hits for the long range positioning tasks

5 Conclusion

We introduce a basic concept for the use of snapping on hybrid surfaces, called Goal-

snapping. It can aid sorting and aligning objects on an interactive surface by grouping them

within snapping target areas. Goal-snappers can be employed in face-to-face collaboration

on a tabletop setup to facilitate the exchange of objects between users over distances that

are out of users’ reach. This can be provided with a Goal-snapper for each user to which

other users can flick objects. We carefully examined and described the design space of

the basic concept which includes representation, visualization and interaction aspects of

snappers, snappables and snapping areas. In a user study with 20 participants, we evalu-

ated the usefulness and different design and interaction approaches for Goal-snapping in

two scenarios for object grouping and long range object positioning. Although we figured

out that Goal-snapping does not significantly accelerate the completion time for grouping,

users prefer snapping target areas that automatically group objects as compared to passive

target areas that do not snap objects. In terms of target area design, a visualization of the

exact target area is more important for long range positioning tasks than for object group-

ing tasks. Although users regard flicking as helpful for grouping tasks, using flicking has

the drawback of a higher rate of accidentally snapped objects. However, in the long dis-

tance positioning task, Goal-snapping zones significantly enhance the hit rate as compared

to passive target zones. Additionally, participants agree that they find it easier to hit Goal-

snapping targets than passive targets. The design choice to use a real world prop instead of

a graphical representation does not significantly improve long distance positioning tasks.
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Abstract: A rapid increase in handheld devices with wireless communication capabil-
ities, such as cellular phones and smart phones, enables data communication in face-to-
face situations. The easy realization of secure data communication in such situations is
necessary for ensuring safe and reliable networking environments as short-range wire-
less networks become more popular. One approach involving the generation of secret
keys in each communication device using variations of the received signal strength
indication (RSSI) values has been proposed in literature. However, it has a problem
in that there are positions where eavesdroppers are able to obtain RSSI values that are
highly correlated with those of legitimate devices. To address this problem, we pro-
pose a filtering technique that eliminates eavesdroppable parts from RSSI variations.
Additionally, it is important to shake either one or both of two legitimate devices to
change the propagation, considering that the elimination exploits the periodicity of
the shake. Furthermore, we implemented a prototype system realizing the proposed
method and evaluated its effectiveness. The results indicate that the proposed method
can increase the robustness of common information, which is generated into the secret
key without degrading its generation speed.

1 Introduction

Recently, with the rapid proliferation of wireless-enabled applications and devices, such

as cellular phones and smart phones, there is an increased opportunity for wireless con-

nections to be made with bystanders. The public nature of wireless transmission for data

communication has the potential to allow eavesdroppers easy access to the transmitted

data. Therefore, many studies to realize secure communications, such as public key cryp-

tography, quantum cryptography, have been proposed in literature. Among them, secret

key cryptography is the most common because its processing speed is so high that compu-

tationally limited devices would have to process a large amount of encrypted data. How-

ever, it has a problem in that there may be leaks of the secret key during distribution and

management. Therefore, the secret key generation technique that uses random fluctua-

tions of the wireless channel between legitimate users has attracted considerable attention

as a method that requires no distribution or management. This technique is based on the
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reciprocity of radio wave propagation. With this technique, two devices do not have to

distribute the secret key because it is generated by each device without the need to send

any information regarding it. In addition, there is also no need to manage the secret key

because the devices generate a different secret key each time. Furthermore, one of the

notable features is that we can change the length of the secret key based on the generation

time. The generation of a secret key with a certain length requires modification of the

radio propagation and extraction of its characteristics. Methods for changing the propa-

gation have been proposed such as the use of an electronically steerable parasitic array

radiator (ESPAR) antenna [1] and multi-antenna [2]. For extraction of the characteristics,

techniques including ways to utilize the deviation of the arrival time between direct waves

and multipath waves [3] and orthogonal frequency-division multiplexing (OFDM) model

[4] have been also proposed. These schemes achieve precise and high-speed generations

owing to special devices.

On the other hand, methods for generating the secret key from variations of the received

signal strength indication (RSSI) values [5], which can be measured by non-dedicated

wireless devices, have been recognized as beneficial for ubiquitous communication sys-

tems. However, this method has two problems: one is that the speed with which the secret

key is generated is as low as a few bits per second. The other is that there are positions

where eavesdroppers are able to obtain highly correlated variations of RSSI values for

legitimate users in certain environments [6, 7]. To address the latter problem, we pro-

pose a filtering technique that eliminates eavesdroppable parts from variations of RSSI

values. Additionally, it is necessary to shake either one or both of two legitimate devices

to change the propagation, considering that the elimination exploits the periodicity of the

shake. We implement a prototype system that realizes the proposed scheme and generates

common information that is processed into the secret key using quantization and reconcili-

ation techniques. In this study, the evaluation of the generated information with correlation

coefficients shows the effectiveness of the proposed scheme. The results indicate that the

proposed method significantly contributes in improving the robustness of the generated

information without degrading the generation speed.

The rest of this study is organized as follows. In Section 2 , we describe the rationale

behind the method that shares RSSI values of two devices and implement a preliminary

experiment to confirm their effectiveness in real environments. Section 3 presents details

of the proposed scheme, and Section 4 shows the effectiveness of the proposed method.

Finally, we conclude this paper and discuss our future tasks in Section 5 .

2 Reciprocity of radio wave propagation and fluctuation of RSSI

In this section, we show that legitimate users (Alice and Bob) can observe similar vari-

ations of RSSI values because of the reciprocity of radio wave propagation. First, we

consider the variation of RSSI values. Second, we introduce the reciprocity of radio wave

propagation. Finally, in actual experiments, we confirm that the variation of RSSI values

observed by one legitimate user is similar to that by the other.
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2.1 Variation of RSSI values

RSSI values fluctuate because of various causes. We summarize these causes as follows.

Cause1: Distance between sender and receiver

Cause2: Multipath fading

Cause3: Noise

Cause1 means that the RSSI value is closely correlated to the distance between legitimate

users, i.e., the changes in the distance cause the variation of RSSI values. The RSSI value

is high when the distance is short. In contrast, it is low when the distance is long or some

obstacles exist between them.

A receiver receives radio waves from a transmitter through both direct and indirect paths

(i.e., multipath). The direct wave interferes with the multipath wave, which leads to attenu-

ation of the direct wave. This phenomenon is called ”fading.” The impact of fading varies

with differences in the transmission distance between direct and indirect paths. Cause2

means that fading causes variations in RSSI values. Cause3 means that RSSI values fluc-

tuate because of noise, which is dependent on employed devices, white noise, and others.

2.2 Reciprocity of radio wave propagation

Radio wave propagation traverses the same path in both directions, from Alice to Bob

(Fig.1-(a)) and from Bob to Alice (Fig.1-(b)), unless either of them or any surrounding

objects are moved. This is called the ”reciprocity of radio wave propagation.”

2.3 Preliminary experiment

Both devices can observe the same variation of RSSI values in environments in which the

reciprocity of radio wave propagation works well. This similar variation of RSSI values

in both directions is mainly due to Cause1 and Cause2, as was described in Section 2.1.

In this section, we conduct an experiment with existing equipment and confirm that this

works well in real world environments.

We prepared a quiet room (6 meters × 12 meters) and deployed three laptops: Alice

(transmitter), Bob (receiver), and Eve (eavesdropper), as shown in Figure 2. Using a ping

command, Alice sent 1000 ICMP echo request packets to Bob every 1.0 s and Bob replied

to each packet with an ICMP echo reply packet. During this period, Alice shook her

device to change the radio channel and recorded the RSSI values and sequence numbers

for the packets in the reply. On the other hand, Bob and Eve recorded those parameters

for the request packets. Figure 3 illustrates the positional relation between a laptop and an

antenna, and the way that Alice shook her laptop. We used Atheros devices as wireless
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(a) from Alice to Bob

(b) from Bob to Alice

Figure 1: Transmission path for radio signal between Alice and Bob.

Figure 2: Location of terminal devices in this preliminary experiment

network cards, operating in the IEEE802.11a band. In addition, to avoid interference

during the observations, we turned off all additional functions, such as diversity.

Figure 4 shows the variations of the RSSI values observed in this experiment. The verti-

cal axis represents the RSSI value, and the horizontal axis represents the sequence num-

ber. Closed diamonds, triangles, and squares indicate the RSSI values recorded by Alice

(RSSIAb profile), Bob (RSSIBa profile), and Eve (RSSICa profile), respectively. The

recordings made by Eve were covert. It is clear from Figure 4 that legitimate users can ob-

serve similar fluctuations even in real environmental conditions. However, the fluctuations

in RSSIAb and RSSIBc are not identical because Alice and Bob were not able to simul-

taneously transmit and receive the signals using typical commercial wireless transceivers.

We also consider noise to be a factor contributing to these gaps. In this experiment, the

deviation was small, since the round trip time (RTT) was much shorter than the time re-

quired for changing channels. In addition, the impact of Cause1 and Cause2 was much
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Figure 3: Method for mounting antenna and shaking terminal device

Figure 4: Fluctuation of observed RSSI values in this preminary experiment

more significant than that of Cause3. It is widely recognized that the fluctuation is an

uncontrollable random phenomena. This makes it very difficult for it to be estimated by

eavesdroppers. However, eavesdroppers can observe RSSI variations that correlate well

with those of legitimate users, who may be present at a location less than a few wave-

lengths from either of them, as was the case with Eve in Figure 2.

3 Proposed method

In this section, we describe our proposed scheme, which provides legitimate users with

common information generated into the secret key using RSS-based secret key extractions,

as in [1, 8, 9, 10]. The secret key also makes it difficult for an eavesdropper to carry out

sniffing attacks. The main idea of our proposed method is to use a bandpass filter to extract
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only common fluctuations and eliminate the part of the RSSI variation that is vulnerable

to eavesdropping. First, we explain the method for making RSSI profiles which are used

to generate common information. Second, we discuss the implementation of the bandpass

filter.

3.1 Procedure for making RSSI profiles

In this study, we call records for a tuple of two items: RSSI value and its sequence number

”RSSI profile.” We describe below instructions for making an RSSI profile.

[Procedure for making an RSSI profile]

Step1: Either or both users shake their devices.

Step2: During shaking, the transmitter sends an ICMP echo request packet to a receiver

as often as needed to a predetermined set.

Step3: Whenever the receiver gets the request packet, the receiver replies with an ICMP

echo reply packet to the transmitter.

Step4: The receiver records the RSSI value and sequence number for these request pack-

ets.

Step5: The transmitter records those parameters for the reply packets.

Each legitimate user makes an RSSI profile in accordance with these steps. In the next

section, we will explain how to extract common information from this RSSI profile. To

get closer common information, it is recommended that the transmitter sends a request

packet more frequently and that the RTT be shorter. In the next section, we show that the

transmitter has to send more than 2× β request packets every second.

3.2 Extraction of common information with a bandpass-filter

In this section, we propose a filtering technique to extract correlated common informa-

tion that exists for legitimate users from the RSSI profiles. More specifically, we analyze

the RSSI profile on the frequencies and reduce unsuitable frequencies in the spectrum us-

ing the discrete Fourier transform (DFT). In this study, ”unsuitable frequencies” can be

estimated by eavesdroppers.

In Section 2.1, we discussed the fluctuations that occur. The result of analyzing the fluc-

tuations of the RSSI profile in the frequency domain is shown in Figure 5, which shows

that fluctuation1 and fluctuation2 have almost the same variation of RSSI values between

the legitimate users owing to the reciprocity of radio wave propagation. These variations

gradually decline with increasing frequency. In contrast, fluctuation3 is observed as a dif-

ferent variation. If white noise exists, it has a constant power over the entire range of
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Figure 5: Modeling variation of RSSI values in the frequency domain

frequencies. Therefore, for high frequencies, the noise decreases the correlation of the

RSSI profile between legitimate users. On the other hand, for low frequencies, the vari-

ation is likely to be estimated by eavesdroppers. For these reasons, we propose using a

bandpass filter that allows only frequencies from α Hz to β Hz. In our method, α and β

are customized parameters.

4 Evaluation

In this section, we discuss the effectiveness of our proposed scheme in a real environment.

In particular, we confirm that our scheme reduces the correlation of the RSSI variation

between the eavesdropper and legitimate users, even when the eavesdropper is very close

to either of the legitimate users or on the axis of the signal connecting the legitimate users.

In [6, 7], it was reported that in these positions, eavesdroppers are able to obtain RSSI

variations that agree well with those of legitimate users. First, we explain about data sets

used in this evaluation. Second, we select the customized parameters of the bandpass filter

(α and β) and evaluate our scheme with the correlation coefficient.

4.1 Data set

We made many sets of RSSI profiles for this evaluation. The procedure for making RSSI

profiles was described in Section 3. In this evaluation, we used setting values and environ-

ment similar to those used in Section 2.1, except for the distance between Bob and Eve,

i.e., Eve is placed on the line connecting Alice and Bob. More specifically, we placed Eve

at 30 points between 1 and 100 cm and made 10 sets of RSSI profiles for each point. We

show an adversary model of this evaluation as follows. We follow the model as described

in [5].
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Figure 6: Relation between correlation coefficient and distance before using bandpass-filter

[Adversary model]

• Eve can listen to the communication between Alice and Bob.

• Eve knows our proposed scheme and the parameters used in our scheme.

• Eve can observe RSSI values everywhere.

• Eve is a passive adversary who cannot carry out a person-in-the-middle attack.

4.2 Parameter setup

Figure 6 shows the relationship between the strength of the correlation and Eve’s posi-

tion. We employ the correlation coefficient as a metric to evaluate the correlation strength.

Closed diamonds represent the correlation coefficient between Alice and Bob, and closed

squares represent that between Bob and Eve. From the figure, we observe that Eve can

estimate a part of the legitimate RSSI profile, when she is on the line between Alice and

Bob. In particular, Eve’s RSSI profile has the highest correlation when the distance be-

tween Bob and Eve was 5 cm (nearly equal to one wavelength of 5 GHz). We focus on

this point and select appropriate values for α and β.

We filtered the RSSI profiles (RSSIAb, RSSIBa, andRSSICa) that were observed when

the distance between Bob and Eve was 5 cm, with the bandpass filter allowing only fre-

quencies from α Hz to β Hz. We call these outputs of the bandpass filter ”common in-

formation.” The effect of the tuning parameters (α and β) on the correlation coefficient

between legitimate common information are exhibited in Figure 7. In Figure 8, we also

show the correlation coefficient between the common information for Bob and Eve. When

α is less than five, although the correlation between the legitimate common information
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Figure 7: Effect of bandpass-filter on correlation between Alice and Bob

is high, the correlation between that of Eve and Bob is also high. Conversely, both cor-

relations are low when α is high. Moreover, few frequencies pass the filter for sufficient

common information to be generated when the range between α and β is small. We ex-

amine the best parameters when the difference in the correlation coefficient for legitimate

common information and that of Bob and Eve is the highest. As a result, we found that

the best-case scenario occurs when α equals 20 and β equals 80. In this evaluation, we

determine the effectiveness of the bandpass filter using these values.

4.3 Effectiveness of bandpass filter

We filter the RSSI profiles that are observed in the preliminary experiment with the band-

pass filter (α = 20, β = 80). The results are shown in Figure 9, which shows that the corre-

lation between either of the legitimate users and the eavesdropper decreases after filtering.

Furthermore, we observe that legitimate users can extract delicate changes of channels

since the filter eliminates against the direct wave. This will contribute to increasing the

speed with which information is generated.

Similarly, we filter all data sets obtained with the bandpass filter and generate common

information. Figure 10 shows the relationship between the correlation of the common

information and Eve’s location. When compared with Figure 6, it is obvious that the

inclusion of the bandpass filter can decrease the correlation between either the legitimate

users and eavesdropper, without degrading the correlation between legitimate users.
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Figure 8: Effect of bandpass-filter on correlation between Bob and Eve

5 Conclusion

We resolved the problem that allowed eavesdroppers at specific positions in certain envi-

ronments to obtain RSSI values that were highly correlated with those of legitimate users.

This occurred when generating secret keys from RSSI variations on the wireless channel.

In particular, we used a bandpass filter to make RSSI profiles which were generated into

secret keys that were more robust to eavesdropping. Our bandpass filter eliminates vul-

nerable fluctuation and noise. We also conducted evaluations by performing actual exper-

iments. Our experimental results indicate that our scheme can make it difficult for eaves-

droppers to estimate the secret key, without degrading the correlation between legitimate

common information. If our scheme is applied to approaches proposed in [1, 8, 9, 10], we

can realize more robust secret keys. Also, our scheme appears to increase the speed with

which secret keys are generated.

However, we have evaluated the proposed method in only a few environments. This makes

our scheme more applicable to the evaluation of the proposed method in various kinds of

environments. For example, we evaluate the proposed method in various rooms that have

different dimensions and noise using both heterogeneous PC cards and laptops by shaking

and setting in other ways, changing the positional relation between legitimate users, and

so on. In the future, we will consider applying the proposed method to the automatic

selection of tuning parameters with noise levels and analyze the most suitable approaches

that generate secret keys from RSSI fluctuation.
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Figure 9: Result of filtering RSSI profiles in preliminary experiment

Figure 10: Relation between correlation coefficient and distance after using bandpass-filter
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Abstract: Event processing plays a significant role in the current development of in-
telligent living environments. It ranges from processing of information produced by
a magnitude of sensors to gain insight into the activities of the inhabitants on a more
global scale, to the processing of immediate and rather short-lived events of user in-
put on and around interactive systems embedded in common household furniture like
tabletops or tablets. Based on the work conducted separately in those two fields, we
found that the still evolving field of complex event processing (CEP) provides the
methods and tools to handle those distinct use-cases equally. Especially the appli-
cation to interactive systems, while being novel and uncommon, is well suited and
further shows the broad applicability of CEP. The comparison of the two application
fields shows that, even though the events occurring in them are distinguished by their
intention, commonalities do exist and provide integration points. Furthermore, the in-
tegration of those applications within the context of smart homes allows to provide
demand-oriented resource management, which realizes self adaptation and control.

1 Introduction

Intelligent living environments, also known as smart homes, aim at providing its residents

with useful services and assistance for everyday activities. These services cover different

aspects, such as health monitoring, energy management, environment control, security,

communication, or productivity tasks. Social and ethical challenges aside, major technical

challenges in this field of research are modeling and prediction of the activities and actions

of the residents, multi-modality of interaction with various kinds of computer systems, and

intelligent monitoring of systems components [HSB09].

On a technical level, these applications are all based on the processing and interpreta-

tion of context events happening throughout the system and its environment. Be it events

produced by sensors for monitoring of the residents location, events coming from user

input devices, or events of the internal state of the system. So looking at the way event

processing is done in different areas of intelligent living environments, which are usually

treated separately, allows to gain insight about the individual requirements, but also the

commonalities shared by all parts of the system.

In this paper, we explore the possible points of integration of two areas of event processing
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in an intelligent environment setting. We identify those areas, where each application field

can benefit from the other, but also define the central characteristic which distinguishes

both fields from each other, namely the intention of the processed events. Additionally, we

introduce a demand-oriented resource management and discuss how it is made possible

within that context.

We base our work on two concrete systems. The first deals with systems management.

The second employs complex event processing to handle the interaction with more com-

plex input devices of interactive tabletop systems, which is a rather novel and uncommon

field of application. Even though the two systems are not interacting with each-other and

were developed separately for their individual purpose, both use complex event processing

methods and techniques. More specifically, both use Esper [Esp11] as an underlying tech-

nology, which provides the additional benefit of having similarities on a technical level.

In the following, we will first give a brief overview of what complex event processing is

and how the general methods and techniques are provided by a concrete implementation,

Esper. We then proceed to describe the two areas of application, and how they relate to

the context of intelligent living environments, in more detail. Individual requirements,

challenges and results are presented with each application. After that, the distinguishing

characteristic of both application fields is defined in more detail, followed by a discussion

of possible points of integration between those systems. Finally, we present our proposal of

a demand-oriented resource management and conclude with a short summary and outlook

on future work.

2 Complex Event Processing with Esper

Complex event processing means the detection, analysis, and general processing of corre-

lated raw or simple events, which results in more abstract and meaningful complex events

[Luc02]. As a very general term, it covers a large field of techniques and methods for

detection of relationships or patterns of events, event abstraction, modeling of events and

event hierarchies, and abstraction of the whole process of event processing. It builds upon

the concept of the event driven architecture (EDA), in which loosely coupled components

communicate by emitting and consuming events [LS11]. In an EDA, any notable change

of state or thing that happens is considered an event, which is propagated to all compo-

nents interested in them. The components evaluate the information of the events and take

any necessary action, which might include generation of further events [Mic06].

The software library Esper provides a general purpose component for complex event pro-

cessing in Java or .NET. It is based on the principle of continuous queries [TGNO92],

where processing, filtering and dissemination of events happens by querying the engine,

which continuously tries to match and process events according to the active queries.

Queries are formulated using the event processing language (EPL). The EPL is a SQL-like

declarative language, which supports selecting events from streams, conditions, sliding

windows (time and length based), aggregation functions, joins, pattern matching, insertion

into event streams and many other features known from relational databases (examples of
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EPL queries are given in section 3.2.2).

The engine provides two mechanisms for querying events. The first allows full processing

and manipulation of event streams in the engine and is available by normal EPL statements.

The second method allows notification about events matching a specified pattern, which

is expressed by the pattern syntax of the EPL. While the second method is in fact a subset

of the first, it has the benefit of a reduced syntax and also remove some overhead, as they

are implemented using state machines only.

From a software development point of view, Esper allows to extend its functionality in

many ways (e.g. custom sliding windows or aggregation functions), which allows using it

in novel contexts and use cases. It also does not define a specific event representation or

how processing of events is executed, i.e. single- or multi-threaded.

3 Event Processing in Intelligent Living Environments

3.1 Home Service Platforms

With increasing integration of distributed systems in living environments, the amount of

generated data that has to be processed and interpreted by home service platforms is also

on the rise. Ambient sensors collect, (pre)process and forward large amounts of data

generated by inhabitants and their environment including but not limited to vital signs,

deduced activities, device states and environmental parameters such as temperature or

humidity. Together, these values represent the context, which is needed to develop context-

aware, adaptive applications for the platform.

3.1.1 Information Integration and Deduction

Applications in intelligent living environments rely on context information to be able to

adapt dynamically to the changing user’s needs or preferences. Unless an application is

very simple (e.g. clock or weather display), it requires deduced information, which can be

gained by combination and interpretation of events created by the platform’s components

(devices and software). The resulting deduced information represents more abstract infor-

mation of higher value for application development (e.g. a recognized inhabitant activity).

If the platform is able to produce and provide this abstract knowledge for applications, it

removes the burden from applications to calculate it individually.

The more heterogeneous the systems in an intelligent living environment are, the harder it

becomes to interpret and relate the events generated by them. This can be solved by man-

ually mapping input and output of each to be integrated system to each different system or

application. A much more elegant approach to solve this problem is to integrate all context

producing and consuming components into a common context model, a context ontology,

which is managed by the service platform. This allows to semantically integrate and pre-

pare information from arbitrary sources for consumption of context data by applications.
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An approach for this context model has already been presented in [Sch10], which uses the

Web Ontology Language (OWL) [Gro09] for ontology modeling. Here, the sub-ontologies

of each system contributing to the context model have to be based and integrated with a

common basic ontology.

A common context model offers additional benefits. Just like arbitrary context providers

or consumers, context processors such as CEP engines can use the information stored in

the model to deduce high-level information easily, which itself can become part of the

model and, thus, be consumed by components of the system.

3.1.2 Information Filtering and Extraction

Creating and managing a context model is not cheap in terms of required processing power,

as incoming and outgoing information has to be imported and exported constantly, which

always requires information mapping of some kind (e.g. from OWL/XML to some trans-

port protocol or to Java). Some sensors or applications produce large amounts of raw data,

from which only the right information is required. As the raw data should not become part

of the context model (to prevent bloat and unnecessary computational effort), this data has

to be preprocessed. Often, the producing component is able to do this itself, but this is not

always possible. Then, a CEP engine is used as context preprocessor. Instead of relying

on information from the context model as input, it receives input streams directly from the

data sources. In this case, only the processed output becomes part of the model and, thus,

can be used by other applications.

3.2 Interactive Tabletop Systems

Interactive tabletop systems have been in the focus of HCI researchers for about two

decades and gained more interest in the past years due to the development of powerful

hardware for a variety of input methods. Additionally, the key benefits associated with

interactive tabletops – like ease of use, intuitiveness and support for collaborative work –

make them suitable for the use in the field of ubiquitous/pervasive computing, which is

getting more and more important [TGS06].

Despite the general interest in interactive tabletops and the broad research of tools and

techniques for various ways of interaction, the general processing of interaction events

happening throughout such a system has not received much attention. Traditionally, input

events are handled by some abstraction layer of the operating system, which provides an

event dispatching mechanism for user interface toolkits. Events are typically processed by

an event loop, i.e. a continuously running process which takes any occurring event as their

input and publishes them to one or multiple subscribers. Besides the routing of events

from their source to the appropriate user interface components, no additional processing

takes place. Any complex event processing which extracts higher level information from

events are provided by specialized frameworks on the application level, e.g. for gesture

detection.
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In contrast to the input devices used with PCs (e.g. keyboard and mouse), applications

for interactive tabletop systems make potential use of a wide variety of input methods.

Additionally, also other interactive systems do make use of more input devices as their use

cases increase. Thus, the need for processing and aggregation of input events arises, which

addresses the rising complexity and interdependence of the constantly generated input

events by multiple input devices. Based on a previously described architectural approach

[LDS+10], we propose a unified tabletop input layer (UTIL) to provide a middleware for

processing of interaction events in tabletop systems. At its core it employs Esper for all

event processing and querying tasks. The general architecture is implemented in large

parts by the Esper engine, with additional components specifically built for the purpose of

processing interaction events.

The collection of events from the various event sources is implemented by device de-

pendent collectors, one per input device – an input device being any programmatically

accessible source of input events, which does not necessarily correspond to a physical

device. The collection process is handled individually for each device, though most use

some OSC/TUIO-based protocol for communication. The collectors are responsible for

producing the raw event objects, which are then fed into the processing engine. The rules

for processing of simple input-events sent by the collectors to complex events are realized

as EPL queries that put new or combined events into the event stream.

The interactive applications running on the tabletop system subscribe to events through a

centralized query manager, which is provided by the middleware. Applications can con-

nect to it and use it transparently to issue event queries. The application queries are based

on the EPL pattern language, which are a subset of the full EPL. They allow for full spec-

ification of patterns of events and the issuer of the pattern gets notified whenever an event

matches the given criteria. Application queries are fed into the same engine instance re-

sponsible for the processing of the rule queries described earlier. These are two design

decisions which are related to each other: Giving application developers the ability to

use full EPL queries would have two drawbacks while providing only little benefit of en-

abling applications to use the full potential of the event processing engine. The drawbacks,

however, are two-fold. First, writing full EPL queries is much more complex than EPL

patterns, thus imposing additional complexity on the application developers. Second, it

also enables applications to directly interfere with the processing of the events, which is

shared by all applications running concurrently. Thus, giving application developers only

a limited subset of the full EPL for their queries, it enforces a true read-only access to

the processing system and relieves them of quite some complexity which should not be

needed on the application layer.

3.2.1 Processing of Spatial Data

Interactive systems are usually comprised of one or several input devices or sensors to

allow users of the system to manipulate artifacts in the system. Most of this input deals

with spatial information such as the position of a device itself (e.g. a mouse), body-parts of

the user (e.g. fingers or hands) or other objects. When processing events mostly consisting

of such spatial data, tools specifically designed for this purpose are required. Processing
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events based on two or three dimensional spatial data has mostly been done in the area

of geo-information processing [Lip09], but also in multimedia communication systems

[GYJO10]. Esper itself only supports time or scalar value based processing of events, i.e.

events can be processed depending on their temporal relations or based on the amount

of events or other scalar valued attributes. Thus, we had to provide a set of single-row

functions, aggregation functions, and data window views has to be provided as extensions

to Esper to support processing of spatial data in two or three dimensional space.

3.2.2 Gesture Detection

The main purpose of UTIL is to find patterns and correlations of inputs produced by the

users. Simple examples include the detection of a two-finger scroll gesture or a multi-

finger pinching gesture. These use only one input device and thus also one modality. More

advanced examples are correlation of input from different devices, such as multitouch and

three-dimensional hand tracking above the table for determining which touches belong to

which hand.

INSERT INTO AverageDirectionEvent

SELECT ISTREAM * as cursor,

avgDirection(position) as dir

FROM Cursor2DEvent.win:length(LENGTH)

GROUP BY cursorId

INSERT INTO PreCornerEvent

SELECT cursor.cursorId AS cursorId,

first(cursor.pos) AS pos,

first(dir) AS firstDir,

last(dir) AS lastDir,

(last(dir)).angle(first(dir)) AS angle

FROM CursorDirectionEvent.win:length(LENGTH)

GROUP BY cursor.cursorId

HAVING leaving()

INSERT INTO CornerEvent

SELECT cursorId, pos, angle

FROM PreCornerEvent

MATCH_RECOGNIZE (

PARTITION BY cursorId

MEASURES A[0].cursorId AS cursorId,

avgPosition(B.pos) AS pos,

(CASE WHEN avg(B.angle) < 0

THEN min(B.angle)

ELSE max(B.angle) END) AS angle

PATTERN (A B+ A)

DEFINE

A AS abs(A.angle) < ANGLE_THRESHOLD,

B AS abs(B.angle) >= ANGLE_THRESHOLD

)

Figure 1: EPL queries used for detecting corners in 2D strokes drawn with a finger.

A more complex example for interaction event processing, is a two dimensional touch

gesture detection based on strokes drawn on the surface of a table. It should be noted

that, while the main goal of UTIL is to enhance processing of events from multiple input

devices, it also allows to provide complex event processing for a single input device.
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The general algorithm behind this gesture detection is based on the ideas presented in

[WX10] and [WEH08]. First, corners in strokes drawn with a finger on the surface are

detected. Based on the corners, shapes comprised of multiple corners can be detected.

As shown in figure 1, the corner detection is fully implemented using only EPL queries.

First, the average motion-direction is computed over a window of multiple cursor posi-

tions. Second, the angle between sequential directions is determined. Finally, corners are

detected by looking for a sequence consisting of an angle below a threshold, followed by

one or more angles above the threshold, and terminated by an angle below the threshold.

Every time such a sequence is found, the average position and greatest angle is used as the

position and angle of the final corner. Additionally, the start and end of each stroke is also

considered as a corner.

The actual gestures are described using the match-recognize feature of Esper (which is also

used in the final step of the corner detection), which allows to specify regular expressions

of events. An example of this is shown in figure 2. The detected gestures are translated into

gesture events, consisting of the average position of all corners that make up the gesture

and an identifier of the gesture.
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INSERT INTO GestureEvent

SELECT cursorId, "YES" AS type, pos

FROM CornerEvent

MATCH_RECOGNIZE (

PARTITION BY cursorId

MEASURES A.cursorId AS cursorId, B.pos AS pos

PATTERN (A B C)

DEFINE

A AS A.angle = 0,

B AS B.angle BETWEEN 60 AND 150,

C AS (C.angle = 0) AND ((B.pos).distance(C.pos)

BETWEEN (1 * (A.pos).distance(B.pos)) AND

(3 * (A.pos).distance(B.pos)))

)

Figure 2: EPL query used for detecting a ‘Yes‘ gesture based on the previously detected corners.

4 Intentional versus Non-Intentional Events

The two fields of application for event processing presented here share many principal

characteristics. Of course, all general characteristics of event driven architectures and

event processing systems are found. However, they also share more specific traits, like the

presence of multiple, heterogeneous event producing devices, the general need for inte-

gration and filtering of those events to deduce and extract higher level information, or the

overall application area of dealing with human activities. Especially the last characteristic

provides several opportunities for integration of both systems.

Considering all the commonalities, the question arises where to draw the line between

event processing for home service platforms and interactive (tabletop) systems. It could

be argued that they are actually the same, as user input in an interactive tabletop system

can be considered just as another sensor like temperature or vital signs. Vice versa, the
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context information collected from ambient sensors could be eventually interpreted as just

another input to an interactive system (using a very broad definition of that term).

However, not all characteristics are identical. The two fields of application can be distin-

guished by the intention of processed events: on the one hand, events like ’opening a door’

or ’walking across a room’ are considered non-intentional with respect to the home service

platform, which only observes these events through ambient sensors. The actions behind

the events were not performed to trigger some behavior of the system and a response to

that action is usually not its primary purpose. While anything that happens because of

non-intentional events may possibly be expected by the residents, this is only expected

by habit. On the other hand, events like ’touching a display surface’, ’pressing a key’, or

’saying a defined command’ are considered intentional with respect to the home service

platform. The actions are performed just for the purpose of interacting with the system and

a reaction is expected. Moreover, the feedback is usually expected to be instantaneously

and directly observable. Anything happening only after a certain delay1 is then considered

to be non-responding and may even confuse the users.

5 Points of Integration

The two distinct systems provide one the one hand context events, and direct interaction

events on the other. As the comparison in the previous section shows, the separation

of both systems should not be easily removed. However, there are potential points of

integration, which can be identified.

Applications running on one or more interactive tabletops or surfaces in the living environ-

ment could benefit from additional information about the context in which they are used.

For example, knowing that a person has entered the room could lead to activation of the

interface next to him or her. This means turning the context events into direct interaction

events. In addition to the use as simple input events, the context events can of course also

be used in aggregation and creation of complex input events. Moreover, the context events

can be employed in the realization of multimodal interfaces, where selection of the input

modality for interaction might depend on the context in which the application is used. Of

course, care must be taken not to interpret to many of the context events as direct interac-

tion, because the users might not have intended this meaning and might not know why the

interactive system behaves in a certain way.

In the other direction, the direct interaction events produced by the input devices them-

selves and also the complex events derived later could be fed into the context event pro-

cessing system. They provide very fine grained information about the current activity of a

person and thus can greatly support otherwise more coarsely captured data about the con-

text. For example, the information that someone is currently interacting with the tabletop

system in the living room can be used to simply infer that there is someone in the living

room and how long they have probably been there. Also, as direct interaction with system

usually requires the main focus of a user, it can be inferred that the person is busy working

1delays of up to a few hundred milliseconds are usually acceptable, depending on the kind of interaction
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or some other task and in case of elderly people, that they are alive and well. Similarly to

the use of context events as input to the interactive system, simply feeding all input events

also into the context event processing system is probably not useful. Especially as the

interaction events are very fine grained, it might be advisable to apply rate limiting2 and

aggregation on the events.

In the following section, we outline how the integration of the two systems allows for self

adaptation by managing the resources based on the demand for events.

6 Demand-Oriented Resource Management

Home service platforms in smart homes have to provide as many services as needed and,

at the same time, as few as possible. The former results from the requirement, that resi-

dents expect all services to be available when they need them, especially when it comes

to interactive systems (as discussed above, delayed or even no response of the system is

usually not acceptable in this context). The latter results from the limited resources (pro-

cessing time, memory, bandwidth, energy, etc.) and the demand for reduced overall energy

consumption. To provide a solution to this problem, usage of resources has to be managed

based on demand. While this is not a novel concept in itself, we introduce how it can

specifically be applied to intelligent living environments.

In demand-oriented resource management, de-

Figure 3: Overview of the demand chain in
a demand-oriented resource management
for intelligent living environments.

mand is driven by the event consumers, which

are the applications and components interested

in the available context and interaction informa-

tion. As most services in smart homes are even-

tually provided to the people living there, the

demand for context and interaction information

depends on the interaction of residents with the

system. For example, if no one is currently us-

ing an interaction device (such as an interactive

tabletop system), it would be sensible to turn

the device off as well as turning off any services

used by it. Vice versa, if someone enters a room,

at least basic input detection of the interactive

system has to be turned on again, in order to al-

low the potential user to start interaction. Also,

all intermediary processing of events should be

gradually started or stopped, depending on the

need for it. This interdependence of the home

service platform and the interactive systems are the reason why a demand-oriented re-

source management in an intelligent living environment requires integration of both sys-

tems.
2Input events are generated at rates of hundreds to a few thousand events per second, depending on the number

of devices and people involved. For example, two input devices with a sampling rate of 60 Hz and two people

actively using multitouch gestures with two fingers each, will generate 480 events per second
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In the context of complex event processing, managing resources means to manage de-

vices, event sources/streams and processing rules. Figure 3 gives a general overview of

the managed components and how each component is driven by the demand from other

components. Processing rules, which translate to continuous queries in Esper, are the

most specific components. They realize a specific processing step, operate on one or sev-

eral event streams and may produce events for other rules or consumers. While the event

processing engine tries to optimize execution, some resources are still consumed in the

form of processing time and memory. As the most specific components, processing rules

would be the first candidates for deactivation in case no demand is detected. Event sources

or streams are more general, as they are used by a multitude of processing rules or con-

sumers. The streams do usually not require much processing time, but the events have

to be stored and possibly sent to other nodes for processing. When all processing rules

or consumers interested in a specific event stream have been deactivated, the stream it-

self would be disabled, which means that no storage or transfer of events occurs. Finally,

devices are the coarsest level to manage. They host all event generation, processing or

consumption and the main resource consumed by them is energy. As all the previously

named components are running on one or more devices, they can be deactivated or shut

down, whenever all components currently running on them are deactivated.

These components are disabled or deactivated whenever no demand for the individual

components is detected. When demand for certain information is detected again, the pro-

cess of reactivation is done in reverse and only activates those components which are

necessary to fulfill the demand. The management of event processing in this way results

in a self adapting system, which efficiently uses resources based on the interaction and

activities of the users.

7 Conclusion and Future Work

In this paper, we presented two important application areas for event processing in intelli-

gent living environments and explored their characteristics and commonalities within that

context. The potential points of integration indicate, that the two application areas can ben-

efit from each other when information is shared between them. On the other hand, we also

showed, that even though many similarities exist, each application area deals with a dif-

ferent kind of events, which are characterized by the intention behind them. Furthermore,

we propose a demand-oriented resource management in intelligent living environments

and outline how it can be realized by integration of user interaction and context event

processing.

Based on this, several challenges have to be addressed and more work is required to realize

a fully integrated system capable of providing both context and user interaction informa-

tion and maintaining a self adapting operation. The integration of interaction and context

information requires further analysis of their individual characteristics, in order to identify

which information can and should be shared and how this information should be inter-

preted by the other system. Furthermore, the analysis of dependencies in the event pro-

cessing systems requires to instrument the whole system in an appropriate way. Also, the
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demand-oriented resource management requires a reliable way to detect demand based on

the user interaction. As the user interaction itself can only be detected when input devices,

input event sources and input event processing rules are active, it has to be examined how

efficient resource management can be realized even though interdependencies like those

exist.
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Abstract: The heterogeneity of future living environments will increase the necessity
to create applications that can run on any device. In the context of graphics applica-
tions, some kind of simplification must be included to enable rendering on devices with
less computation power. Using perception to guide such a simplification is a common
approach. However, existing methods generate levels of detail in advance, and only a
selection is performed during run-time. In simulations, this not sufficient because an
object will change over time.

We present a framework that adapts a simulation using perceptual measures. We
use a visual salience model to extract regions where detail can be modified. This in-
formation is calculated during run-time, and by using a dynamic data structure, the
representation is adapted without a definition of levels of detail in advance. We in-
cluded the system in a physics library and so created an interactive and continuous
simulation level of detail.

1 Introduction

Physical behavior of objects in a 3d scene create the impression of a real-world scenario.

Simulations of fabrics and liquids, for example, require expensive calculations, and if

accuracy is not crucial, a reduction in the number of simulated objects leads to a decrease

in computation time. In real-time applications, such as games, a reduction may be applied

as long as the plausibility is retained, e.g. a human would rate the visible outcome as

valid. In this work, we propose to use perceptual information when altering detail, and we

present a framework to modify the detail of a simulation during run-time. This adaptation

is not bound to a predefined set of simulation levels of detail (SLODs). Thus, it can adapt

to any hardware without manual adjustments. With this system, it is theoretically possible

to transfer a running simulation from a high-performance system to another, maybe lower-

powered device. A user is no longer bound to a specific hardware at a distinct location.

By simulation, we thereby mean changes to the surface representation based on physical

laws. These changes, for example, can be introduced due to gravitation or compression of

an object. Usually, objects are decomposed into multiple parts to increase detail, i.e. accu-

racy, of the simulation. Our framework will control this decomposition, and to complete

this task, perceptual measures are used to steer the applied modifications, e.g. a reduction

or increase in detail.
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To account for perceptual information, a visual salience model is used. An object is con-

sidered salient if it figuratively “pops out” of its surround. We utilize a 3d visual salience

model and include animation-specific features, e.g. motion. The Bidirectional Saliency

Weight Distribution Function (BSWDF) [SK11] allows us to extract regions of interest

within a 3d scenario, and thus we can account for areas that are important for a human

spectator. Due to the inclusion of animation-specific features, regions that are modified by

the simulation are taken into account as well.

We derive a Model-View-Controller-system that extracts, alters, and displays simulated

objects. Our prototype is based on a soft-body simulation. A soft-body, which covers

materials like cloth or fabrics, is well suited for dynamic adaptation as individual parts

of a soft-body-simulation can be removed to reduce the accuracy. Our results show that

real-time updates can be achieved using nowadays hardware.

After giving this introduction, we continue to look at related work. In section 3, we present

our framework. Afterwards, the saliency features are derived, and the according BSWDF

is defined. In section 5, we give some notes regarding the complete system and present

performance measures as well as achieved results in section 6. We close with a conclusion

and present intended future work.

2 Related Work

Soft-body objects have a high computational demand, and these are neither rigid, fluid,

nor gaseous. To reduce simulation complexity of fluids and gaseous materials, point-based

animations have been studied by several researchers. Mueller et al. [MKN+04] presented

a separated data layout to reduce the size of the simulation data. Adams et al. proposed

the “adaptively sampled particle fluids” approach [APKG07]. Single nodes are collapsed

or expanded to reduce the size of the simulation. Similar to Mueller et al., a separated data

layout is chosen.

The accuracy of a simulation can be modified during run-time by using multi-resolution

representations. Beaudoin and Keyser [BK04] replace simulations of plants with approx-

imations. These approximations are generated during a preprocess, and individual parts

of a plant are exchanged using a recursive algorithm. Visual artifacts are avoided with

smooth transitions. This geometric approach is both a LOD and SLOD as the detail in the

representation and the simulation is reduced. It, however, requires to traverse the represen-

tation each time it is accessed, and the recursive algorithm does not account for perceptual

information.

The perception of a human spectator can be modeled with visual salience as done by Itti

et al. [IKN98]. Their method represents the processes of early vision, which cannot be

influenced by tasks or other cognitive-related factors. For rendering, saliency information

can be used to preserve detail in important regions [SK10, FSG09, LVJ05].

In [SK10], we presented a dynamic data structure, which selects a representation for ren-

dering using a priority value. Carmona and Froehlich [CF11] proposed a similar approach

simultaneously, and they presented a theoretical optimal algorithm for priority selection.
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This priority, for example, can be saliency information, such as curvature of the sur-

face. For general computation of saliency within a 3d scenario, the BSWDF has been de-

fined [SK11]. This allows to model visual salience of an object without explicit projection

into 2d space. In combination with the TreeCut, a perception-based LOD is established.

Some user studies regarding simulation and perception have been performed by several

researchers [YRPF09, GDO08, O’S05]. The results of the different experiments show that

the precision of physics simulations can be reduced without loosing plausibility.

3 Approach

Our approach is a combination of the TreeCut data structure – presented in [SK10] – and

a soft-body simulation provided by the Bullet physics library [Bul]. We have chosen the

library to show, on the one hand, the universal applicability of our approach, and on the

other hand, avoid the need to verify a stand-alone physics calculation.

To establish this combination, both the TreeCut and the physics library need to be ex-

tended, so that a dynamic exchange of information between both is possible. Furthermore,

to account for saliency information, a specialized BSWDF will be defined, which uses

animation-based features, such as motion. While the BSWDF is not limited to these ani-

mation features, we will focus only on these within this work.

Our framework is depicted in figure 1. The complete system is highly dynamic as the

change introduced by the simulation invokes new changes in the TreeCut representation.

We use the simulated data to derive both the visual output (View) and the influence of vi-

sual salience computation (Feedback Stage). We control the Feedback Stage of the system

with a threshold value for saliency values, and so limit the adaptation of simulation detail.

3.1 Physics Simulation

The Bullet physics library [Bul] provides various tools and data structures to compute a

physics-based simulation. This includes detection and resolving of collisions as well as

physics objects, e.g. rigid- and soft-bodies, as well as their computations

In our prototype, the Bullet library in version 2.78 is used. It provides a soft-body simu-

lation class, which is supplementary to the normal library. We leverage this fact to plug-

in our own TreeCut-SoftBody (TC-SB) that bases on the Bullet’s SoftBody-class. It

utilizes a Mass Spring System (MSS) to simulate the physical behavior. Only two data

structures – the simulation nodes and links – are required for the computation of forces.
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Figure 1: The proposed animation framework that is based on a Model-View-Controller-

design. The Model contains the dynamic representation using a TreeCut and a soft-body

simulation (TC-SB). Other representations can be added as well, which will be included

in the animation. The Controller issues the TreeCut-operations based on the results from

the Feedback Stage. The View is derived from the current representation of the Model and

can introduce, via the user, new changes into the system.

3.2 TreeCut

The TreeCut utilizes a multi-resolution representation of an object. With the help of two

core operations, refine and coarse, the detail of a local node is altered. In case of

a refine-operation, a single node is replaced with a more-detailed representation. As-

suming a tree, a node is replaced with its children. The coarse-operation is the inverse,

i.e. the children are replaced with their common parent. We use a priority-selection of

surface elements, so called surfels, to invoke a TreeCut-operation for the assigned node.

The TreeCut has been defined for geometrical LOD-methods, and thus both operations

need to be extended to correctly account for SLOD-operations. Physics calculations need

access to the surfel structure maintained by the TreeCut. We therefore use an index-based

mapping between the surfels and the simulation nodes. The MSS-simulation uses links,

and the inner structure of a mesh needs to be reestablished after a SLOD-method has been

applied. Because of the locality of the TreeCut-operations, we include an incidence list,

which avoids searching for connected links. An interpolation between the old and the new

state of the MSS is done to reduce artifacts.
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Figure 2: The refine-operation and the required steps to assure correct generation of

simulation nodes. In the first step, the incident links are extracted while the physical

properties are propagated to the child nodes in the second. In the third, the external links

are distributed among the children and interpolation is enabled.

3.3 Beginning TreeCut-Operations

In the following, we assume a refine-operation to be processed – only small adapta-

tions are required to perform a coarse-operation. To replace a simulation node with its

successors, the following steps are performed:

1. Store (old) incident links

2. Propagate physical properties

3. Create (new) incident links

4. Mark links for interpolation

When refine-ing a node, the incident links are marked for interpolation and adjacent

nodes are extracted. The physical properties of the parent node are acquired and propa-

gated. For the position information of the children, a displacement relative to their parent

is calculated. The child nodes are added to the set of simulation nodes, but are excluded

from collision calculations, for now. After propagation, the new nodes are connected with

their neighbors using local nearest neighbor search among the adjacent nodes. The created

links are added to both incident link lists of the affected nodes and are marked for inter-

polation. In figure 2, the applied steps for propagation are visualized while figure 3 shows

the interpolation.

127

127



(a) The current links to the node

(blue) will be marked for delete

and are interpolated due to the

refine. The new nodes (red) will

be connected with the neighboring

nodes.

(b) The influence of the old links

(blue) is reduced during the inter-

polation while the new links (red)

gain importance. Inner links are ex-

cluded from blending.

(c) The simulation nodes after the

applied refine-operation. The

old nodes and links have been re-

moved and the new links are no

longer interpolated.

Figure 3: Application of the blending during the TreeCut-operations. It is performed to

avoid the generation of artifacts. From left to right, a refine-operation is performed.

From right to left, it is equivalent to the operations performed by a coarse-operation. In

the captions, the refine-operation is explained.

3.4 Ending TreeCut-Operation

After completion of an interpolation, old nodes and links are removed from the simulation.

We apply the following steps to complete a TreeCut-operation:

1. Finalize physical properties of the new nodes (e.g. insert collision shapes)

2. Delete old links (in sequential order)

3. Delete old nodes

First, the physical properties of the new nodes are finalized. Therefore, the collision shapes

are inserted into the simulation. The incident links are no longer interpolated.

The incident link list of the old nodes is used to extract the affected links that will be

deleted. To safely remove links, their internal order may not be altered. Otherwise, the

calculated position will differ because links are evaluated sequentially. Therefore, a linear

traversal is required for deletion, increasing the theoretical time complexity of the end-

algorithms from O(1) to O(L) where L is the number of links. However, these links will

be deleted in a lazy manner, and thus the overall time for computation is not influenced.

After marking the links for removal, the nodes are removed as well.

4 Animation Features and Saliency

Animation features are accounted for by extracting local and global motion information

that is generated during the simulation. These features will be stored in the surfel structure.
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This allows combination with visual features as the BSWDF can be calculated during

rendering.

The result of the BSWDF is a priority value that reflects the relative importance of a surfel.

The TreeCut-evaluators use this priority to perform a reduction in simulation detail.

Definition of the BSWDF

Local motion is the relative motion of a node with respect to its previous position, i.e. its

velocity. If a single node is moved differently than others, it is considered salient. This def-

inition matches the processing of the human visual system (HVS). A refine-operation

applied to that node will increase detail. In regions where no explicit nodes are found, the

coarse-operation can safely be applied because it is unimportant for the HVS.

Global motion increases the saliency values as movable objects catch one’s attention.

However, this increase simultaneously limits the ability to focus an object [YPG01]. Thus,

the maximal saliency value is clamped to an upper bound influenced by object’s velocity.

We define a BSWDF that operates on both motion features. Global and local features

are separated because the global features influence the local ones. Because of the restric-

tion to two motion-related features, we state that other features need to be included when

performing visual tests. In this special case, however, we give the following definition:

BSWDF(ωC , ωL, dC , <x) = Illu(ωL, <x) ◦ Animation Features(ωC , dC , <x) (1)

with ωL being the light, ωC the camera in spherical coordinates and dC the distance to the

camera. The ◦-operator applies the illumination model. In case of a Lambertian illumina-

tion, this is a multiplication. We define the Animation Features as

Animation Features(ωC , dC , <x) = Global Motion(ωC , dC)⊗ Local Motion(ωC , dC , <x)
(2)

The position <x is the current surfel’s position assigned to a simulation node. If no illumi-

nation is used, the BSWDF simply evaluates to the result of the Animation Features. The

⊗-operator expresses the before mentioned limitation of the Local Motion features due to

the Global Motion.

5 Complete System

The animation framework, as shown in figure 1, contains the physical calculations as part

of the Model. This allows to include the extensions into an existing MVC-design to pro-

vide both physical simulations and perceptual evaluation.

The Feedback Stage receives input from the Model and the View to calculate the BSWDF.
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(a) The coarse-operation
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(b) The end-coarse-operation

Figure 4: The time complexity of the coarse and end-coarse-operations applied by

the TreeCut-SoftBody. A linear fit is shown that uses all generated samples. For the

refine, similar timings are achieved.

The TreeCut-evaluation is performed in parallel, and the according changes are sent to the

Controller. This executes the refine- and coarse-operations.

To allow adaptation of an object, some kind of restriction has to be imposed. In our

prototype, we use a maximal node count, but also a maximal computation time or hardware

capabilities can be utilized. For example, a maximal calculation time allows to adapt the

simulation to achieve interactive rendering.

The complete system is highly dynamic and provides self-optimization capabilities. We

include a threshold during TreeCut-evaluation to avoid repetitive change of a single node.

For example, a coarse-operations could remove a node, which will be inserted in the

next iteration again. With the threshold, the gain of inserting a node must be higher than

the penalty of removing another node including the threshold.

6 Performance and Results

We have implemented a prototype of the proposed system in C++. A cloth object is gen-

erated using a regular grid and the required LOD-hierarchy is generated in a preprocess.

The corners are fixed to create a swinging net. In the tests, only gravitation is simulated.

All results were taken on a system with an Intel i5 670 at 3.47 GHz, 8.0 GB RAM and a

nVidia GeForce 260 GTX graphics card.

In a first test, we measured the performance of the dynamic SLOD-methods. In table 1,

the manipulation of a single node is presented averaged over multiple applications of each

TreeCut-operation. Each entry in the table contains the fraction of the complete processing

time along with its measured times.
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(a) TreeCut-SoftBody-simulation with Feedback en-

abled. The simulation is compressed to 75% of the

initial size.
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(b) Soft-Body-simulation. No compression can be

applied, and thus the node count is constant.

Figure 5: The performance of the simulation in dependency of the node count used.

The graphs plot the enhanced TreeCut-SoftBody and the plain SoftBody, i.e. where no

compression is applied. The results are taken over a complete test set.

The TreeCut-operations have a high overall performance. Due to the neighbor information,

both TreeCut-operations remain constant in time (see figure 4).

In a second test, the simulation time in dependency of the number of simulation nodes and

links is evaluated. A test set is defined, which consists of multiple nets with varying node

counts and compression rates. During each test, no collisions are performed.

The averaged timing result (see table 2) show that the TreeCut-SoftBody decreases the

node count and increases performance. In the results, a reduction in processing time to

approximately 47.76% is achieved (compression to 30%) despite the additional 25 inter-

polations performed each step. Figure 5 shows the linear dependency in node count of the

TreeCut-SoftBody.

In figures 6a to 6j, some images generated with the TreeCut-simulation are shown. For

comparison, the results achieved with the Bullet’s SoftBody are included. The default

SoftBody does not have the ability to change the SLOD. If a lower detailed version is

required, a new SoftBody has to be created accordingly.

Operation N L Node-Ops [ms] Link-Ops [ms] Complete [ms]

refine 4888 10419 0.0164 (91.14%) 0.0016 (8.94%) 0.0180

end-refine 4889 10794 0.0017 (94.39%) 0.0001 (5.53%) 0.0018

coarse 4966 10615 0.0319 (97.61%) 0.0007 (2.39%) 0.0327

end-coarse 4938 10917 0.0025 (99.20%) 0.000 (0.79%) 0.0025

Table 1: Different timing results when applying the TreeCut-operations to the simulation.

N denotes the average number of nodes present while L is the number of links. The Node-

Ops are all operations that affect a node of the simulation while Link-Ops modify its links.
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Method Compression N L I Total [ms]

Bullet SoftBody - 4266 8413 0 11.09

TC-SB NoCompression 4266 8647 0 10.08

75% 3324 6931 30.5 8.40

30% 1911 4220 25.1 4.80

Table 2: Timing results with and without the feedback-loop using varying node counts.

Compression is the fraction the initial size is reduced to. N denotes the node count, L the

number of links present and I the number of interpolations. All results are averaged over a

complete test set.

7 Conclusion and Future Work

The presented system simulates a soft-body object, and the number of simulation nodes

can be reduced during run-time without a definition of discrete levels in advance. As

opposed to existing methods, we do not require a separated data layout. A SLOD-reduction

is applied based on visual salience with animation-specific features. The representation

can adapt to any hardware.

Unlike full point-based approaches, the removal of simulation nodes may not be performed

without preconditions. We store incident links to circumvent restrictions and enable dy-

namic adaptation using the TreeCut.

We defined a special BSWDF that operates on animation features, such as local motion.

The results are used to control the dynamic adaptation via the TreeCut-evaluation. Because

of the BSWDF, a human-oriented adaptation is performed.

Currently, only one TreeCut is applied for both rendering and simulation. We plan to apply

a second TreeCut, which will maintain the simulation nodes. It will then be necessary to

propagate the results of the simulation nodes to the surface representation.

When applying a TreeCut-operation, the placement of new nodes is performed using only

geometrical measures. This needs to be extended with animation and physical measures

to increase stability and feasibility. Also, a smooth surface, e.g. a moving least squares

surface, could provide more exact positions.

An implementation using the graphics card could increase performance. With the capabil-

ities of the newest shader model 5, a soft-body can be implemented without restrictions.

However, it remains to be seen what changes to the proposed system are required.

Our system can account for perception when evaluating a simulation object. User tests

have to be performed to validate the gained impression that detail is preserved and that

the simulation remains plausible even if nodes are coarsened or refined. A maximal

compression factor could be derived to identify when a simulation looses its plausibility.
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(a) SoftBody initial con-

figuration

(b) After 45 steps (c) After 90 steps (d) After 180 steps

(e) TreeCut initial configu-

ration

(f) After 45 steps (g) After 90 steps (h) After 180 steps

(i) TreeCut links after 45 steps (j) After 90 steps

Figure 6: Comparison of the SoftBody and the TreeCut. A fixed time step is used

to generate the different configurations. In the last row, the links of the simulation are

visualized. The highlighted links are being replaced by the TreeCut-operations. In case

of the TreeCut-SoftBody, only an approximate surface reconstruction is applied. Yet, the

detail is retained in the fast moving center region.
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Abstract: Integrating digital tabletop systems in private living environments is a
promising approach to enhance people’s everyday life with information technology.
Apart from using the surface of such a tabletop, research on the detection of interac-
tion above and around the surface is increasing rapidly. So far, detection is limited
either to very specific gestures above the surface or to rather abstract detection of
users in a larger scenario. The detection of body parts in tabletop setups has rarely
been investigated, although the knowledge about the whereabouts of body parts would
be helpful to establish relationships between users and interactions. In this paper, we
propose a system that is capable to detect body parts above and around such a tabletop
setup using a depth camera. We further take up an existing approach to present how
the detection in this setup could work. Additionally, we propose a new approach to
obtain training data for the detection using a color suit.

1 Introduction

Ubiquitous Computing (Ubicomp) [Wei91] promises to enrich people’s everyday environ-

ments, such as private living spaces, with technology, in a way that people are surrounded

by information technology anywhere in their home. In such private IT-spheres the human

factor has to be considered from two points of view. First, information about people, such

as their whereabouts, physical and emotional condition or current activities can be gath-

ered with a diversity of sensors. On the one hand, this information can be exploited to

configure and organize the IT-sphere and on the other hand increases the importance of

handling this sensitive data securely. Secondly, people may intend to access the system

and intervene in automatic configurations processes. In private living environments, peo-

ple cannot be expected to be expert users regarding these intended interactions requiring

an intuitive user interface. As a further requirement, user interfaces should be integrated
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in the environment as naturally as possible to keep a homelike atmosphere.

In [Dou01] the concept of embodied interactions is introduced, meaning seamlessly inte-

grated technology in peoples everyday life. Regarding horizontal surfaces of our everyday

life, such as dining and coffee tables or cooking fields, a possible consequence to apply the

Ubicomp concept is to replace these conventional surfaces by interactive surfaces. In this

way, surfaces can be used both as traditional furniture or home appliances and as a means

to interact with digital content.

Especially the field of interactive tabletops is topic of a lively research community and is

growing further. Much effort has been put into researching all kinds of gestures or com-

binations of input methods on the surface to realize natural interactive systems [Saf09].

However, the main means of interaction are still touch and tangible objects. The space

above and around the surface has also gained attention of researchers. They mostly exper-

iment with free gestures of hands to be used as a separate means of interaction [LAM07,

KGS07]. While several approaches have been developed, interaction techniques above

and around the surface are very specific and mostly considered as isolated gestures rather

than integrated in a larger scenario.

The concept of proxemic interaction [BMG10] ties in with Ubicomp environments by con-

sidering the information about relationships of people and devices, such as distance, ori-

entation, movements and identity, to regulate implicit and explicit interaction techniques.

In contrast to the above mentioned isolated gestures, proxemic interaction takes place at a

higher abstraction level in a larger area, e.g. a living room. Yet, the concept only consid-

ers orientation and location of the whole body. However, when it comes to interaction in

tabletop setups, a more detailed knowledge of body parts is necessary to allow for interac-

tion techniques in a continuous interaction space [MJGJ11]. Additionally, the knowledge

of the whereabouts of body parts becomes particularly helpful in multi-user scenarios to

assign interactions to specific hands and users [DL01].

In this paper, we claim that an unobtrusive top-view system to detect body parts in a

tabletop setup is helpful in an Ubicomp environment. One contribution of this approach

is that intended human computer interaction is enhanced with a natural user interface.

Further, self organizing and security systems can be supplied with dedicated information

about users whereabouts. We propose an approach how the tabletop system could be

achieved by employing a depth camera. We discuss the present constraints of the system

and we further take up previous work which introduced a full body human pose recognition

without using any kinematic or temporal dependencies [SFC+11]. A further contribution

of this paper is a new approach to retain training data using a color suit.

In the remaining, we first review related work. Secondly, we describe a setup and the

precision that is to be expected to detect above and around the surface interaction. Based

on this we present an approach to detect interaction in this setup and propose a novel way

to obtain training data. Finally, we give a conclusion and propose future work.
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2 Related Work

The field of interactive surfaces is topic to a lot of research groups. In particular, the

detection of interaction around the surface has gained attention recently. Usually, the

approaches either investigate the space above horizontal surfaces, the space in front of

vertical surfaces or a combination of both. Our approach also relates to previous work, that

proposes systems to estimate the human pose and detect body parts from depth data. In

the following, we first review previous work that focuses on extending interactive surfaces

with depth. Secondly, we give an overview of approaches to detect body parts.

2.1 Extending Interactive Surfaces with Depth

In [HIW+09], Hilliges et al. present two different rear projection-vision tabletop setups

to detect interaction above the surface. In one setup the height of hands above the surface

is approximated by their brightness in the image using a standard camera. In the second

setup a depth sensing camera is employed from behind a holographic screen to detect the

exact height of hands above the surface. However, only specific interaction, e.g. a pinch

gesture above the surface is proposed. Detecting human body parts is not subject of their

work.

In [Ben09], Benko et al. introduce DepthTouch, where a vertical screen is combined with

a depth camera to allow for interaction in front of the screen. The interaction space is

limited to a defined area where hand blobs are detected as the closest segments to the

camera. Therefore, the approach is not applicable in a top view setup. Furthermore, only

one user can interact at a time which suspends multi-user scenarios.

Wilson et al. present LightSpace [WB10], a combination of a horizontal and vertical digital

surface, multiple projectors and depth cameras. In their setup, they allow for carrying

virtual object on the user’s hand. However, they do not distinguish between body parts but

treat any part of the mesh representing the detected surface of the user equally.

In [TMR10], Takeoka et al. present Z-touch which uses multi-layered infrared laser planes

to detect interaction close to a tabletop surface. The system does not scale for larger inter-

action volumes above the surface and is unable to assign interaction to actual body parts.

Annett et al. propose Medusa [AGWF11], also an extensive hardware setup composed of a

digital tabletop and three rings of infrared-based proximity sensors, to detect the presence

of users close to the tabletop using these sensors. Employing this technology, they can

assign touches on the surface to hands of users. The authors point out, that their system is

error-prone in situations when multiple users cross paths. Furthermore, accurate positions

of hands above the surface or distinct body postures can not be determined.
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2.2 Detecting Body Parts from Depth Data

There exists a vast body of literature on vision based approaches to realize markerless

human motion detection, reviewed in [Pop07]. Since our approach is based on acquired

depth data, we will give a short overview of work that focuses on the detection of body

parts that involves depth data.

Several approaches employ a fusion of RGB and depth data and a human body model to

detect and track a user’s body parts. Knoop et al. use an iterative closest point (ICP) algo-

rithm to fit the body model into the data in [KVD09]. Apart from kinematic constraints, no

other assumptions are made. However, the authors point out, that the approach only works

reliably, if the whole body is visible. Further, a higher tracking accuracy comes at the cost

of a growing number of ICP steps, which increases the algorithms running time. Jain et

al. propose a haar cascade based detection of head and torso followed by a locally fitting

of limbs in [JSDM11]. The approach uses a frontal face detection classifier to estimate the

head’s position and then infer the upper body pose.

With the launch of the Kinect1, the OpenNI SDK2 has become available to realize a full

body tracking in real-time by fitting a human skeleton into depth data. However, the system

only works, if the whole user’s body is visible and standing upright.

In [PGKT10], Plagemann et al. propose an approach to detect human body parts in depth

data by identifying geodesic extrema on the surface mesh. These extrema are classified as

head, hands and feet using a classifier trained on depth images patches. To overcome self-

occlusion problems occurring in this approach, Schwarz et al. [SMMN11] employ optical

flow to disconnect points that lie on different body parts. To correctly assign body parts,

both approaches assume that the user is facing the camera to achieve a frontal view.

All previous approaches have in common that they all propose front view setups which

assume certain situations. Among others, assumptions are that the full body is visible,

that the head is above other body parts, that arms are reaching towards the camera or that

the face is visible in the camera image. None of these assumptions can be made in a top

view scenario. As a consequence, the so far reviewed approaches are not applicable in our

setup.

Shotton et al. [SFC+11] present an approach to detect body parts from depth data without

using any temporal or kinematic dependencies. Although they propose a front view setup

where the whole body is visible, they do not make any assumptions that limits their ap-

proach to such setups. We therefore take their work up and propose to employ it in a top

view setup to detect body parts.

1http://www.xbox.com/kinect
2http://www.openni.org
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Depth Camera

Multitouch/Tangible Object

Interactive Tabletop System

Interaction Space

Figure 1: Overview of our setup.

3 System

In this section we propose a system to detect user input above and around a digital tabletop.

We first present the setup before we describe the precision that is to be expected.

3.1 Setup

There exist various tracking solutions using markers that are attached to the user’s body.

Although these approaches achieve a very high tracking accuracy, these systems come at a

cost. Firstly, the hardware tends to be expensive and often needs the installation of multiple

cameras. Secondly, the severest drawback is that users must wear markers whenever they

intend to interact with the system. That is not desirable in a private living environment and

we therefore choose a highly preferable markerless vision based solution.

Since interaction takes place in 3D space, 3D information of the scene has to be extracted

first. Although a setup with multiple cameras would avoid occlusion situations, the system

would need an extensive hardware installation. A passive stereo-vision system could be

used to obtain a depth image of the scene. However, these systems lack in reliability

because corresponding points need to be found in every frame which can be difficult,

e.g., in homogeneous regions. We therefore employ a single active depth camera that
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uses infrared light to measure depth since this technology can achieve robust results at

interactive frame rates.

In a setup where only a single depth camera is present, the position and orientation of the

camera has to be chosen carefully. In a tabletop setup, interaction is likely to be performed

from all sides of the table. Installing the depth camera to obtain a side-view of the scene

would limit the system to only be usable from three sides. Furthermore, occlusions in

multiple user scenarios might occur. Placing the camera inside the table would solve

occlusion issues, but is not applicable with many tabletop system since rear projecting

screens reflect infrared light. Therefore, we install the depth camera above the table to

achieve a top view of the scene.

A suitable active depth camera we could use in our setup is a Time-of-Flight (ToF) cam-

era. ToF cameras are robust sensors to obtain depth images of the scene at interactive

frame rates by measuring the time that the emitted infrared light needs to return to the sen-

sor [KBKL09]. However, ToF cameras are still expensive and provide a rather low image

resolution. Furthermore, ToF cameras cannot be used with infrared illuminated tabletop

systems since the camera’s infrared light interferes with the tabletop systems and makes

touch and tangible object recognition impossible by outshining the table’s infrared light in

the camera image.

Microsoft’s Kinect determines the depth from a disparity map which is obtained by an

infrared light pattern that is projected onto the scene. It captures a high resolution image

at 30 frames per second. The pattern only causes minor artifacts in the camera image of

an infrared illuminated table which can easily be removed with standard filtering tech-

niques. Further, the Kinect is not troubled by the table’s illumination during the detection

of interaction above and around the surface.

Based on the observations from above, our proposed system concludes in a top-view setup

with the Kinect as shown in Figure 1. We investigate the scenario of a living room, where

the coffee table is equipped with a digital surface with a height of approximately 55 cm.

With a ceiling height of 2.50 m, the camera is installed 1.88 m above the surface and cap-

tures the whole surface of the table and an additional zone of around 30 cm around the

surface. This setup allows for detecting interaction that takes place above and closely

around the tabletop system.

3.2 Constraints

To retrieve depth data, we use the Open Source library libfreenect provided by the OpenK-

inect project3. We obtain an depth image with 11 bit depth where 1 bit marks error pixels,

thus 10 bit encode the actual depth. The project also provides an approximation for con-

verting the raw disparity values r into the metric system. The approximation is given by

d = 1/(−0.00307 ·r+3.33) where d is the depth value in meters and r = 0 . . . 1023. This

results in a visible range between 0.3 and 5.30 meters with a depth resolution that ranges

from 3 mm to 844 mm respectively. Since the depth camera is installed 1.88 meters above

3http://openkinect.org

140

140



Distance 10 cm 20 cm 30 cm 40 cm

points/cm2 11.1 12.7 14.5 16.3

Table 1: Average number of points per cm2.

the digital surface we can rely on a depth resolution of at least 11 mm in our setup.

To evaluate the depth precision with respect to our tabletop setup we captured a planar

cardboard at four different distances d to the surface. Table 1 shows the xy-resolution of

the raw data as the average number of points per cm2 for the four distances. The data is

averaged over 100 frames. In the closest distance to the table we obtain approximately

11 points per cm2 which restricts the minimum size of an object that can be captured

theoretically to 3.3 mm × 3.3 mm.

These technical limitations have to be taken into account when designing the body detec-

tion system. For instance, fingers will probably not robustly be detectable with our system

since noise due lighting conditions and fast movements is to be expected.

4 Detection of Body Parts

In this section we propose a system to detect body parts in the previously described table-

top setup. Since we build on previous work, we will first give a short summary of that

approach before we introduce a novel way to obtain training data using a special garment

that is specifically colored.

4.1 System Overview

In [SFC+11], Shotton et al. introduce an approach to quickly and accurately predict 3D

positions of body parts and joints from depth data. They use neither temporal nor kine-

matic constraints and process each pixel independently, making the algorithm suitable for

parallel implementation. Most importantly, no assumptions about the user’s pose are made

and it thus allows for 360◦ rotation of users and is able to detect multiple users at a time.

We therefore adapt their approach for our top view tabletop setup.

Their system is composed of a training phase and a live detection of body parts. The first

training step is to acquire depth data which contains body part labels. Based on this, depth

image features are computed for each pixel independently. Theses features are combined

in randomized decision trees where each leaf node represents a distribution over body part

labels. In the detection phase, the foreground is segmented in the depth data first, before

each foreground pixel is classified as a body part. Figure 2 shows an overview of the

algorithm. For a more detailed explanation of the algorithm we refer to [SFC+11].

In their paper, Shotton et al. propose a full body detection, and therefore use 31 body parts

that cover the whole body. In order to adapt the algorithm technique for our setup, we need
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Figure 2: System overview of the algorithm presented in [SFC+11].

to define body parts that are feasible in a top view detection scenario. First, our setup sets
constraints which we have discussed in section 3.2. Therefore, we do not aim to detect
fingers but combine them with the palms. Further, we aim to detect the upper body from
a top view where users bow over the surface to interact. This limits the visibility of the
upper body and make it difficult to distinguish between areas of the user’s back. We thus
unite them to one body part. As a result, we propose to distinguish between 13 body parts
as shown in Figure 3. These parts are composed of hands, lower and upper arms, torso and
head and of important joints such as elbows, shoulders and neck.

4.2 Obtaining Training Data

In the above briefly reviewed approach [SFC+11] several training data is used and com-
pared: Motion capture data, hand-labeled depth data and synthetically generated data. The
authors found the synthetic test sets harder to classify since a higher variation in poses and
body shapes is present. All of these data acquisition methods involve drawbacks. Firstly,
motion capture systems are expensive and need a separate hardware setup. Furthermore,
they do not cover the whole user’s body but only capture those positions where markers
are attached to the body. The remaining body parts need to be interpolated in some way
which may differ from the real body parts. Hand-labeling depth data is clearly a cumber-
some process especially when a high number of frames is necessary for reliable detection
results. Finally, generating synthetic data is a quick and cheap alternative, yet it cannot
cover the natural interaction space of users. On the contrary, it generates an overcomplete
set of the space that users usually covers in a specific scenario, e.g. when sitting at a table,
causing inefficiencies.

We therefore present a novel way to obtain training data using both RGB and depth data
employing a color suit. Our approach is inspired by the work of Wang et al. [WP09] who
use a color glove to recognize hand poses. The color glove is formed by twenty patches
which are colored with ten different colors. While they obtain a database of hand-poses
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Figure 3: Schematic overview of the body parts to be detected.

with a dataglove they index these hand-poses with rasterized images of the glove in the

respective poses. Users also have to wear the glove during the real-time tracking of hands.

We propose to use a color suit for the upper body where every body part is color coded

with a unique color as shown in Figure 4. The suit is composed of a long sleeve shirt to

cover upper body and arms, two gloves for hands and wrists and a balaclava for head and

neck. Since the Kinect can obtain both RGB and depth data we are able to assign every

depth value to a respective body part. To achieve this, we assume that the scenario is well-

lit and that the background and other parts of the user, e.g. the legs, have low chrominance

values. In this way, we achieve a cheap and easy to use motion capture system that is able

to seamlessly determine body parts. The suit is only necessary in the training phase which

allows users to wear their usual clothing to be detected while interacting with the tabletop

system. Since we will use the same depth image features as described in [SFC+11], we

assume, that the training process will have to be repeated if the observed setup is changed,

e.g. the table is relocated or replaced. Regarding users, we claim that one training phase

with users that sufficiently vary in weights and heights is also suitable for detecting body

parts of any user that did not participate in the training process. A further benefit of our

approach is that we use only one hardware setup. Thus, only a single setup has to be

installed and both training and detection are based on the same depth data with respect to

resolution and noise characteristics.

We had to choose the colors for the upper body suit from a set of available colors. We

therefore determined a subset of 13 colors such that their intrinsic colors are equally dis-

tributed in the HSV color model. We carried out first tests to evaluate if the colors can be
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Figure 4: Front and back view of the color suit.

distinguished reliably with the Kinect which encourage us to proceed with our work.

5 Conclusion and Future Work

In this paper we outlined a system that detects body parts in an interactive tabletop envi-

ronment that would enrich private IT-spheres. In this context we have described a setup

that is applicable to detect interaction from a top-view employing a depth camera.

We further have presented a novel approach to obtain training data for an existing body part

detection using a color suit. First it seems to be reasonable that training the system works

better with real data than with synthetic data because the natural motion space of users is

covered. In addition to that, one can expect that using the same system to acquire train

data and detect body parts increases the robustness of the system. Finally, only a single

system has to be employed in the whole process, in contrast to training setups where a

motion capture system is needed.

As future work, we have to evaluate the reliability of the proposed body part training ap-

proach using a color suit. Moreover, the data quality has to be compared with synthetic

and motion captured training data. Additionally, the existing detection approach presented

in [SFC+11] has to be evaluated in a top-view setup with respect to reliability and preci-

sion.

Finally, our approach implicates future work in other areas since large amounts of detailed

data about users in their private living environment is produced. Firstly, this raises ques-

tions on how to deal with this sensitive data from a security point of view. In turn, the field

of security can also benefit from the determined information to solve security issues, e.g.

authorization processes. Secondly, self-organising systems can exploit the knowledge of

the whereabouts of body parts in a Ubicomp environment.
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Abstract:
Using a database of sixty-two different technologies, we study the issue of fore-

casting technological progress. We do so using the following methodology: pretending
to be at a given time in the past, we forecast technology prices for years up to present
day. Since our forecasts are in the past, we refer to it as hindcasting and analyze the
predictions relative to what happened historically. We use hindcasting to evaluate a va-
riety of different hypotheses for technological improvement. Our results indicate that
forecasts using production are better than those using time. This conclusion is robust
when analyzing randomly chosen subsets of our technology database. We then turn
to investigating the interdependence of revenue and technological progress. We derive
analytically an upper bound to the rate of technology improvement given the condi-
tion of increasing revenue and show empirically that all technologies fall within our
derived bound. Our results suggest the observed advantage of using production models
for forecasting is due in part to the direct relationship between production and revenue.

Keywords: experience curve, learning curve, performance curve, technology evolu-
tion, innovation
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1 Introduction and background

Technology forecasting is a pervasive tool in the fields of engineering, economics, manage-

ment science, and public policy. Arguably, the most consequential applications rest at the

intersection of these disciplines. Different strategies for forecasting technological progress

have been proposed [Moo65, Wri36, KM06, KM08, God82, SSC00, Nor09]. Simple mod-

els that track a performance metric as a function of one or two explanatory variables are

widespread. In this work, we use the term performance curve to describe such simple

models, which we define very generally to be a model of some performance metric (here,

unit price) as a function of some proxy for experience (such as time or production). Per-

haps the most famous performance curve model is Moore’s law [Moo65], which states that

the technology improves exponentially with time. Moore proposed exponential improve-

ment originally for the density of transistors on a chip but later found that the relationship

held for many different metrics for progress, including unit price. Another widely used

performance curve model today is a power law relationship between the unit price of a

technology p and its cumulative production q. Specifically, p ∝ q−w, where the expo-

nent w is the rate of improvement. This model is referred to as “learning-by-doing” or

Wright’s law after his seminal 1936 study on aircraft costs [Wri36]. A similar power law

relationship betwen unit price and annual production was proposed by Goddard [God82].

Alternative hypotheses utilizing time [KM06, KM08] and combinations of time, annual

production, and cumulative production [SSC00, Nor09] also exist in the literature.

Performance curves aggregate all sources of price change, including but not limited to

changes in input prices, economies of scale, labor learning, product and process innova-

tion, and standardization. Furthermore, technological progress is collapsed into a single

performance metric, ignoring all other potential metrics of improvement. In spite of these

simplifications, performance curves have been shown empirically to be plausible models

for describing technologies from industries as diverse as chemicals, agriculture, energy,

and information technology.

Despite the broad use of performance curves, no systematic study comparing competing

hypotheses across an ensemble of technologies has been published to our knowledge. In

this work, we do exactly that. We use hindcasting methodology to assess model perfor-

mance. The significance of our results is assessed by analyzing randomly chosen subsets

of technologies to determine whether the same conclusions hold. We broaden the analy-

sis to study revenue dynamics and its interdependence with technological progress. We

present an analytical framework for investigating revenue and compare predictions to em-

pirical observations. Insight into revenue as a driver for technology evolution is discussed

in the context of the results comparing competing hypotheses for performance curves.

2 Models

We analyze a suite of different hypotheses for technological progress, shown in Eq.’s 1-6.

The first three – Moore’s law [Moo65], Goddard’s law [God82], and Wright’s law [Wri36]
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– are hypotheses proposed in the literature. They are all regression models with fitted in-

tercepts, denoted here by b. The remaining models – Moore’s law random walk, Goddard’s

law random walk, and Moore-Goddard’s law random walk – are time series models that

have not been proposed in the literature, to our knowledge. We refer to them as random

walk models because unit technology price typically contains drift and noise; however, we

do not write the noise term explicitly in Eq.’s 4-6. For brevity, the models will be referred

to by the abbrieviation following their names from here onward (e.g. ML, GL, etc.). The

variables pt, xt, and qt are the unit price, annual production, and cumulative production in

year t, respectively. The parameters m, g, w, m̄, ḡ, f̄1, f̄2, and b are fitted using ordinary

least squares using n consecutive years of data as the sample set. A bar above a parameter

indicates it is for a time series, as opposed to regression, model.

Moore’s law (ML)

log pt = b−mt (1)

Goddard’s law (GL)

log pt = b− g log xt (2)

Wright’s law (WL)

log pt = b− w log qt (3)

Moore’s law random walk (MRW)

log pt+1 = log pt − m̄ (4)

Goddard’s law random walk (GRW)

log pt+1 = log pt − ḡ log

�
xt+1

xt

�

(5)

Moore-Goddard’s law random walk (MGRW)

log pt+1 = log pt − f̄1 log

�
xt+1

xt

�

− f̄2 (6)

3 Methodology

The first part of this work is systematically analyzing the performance of the models across

an ensemble of different technologies. We use sixty-two technologies from the Perfor-

mance Curve Database [PCD], an online database of performance curves, as our test bed.

Only data sets with at least ten consecutive years of annual price and production data
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were used. Four IT technologies are incorporated into the analysis: hard disk drives, tran-

sistors, laser diodes, and DRAM. Acrylic fiber, titanium sponge, geothermal electricity,

monochrome television, and beer are a few of the non-IT technologies. A complete list of

technologies with references to their original sources and a selection of fit model param-

eters are in Section 8.1. All data sets are from studies with a scope at least as broad as a

national industry (e.g. wind turbine prices in Denmark), while many are global average

prices.

To evaluate performance of the models, we use hindcasting methodology. For a given data

set, we select a specified number of data points in the series to use as the sample set. The

sample set size n ranges from five to fifteen. Results are presented for n=6 unless otherwise

noted. We use the sample set to fit the parameters of the model in question. Using the

resultant parameter fits, we make a forecast of the unit price for each year through the end

of the data series. Since our forecasts are actually in the past, we refer to it as hindcasting

and compare our predictions to what happened in reality. To quantify forecast accuracy,

we use the logarithmic hindcasting error

ǫ = log p− log p̂, (7)

where p̂ is the forecast and p is the historical unit price. The sample set is then shifted

one year toward the future, the parameters refit, and a new forecast is made for each year

through the last year of available data. The process continues until the sample set com-

prises the final n data points in the time series. We refer to the last data point in the sample

set as the origin. The horizon is the number of years in the future relative to the origin

of the forecast. For a given n, the error ǫ is therefore calculated for each combination of

technology, model, origin, and horizon, where each combination thereof is referred to as

an event.

To assess model performance across the ensemble of technologies, we first normalize the

errors of each technology by the standard deviation (k) of the residuals fit to a Gaussian

distribution with zero mean. The standard deviation is calculated using the entire data

series of each technology. We take the residuals from the fit to MRW and note that all

results discussed here hold irrespective of which model is used for normalization. Then,

we take an event average of the absolute values of the errors as a function of horizon.

Statistical significance is addressed in Section 4.

Implicit in this approach is the assumption that the underlying process of evolution is

equivalent for every technology. Said in another way, the models that perform best do

so irrespective of the specific technology or industry. Results analyzing subsets of data

divided by industry – as labeled in the appendix – support that this is a valid assumption;

however, we note that this hypothesis is the subject of ongoing re-evaluation as more data

becomes available for analysis.
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Figure 1: Absolute value of the normalized hindcast error averaged over the ensemble of technolo-
gies vs. horizon, for each model: Moore’s law (ML), Goddard’s law (GL), Wright’s law (WL),
Moore’s law random walk (MRW), Goddard’s law random walk (GRW), and Moore-Goddard’s law
random walk (MGRW).

4 Comparing competing hypotheses

Fig. 1 shows the normalized absolute value of the hindcast error averaged across all tech-

nologies for each model as a function of horizon. First, we note that the additional level of

complexity brought about by using a multivariate model (MGRW) does not lead to more

accurate forecasts. The same conclusion holds for other multivariate models we inves-

tigated, including those not presented in this work. All subsequent results will exclude

multivariate models unless otherwise noted.

Let us now focus on the univariate models, shown as solid curves in Fig. 1. For horizons

greater than approximately ten to fifteen years, the models bifurcate. Two models perform

noticeably poorly: ML and MRW. These are the two models that use time as an explanatory

variable. Forecasts based on some form of production (annual, cumulative, etc.) make

better forecasts than those based on time. For horizons shorter than ten years, the models

perform roughly equivalently, with the exception of GL, which performs notably poorer.

This result is consistent with recent work by Bela et al. [NFBT11].

We observe a difference in relative forecasting accuracy of the performance curve mod-

els formulated in terms of production versus time; however, is the difference statistically

significant? We note that multiple factors influence the increasingly erratic behavior ob-
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Figure 2: Left: Average of the absolute value of the normalized error for MRW (black) and GRW
(red) as a function of horizon. Right: Average of the events won by MRW (black) and GRW (red)
as a function of horizon. For both plots, the solid curve is an average over all sixty-two data sets; the
dashed (dotted) curve is the average +/- the standard deviation across one hundred randomly chosen
subsets of size forty (twenty).

served at increasing horizons. First, as one might intuitively expect, the forecasting error

increases as a function of horizon, as does the spread of the distribution of forecasting

errors for an ensemble of datasets. Second, as the horizon increases, a decreasing number

of technologies are contributing to the average (average data set length is 18 years). These

factors have the effect of rendering any observed differences between model performance

less significant with increasing horizon. Said in another way, an error bar placed around

each curve in Fig.1 would increase in magnitude with horizon. This motivates calculations

assessing the statistical significance of our results.

To approach addressing this question, we perform the following robustness analysis. Of

the sixty-two technology ensemble, we randomly select m data sets to form a subset.

From the subset, we calculate two quantities for MRW and GRW: 1) the average of the

absolute value of the normalized error as a function of horizon and 2) the fraction of events

for which MRW has the lowest error compared to GRW and vice versa as a function of

horizon (which add to unity at every horizon). We chose MRW and GRW specifically

as representative of models formulated in terms of time and production. After analyzing

one subset, we randomly select another subset and then repeat the analysis. The process is

repeated for 100 randomly selected subsets. We take the average and the standard deviation

of the two quantities as a function of horizon for each subset size m.

Results are plotted in Fig. 2 for m = 40 and 20. The left graph shows the average of the

absolute value of the normalized error for MRW (black) and GRW (red) as a function of

horizon. On the right, we plot the average of the events won by MRW (black) or GRW
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(red) as a function of horizon. For both plots, the solid curve is an average over all sixty-

two data sets; the dashed (dotted) curve is the average +/- the standard deviation across

the randomly chosen subsets of size forty (twenty). When the subset size decreases from

forty to twenty, there is greater variability in the resultant average curves, which is to be

expected. However, even with a subset size of twenty, the confidence intervals overlap

mildly at horizons greater than fifteen years.

We close this section by noting that assessing the statistical significance of our results is

a subject of ongoing investigation. Both more and longer data sets would permit a more

conclusive statement about the relative advantage of production over time in forecasting

technological innovation. We continue to work toward expanding the Performance Curve

Database with other technologies to continue to test this hypothesis. Additionally, we hope

the Performance Curve Database will facilitate and promote research by other parties in

the general area of technology evolution.

5 Relationship to revenue
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Figure 3: Halving time of unit price vs. doubling time of annual production. The color of the symbol
reflects the industry of the technology: chemical (black), energy (green), IT (blue), and other (red).
Please note that three data sets were excluded because of negative annual production growth (electric
range, free standing gas range, and onshore gas pipeline).

In the previous section, our results indicate that production is a better indicator of price

dynamics. To gain further insight into drivers of technological process, we propose one
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additional model, which we call the “Revenue random walk”.

Revenue random walk (RRW)

log pt+1 = log pt − r̄ log

�
xt+1pt+1

xtpt

�

(8)

The product of the annual production (xt) and unit price (pt) is the annual revenue, which

is the explanatory variable for this model. Eq. 8 is similar in form to Goddard’s law random

walk, with revenue in place of simply annual production. In fact, after rearrangement, one

can show that Eq. 8 is equivalent to Goddard’s law random walk, where ḡ = r̄/ (1− r̄)1.

Therefore, one of the best performing models is effectively tracking revenue dynamics,

given the direct relationship between revenue and production.

We can further probe the relationship between revenue and price dynamics by formulating

the problem in the following manner. First, let us express the revenue as

rt = xtpt. (9)

We now drop the subscript t for brevity. The change in revenue is then

dr

dt
=

dp

dt
x+ p

dx

dt
. (10)

Please note that this derivation is formulated in terms of continuous time dynamics. In

order for the industry’s revenue to grow or stay constant, we have the condition that

dr

dt
=

dp

dt
x+ p

dx

dt
≥ 0. (11)

One notable set of solutions to Eq. 11 is

p = kpe
−t/τp

x = kxe
t/τx . (12)

Exponential decay of the unit price is simply ML (Eq. 1, which we know to be a plausible

model, albeit not the most accurate). Furthermore, empirically we observe that production

does grow roughly exponentially across all technologies investigated here [NFBT11]. Our

solution set is therefore consistent with empirical observations.

Eq. 12 leads to the condition

τp

τx
≥ 1. (13)

When the firm’s revenue is constant, and the price and production are exponential solu-

tions, the timescale of exponential decay of the price must be greater than the timescale of

exponential growth of the production for the revenue to increase.

1Similarly, a regression model in terms of annual revenue can easily be shown to be equivalent to Goddard’s

law.
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Let us define the halving time as the amount of time (in years) it takes for the unit price

to half. We define the doubling time as the amount of time it takes annual production to

double. We calculate the halving and doubling times for every technology and construct

the scatter plot in Fig. 3. In order for the revenue to remain constant or increase, the rate

of production scale-up must be equal to or greater than the rate of price reduction. In other

words, we expect the doubling time to be less than or equal to the halving time. Indeed, as

seen in Fig. 3, the vast majority of the technologies lie above the identity line. This means

that Eq. 13 is met; the overall industry revenue for nearly all technologies is increasing.

This derivation is somewhat unsatisfying because of the imposed functional form for the

production. Let us consider another solution set to Eq. 11, and, in doing so, derive an

upper limit for the exponent for GRW. We consider p = kpx
−g . Using the condition of

increasing or flat revenue, Eq. 11, we arrive at the condition g ≤ 1. Therefore, the scaling

exponent g must be less than or equal to unity, the bound for maintaining constant revenue.

Empirically, there are no technologies in our analysis where g is greater than unity (outside

the error of the fit). The only ones that approaches this value are the Hard Disk Drive,

Pentaerythritol, and Phthalic Anhydride data sets, for which g = 1.0 (see Section 8.1

for values of g for other technologies). This section provides empirical support for the

importance of revenue as a key driver for technological evolution.

6 Discussion

In this work, we comprehensively evaluated competing hypotheses for technology im-

provement. Using a database of sixty-two different technologies as a test bed, we applied

hindcasting methodology to assess the relative performance of the models across the en-

semble of data sets. Our results indicate that at long time horizons, production is a better

indicator of price dynamics compared to time. This conclusion was robust from analyzing

samples of randomly chosen subsets of twenty and forty technologies. However, we note

this result is the subject of ongoing investigation.

We then considered revenue as a driver for technological progress. We show that for

nearly all technologies, the halving time of the price is less than the doubling time of the

annual production, the condition required for increasing industry revenue. We formulate

our observations in terms of a simple analytical framework and derive an upper bound for

the rate of technological progress in terms of annual production given the condition of

increasing revenue. The derived bound is consistent with empirical results from our test

bed, where categorically every technology is within this limit. Our results support that

revenue is a key driver for technological evolution.

The use of production for forecasting technological progress via a learning or experience

curve is often justified in the literature by Arrow’s explanation [Arr62]: production is a

proxy for accumulated experience, and learning-by-doing provides the opportunities for

innovation and cost reductions (for further discussion, see [DT84, LE90, MS01, Nem06]).

However, our results investigating revenue dynamics suggest that the success of the pro-

duction models is likely due in part to the direct relationship between production and
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revenue. Revenue may better account for industry-wide decision-making that affects tech-

nology price dynamics. This is a new angle to the typically posited explanation for using

production. Furthermore, our results emphasize the importance of analyzing technology

evolution in the context of a broader economic framework.
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8 Appendix

8.1 Data sets

All data sets can be found on the Performance Curve Database [PCD]. In the tables below,

we list the sixty-two data sets used in the above analysis and their original sources. The

technologies are divided into separate tables by industry, labelled in the table caption. We

also include a selection of parameter fits, including Moore’s law (m), Goddard’s law (g),

Wright’s law (w), the halving time of unit price (τh), and the doubling time of annual

production (τd).
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Table 1: Industry: energy.

Technology m g w τh τd

CCGT Electricity [CC02] 0.020 0.10 0.12 34 3.2

Crude Oil [Gro72] 0.010 0.38 0.17 68 29

Electric Power [Gro72] 0.036 0.42 0.34 19 8.1

Ethanol [GCNL04] 0.052 0.89 0.36 13 18

Geothermal Electricity [SE09] 0.050 0.81 0.50 14 18

Motor Gasoline [Gro72] 0.014 0.32 0.21 48 18

Offshore Gas Pipeline [Zha99] 0.11 0.21 0.49 6.1 5.5

Onshore Gas Pipeline [Zha99] 0.015 0.13 0.11 45 -

Photovoltaics [May05] 0.064 0.34 0.30 11 3.6

Photovoltaics 2 [Nem06] 0.10 0.56 0.49 6.7 3.9

Wind Electricity [SE09] 0.093 0.17 0.18 7.5 1.8

Wind Turbine [NAD+03] 0.041 0.14 0.13 17 3.0

Wind Turbine 2 [NAD+03] 0.039 0.085 0.072 18 1.5

Table 2: Industry: other.

Technology m g w τh τd

Beer [Gro72] 0.035 0.23 0.20 20 4.7

Electric Range [Gro72] 0.023 -0.023 0.29 31 -

Free Standing Gas Range [Gro72] 0.020 -0.48 0.56 35 -

Monochrome TV [Gro72] 0.056 0.44 0.28 12 21

Refined Cane Sugar [Gro72] 0.0047 0.14 0.32 150 43

159

159



Table 3: Industry: chemical.

Technology m g w τh τd

Acrylic Fiber [Lie84] 0.10 0.70 0.58 6.8 5.2

Acrylonitrile [Lie84] 0.076 0.49 0.43 9.1 5.1

Aluminum [Lie84] 0.010 0.14 0.13 67 11

Ammonia [Lie84] 0.090 0.81 0.83 7.7 6.8

Aniline [Lie84] 0.058 0.48 0.93 12 6.0

Benzene [Gro72] 0.062 0.56 0.74 11 6.6

Bisphenol A [Lie84] 0.061 0.43 0.41 11 5.0

Caprolactum [Lie84] 0.12 0.85 0.54 6.0 5.2

Carbon Disulfide [Lie84] 0.021 0.25 0.47 32 45

Cyclohexane [Lie84] 0.052 0.33 0.37 13 5.1

Ethanolamine [Lie84] 0.062 0.77 0.53 11 9.0

Ethyl Alcohol [Lie84] 0.014 -0.083 0.17 51 49

Ethylene [Gro72] 0.037 0.31 0.18 18 6.0

Ethylene 2 [Lie84] 0.065 0.55 0.49 11 5.9

Ethylene Glycol [Lie84] 0.066 0.72 0.70 10 8.0

Formaldehyde [Lie84] 0.060 0.71 0.63 12 8.7

Hydrofluoric Acid [Lie84] 0.0015 0.035 0.018 460 9.1

LD Polyethylene [Gro72] 0.10 0.50 0.38 6.8 3.7

Magnesium [Lie84] 0.0077 0.12 0.15 90 13

Maleic Anhydride [Lie84] 0.054 0.47 0.43 13 6.3

Methanol [Lie84] 0.058 0.63 0.68 12 7.4

Neoprene Rubber [Lie84] 0.022 0.80 0.28 32 30

Paraxylene [Gro72] 0.10 0.43 0.42 7.0 3.5

Pentaerythritol [Lie84] 0.042 1.0 0.45 17 19

Phenol [Lie84] 0.082 0.87 0.84 8.5 7.5

Phthalic Anhydride [Lie84] 0.071 1.0 0.88 9.7 10

Polyester Fiber [Lie84] 0.13 0.47 0.48 5.1 2.5

Polyethylene HD [Lie84] 0.10 0.40 0.46 7.1 3.1

Polyethylene LD [Lie84] 0.089 0.68 0.50 7.8 5.4

Polystyrene [Gro72] 0.058 0.34 0.24 12 5.3

Polyvinylchloride [Gro72] 0.075 0.57 0.43 9.2 5.5

Primary Aluminum [Gro72] 0.025 0.23 0.25 28 6.2

Primary Magnesium [Gro72] 0.026 0.18 0.17 26 5.5

Sodium [Lie84] 0.015 0.38 0.47 45 23

Sodium Chlorate [Lie84] 0.040 0.51 0.40 17 9.6

Styrene [Lie84] 0.069 0.66 0.59 10 6.7

Titanium Sponge [Gro72] 0.12 0.44 0.37 5.9 5.4

Urea [Lie84] 0.073 0.54 0.49 9.5 5.1

Vinyl Acetate [Lie84] 0.076 0.61 0.60 9.1 5.7

Vinyl Chloride [Lie84] 0.090 0.63 0.64 7.7 5.0
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Table 4: Industry: information technology.

Technology m g w τh τd

DRAM [Cul08] 0.43 0.74 0.72 1.6 1.2

Hard Disk Drive [Cou08] 0.65 1.0 1.0 1.1 1.1

Laser Diode [LS99] 0.31 0.45 0.39 2.2 1.2

Transistor [Moo06] 0.48 0.84 0.82 1.4 1.2

161

161



References

[Arr62] K. Arrow. The economic implications of learning by doing. Review of Economic Stud-
ies, 29(3):155–173, 1962.

[CC02] U. Colpier and D. Cornland. The Economics of Combined Cycle Gas Turbines - An
Experience Curve Analysis. 2002.

[Cou08] T. Coughlin. Personal communication., 2008.

[Cul08] S. Cullen. Personal communication., 2008.

[DT84] J.M. Dutton and A. Thomas. Treating progress functions as a managerial opportunity.
The Academy of Management Review, 9(2):235–247, 1984.

[GCNL04] J. Goldemberg, S.T. Coelho, P.M. Nastari, and O. Lucon. Ethanol learning curve – the
Brazilian experience. Biomass and Bioenergy, 26:301–304, 2004.

[God82] C. Goddard. Debunking the learning curve. IEEE Transactions on Components, Hy-
brids, and Manufacturing Technology, 5(4):328–335, 1982.

[Gro72] Boston Consulting Group. Perspectives on Experience, 1972.

[KM06] H. Koh and C.L. Magee. A functional approach for studying technological progress:
Application to information technology. Technological Forecasting and Social Change,
73(9):1061–1083, 2006.

[KM08] H. Koh and C.L. Magee. A functional approach for studying technological progress:
Extension to energy technology. Technological Forecasting and Social Change,
75(6):735–758, 2008.

[LE90] L.Argote and D. Epple. Learning curves in manufacturing. Science, 247(4945):920–
924, 1990.

[Lie84] M.B. Lieberman. The learning curve and prices in the chemical processing industries.
Rand Journal of Economics, 15(2):213, 1984.

[LS99] T.E. Lipman and D. Sperling. Experience curves for policy making: the case of energy
technologies, 1999.

[May05] P.D. Maycock. PV review: World Solar PV market continues explosive growth, 2005.

[Moo65] G.E. Moore. Cramming more components onto integrated circuits. Electronics Maga-
zine, 38, 1965.

[Moo06] G.E. Moore. https://www.youtube.com/watch?v=fxLnbVjKXmQ, 2006.

[MS01] A. McDonald and L. Schrattenholzer. Learning rates for energy technologies. Energy
Policy, 29(4):255–261, 2001.

[NAD+03] L. Neij, P.D. Andersen, M. Durstewitzand, P. Helby, and M. Hoppe-Kilpper P.E.
Morthorst. Experience curves: a tool for energy policy programmes assessment, 2003.

[Nem06] G.F. Nemet. Beyond the learning curve: factors influencing cost reductions in photo-
voltaics. Energy Policy, 34:3218–3232, 2006.

[NFBT11] B. Nagy, J.D. Farmer, Q.M. Bui, and J.E. Trancik. Predicting technological progress.
2011.

162

162



[Nor09] W.D. Nordhaus. The perils of the learning model for modeling endogenous technolog-
ical change. SSRN eLibrary, 2009.

[PCD] Performance Curve Database. http://pcdb.santafe.edu.

[SE09] M.A. Schilling and M. Esmundo. Technology S-curves in renewable energy alter-
natives: Analysis and implications for industry and government. Energy Policy,
37(5):1767–1781, 2009.

[SSC00] G. Sinclair, S.Klepper, and W. Cohen. What’s Experience Got to Do With It? Sources
of Cost Reduction in a Large Specialty Chemicals Producer. Management Science,
46(1):28–45, 2000.

[Wri36] T.P. Wright. Factors affecting the cost of airplanes. Journal of Aeronautical Science,
3(4):122–128, 1936.

[Zha99] J. Zhao. The diffusion and cost of natural gas infrastructures, 1999.

163

163



164



Hot Topic Detection in Local Areas Using Twitter and

Wikipedia

Shota Ishikawa, Yutaka Arakawa, Shigeaki Tagashira, Akira Fukuda

Graduate School / Faculty of Information Science and Electrical Engineering

Kyushu University

744 Motooka, Nishi-ku, Fukuoka, Japan

{ishikawa, arakawa, shigeaki, fukuda}@f.ait.kyushu-u.ac.jp

Abstract: As microblog services become increasingly popular, spatial-temporal text
data has increased explosively. Many studies have proposed methods to spatially and
temporally analyze an event, indicated by the text data. These studies have aimed a
extracting the period and the location in which a specified topic frequently occurs. In
this paper, we focus on a system that detects hot topic in a local area and during a
particular period. There can be a variation in the words used even though the posts are
essentially about the same hot topic. We propose a classification method that mitigates
the variation of posted words related to the same topic.

1 Introduction

Over the past several years, participation in social media, e.g., posting and/or reading, has

gradually become a routine part of many peoples’ lives. The posts cover a wide range

of topics, including daily activities, events, opinions, comments, photographs, and links

to web pages. The popularity of this form of communication has been driven by ad-

vances in mobile phone technology. Smartphone, which enable access to internet services,

are becoming increasingly popular at an unprecedented rate. Social media applications

for smartphones have also been developed and popularized. These client applications

have features that exploit smartphone’s ancillary functions such as a global posting system

(GPS) and a camera, which, for example, enable users to post still or video images, and

determines their current location. These associated features greatly improve the usefulness

and will further spur the growth of social media services. The number of people who use

a variety of microblog service is astonishing. In particular, Twitter has attracts an esti-

mated 200 million participants globally since 2006 when the service started (Twitter, Inc.

estimated that the number of active users is 100 million) 1. In Japan, the growth rate of

Twitter users is remarkable. In [9], a good correlation was reported between smartphone

owners and Twitter users. Since smartphones are spreading increasingly rapidly, we can

predict that the number of users participating in social media will continue to rise.

Due to the convergence of technology and high participation rates, it is now possible to

1http://blog.twitter.com/2011/09/one-hundred-million-voices.html
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readily collect more spatial-temporal text-based Twitter posts, known as “tweets,” than

before, since a tweet can be associated with not only the posting time but also the posting

position. By analyzing the contents of tweets, it is possible to forecast a market [4], sense

a circumstance (weather and noise level) in a specific area [7], and identify hot topics

that coincide at a particular time and location; it would lead several studies on complex

networks.

Examples of hot topics are predictable events such as a soccer game or a festival, and

unpredictable events such as a natural disaster or traffic accident. These events would

probably be common hot topics for users in corresponding location. Additionally, in [3], it

was reported that word (hot topic) is often used at a specific location in the analysis of the

relationship between the input words typed by users and the users’ positions. It is expected

that this word would also be of interest to other users in the same area. Therefore, it would

help a user to detect the hot topics associated with their location. This detection can also

contribute to artificial intelligence services such as suggesting keywords for web search

system, which would save time while inputing the words into a search engine. Further-

more, it is possible to evaluate the efficacy of a specific advertising campaign and com-

prehend a disseminating flow of the detected hot topics by observing the spatial-temporal

changes in hot topics. It would be helpful to produce a marketing strategy. Similarly, this

analysis would be applied to the spreading model of an infection disease and the network

of people’s relationship, which has been focused in complex network science.

We propose a novel detection scheme for hot topics on Twitter. The basic approach is

to classify tweets into topics according to their content and select the top topics, ranked

according to the number of topics’ tweets, as hot topics. In this classification, the tweets,

including words referring to the same event must be exactly associated with the corre-

sponding topic. However, due to semantic fluctuations, this classification does not work

particularly well. For example, tweets can use different words to refer to the same event,

and consequently, they will be classified as different topics. In this paper, we identify se-

mantic fluctuation as spelling, spatial, and temporal fluctuations. For example, the word

“stadium” included in a tweet could refer to a baseball game in a particular region, but it

could also refer to a soccer match in a different location This is an example of a spatial

fluctuation. Similarly, the word “festival” has seasonal or temporal fluctuation. It could

imply a music festival held in May or a food festival held in July, although both events

take place in the same region.

Here, we focus on spatial and temporal fluctuations and propose a clustering method to

cope with these fluctuations. Basically, we interrelate words based on their interpreted

meanings graphically using Twitter and Wikipedia. By analyzing the tweets, we can un-

derstand the local meaning of time- and position- dependent words. In Wikipedia, the

structure of global meanings for common words in every region has been built. Next, we

associate these graphs with topics, on the basis of their similar occurrences on the graph.

Finally, we detect hot topics by calculating the frequency of each topic in a specific period.

The paper is organized as follows; In section 2, we introduce the related work analyzing

spatial-temporal text data and make a sharp distinction between these studies and our ap-

proach; In section 3, we describe our approach in detail; we then present the result and

discussions of a preliminary experiment in section 4; in section 5, we propose a technique
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to speed-up the process; finally, we present our conclusions and suggest possible future

work in section 6.

2 Related Work

Several recent research have analyzed the spatial-temporal text data of social media. The

main goal of our research is to detect hot topics (including semantic summarizing); other

researches have pursued similar goals. For example, Fujisaka et al. [8] collected tweets

using Twitter’s application programming interface (API), and analyzed the movement his-

tories of several users. They discovered characteristic mobility patterns in an urban area.

Yamanaka et al. [20] has proposed an extraction method that detects events in a given

observation area. Initially this method categorizes messages with attached GPS informa-

tion by using a support vector machine (SVM) model [10]. Secondly, the messages are

clustered based on messages’ category and the position. Finally, a burst is detected for

each cluster. The burst-detection method, which has been proposed by Kleinberg [11], de-

tects whether the interval between messages is more dense than that in a normal condition.

However, this method needs to predefine a query set for each area and condition.

In addition, Sakaki et al. [18] has proposed an event-detection method using Twitter. For

example, the method focuses on an earthquake as the event. It uses the SVM as an event

classifier and then detects the event by calculating the occurrence probability. However,

this method only handles specific words relating to the particular event. It lacks general

versatility for event detection. Similar to the above method, this method also requires the

configuration of a query set for each situation and event in advance. Thus, to apply this

method to a wide range of situations, a considerable amount of time would be required to

prepare the queries.

In addition to the above studies, a few event detection approaches that do not need prede-

fined query sets have been proposed. Mathioudakis et al. [13] has developed a technique

for detecting a trend based on the co-occurrence probability between events. However,

in this method, the resultant trend sometimes includes phrases commonly used in Twitter

conversations. Becker et al. [5] [6] has detected an event by analyzing tweets and iden-

tified whether the event had actually happened. Here, tweets are classified by calculating

characteristics from temporal, social, topical, and Twitter-centric features, and then sepa-

rating events from non-events. However, the process involves using capitalizations rules

to split multiple word hashtags into single words. This could not be applied to Japanese as

the language does not use capital letters.

Another set of related studies examined semantic summarizations of topics. This approach

often exploits hashtags. A hashtag, which is a Twitter specific annotation format, is used to

designate or assign a topic in a tweet. For example, in Canada a tweet about professional

hockey matches are often tagged with the hashtag, #NHL(National Hockey League). Us-

ing hashtags, enable us to summarize tweet topics effectively. Rosa et al. [17] categorized

tweets into six predefined topics using hashtags. Long et al. [12] has attempted to sum-

marize tweets using hashtags in SinaMicroblog. Moreover, Motooka et al. [14] has re-
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searched tweets about a similar event using hashtags. This approach collects a set of users

using a specified hashtag. It displays top events ranked according to the similarity between

the specified hashtag and all events associated with the tweets. Here, it is important to note

that a tweet can have multiple hashtags. However, the number of tweets marked by hash-

tags is still small; the percentage of hash-tagged tweets in geotagged tweets is only 0.4%
2. Therefore, in order to ensure a broader event detection the proposed method did not

employ a hashtag-based detection.

It is possible to use information resources other than Twitter, used in above approaches, for

detecting events or topics. WordNet [1] has published a meaning dictionary that groups

words into sets of concepts and links conceptually similar sets to indicate relationship.

However, WordNet’s primary classification is based on parts of speech, i.e., nouns , verbs,

adjectives, and adverbs. Therefore, for example, it is impossible to find a relationship

between the noun “earthquake” and the verb “to shake.” Consequently, several ontology

construction methods using Wikipedia and Folksonomy have been proposed in [16] [19].

Wikipedia has already covered a wide range of vocabulary related to global areas or re-

gions. Moreover, Wikipedia has been built semi-structured data (redirect link, category

tree, and infobox), which makes it possible to construct the relationship between concepts.

The goal of the ontology construction approach is to clearly define the relationships among

concepts (is-a relationship, and a-part-of relationship). Our purpose is also to build the re-

lationships and a path from upper concepts to lower ones. In our approach, we also use

Wikipedia to arrange words in terms of semantics.

3 Proposed Detection Method

In this section, we present a detailed description of our proposed hot-topics detection

method.

We collect tweets that are associated with geotag using Twitter’s streaming API 3. Firstly,

we eliminate tweets posted from foursquare 4. Because most of these tweets only contain

the location information and a URL. Thus, they are not useful samples for our hot topic

detection method. Similarly, we also eliminate URLs from the text in all the tweets [17].

Next, we perform a morphological analysis using MeCab (Japanese morphological analy-

sis engine) 5 to decompose the text into parts of speech. Since it is difficult to accurately

associate the qualified word with an adjective or adverb, we only focus on nouns and verbs

extracted by the morphological analysis. In this paper, we do not focus on the morpholog-

ical analysis’s methodology; however in future, we intend to improve the accuracy of the

extraction process.

After building a set of semantically related words contained in the obtained tweets, we

2We surveyed tweets posted in Tokyo area from Jun to Sep. in 2011. As a result, among 277,249 geotagged

tweets, there are only 1,088 hashtagged tweets.
3http://dev.twitter.com/pages/streaming api
4Foursquare : www.foursquare.com
5MeCab : http://mecab.sourceforge.net/
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Figure 1: Flow of proposed method.

detect hot topics from the set. The detection method consists of the following procedures.

• Building relationship among a set of words (section 3.1)

• Classify the words into topics (section 3.2)

• Detect hot topics using a burst detection method (section 3.3)

3.1 Building relationship among a set of words

It is possible that different words indicate the same topic, and the converse being true.

This possibility is termed as “semantic fluctuation.” As described previously, we consider

that the semantic fluctuation in Twitter consists of spelling, spatial, and temporal fluctua-

tions. For example of spatial fluctuation, although a word “stadium” included in a tweet

is concerned with the topic of baseball in a region, the word might express about that of

soccer elsewhere. As for temporal fluctuation, a word “festival” implies different topics in

each season, e.g., the word indicates not only a music festival held on May but also a food

festival held on July even in the same region.

While building relationship among a set of words, we have assumed that each tweet refers

to a particular topic. This is a reasonable assumption considering the limit on the number

of input characters (a tweet must not exceed 140 characters).

To determine relationships between words, firstly we build relationships between pairs

of words contained in each tweet, i.e., the link of weight (wi) is established between any

combination of words. Secondly, if any two tweets contain the same pair of words, the link

of weight (wr) is established between the pairs, where wr is proportional to the number

of word combinations. Additionally, if a word exists in a hash-tagged tweet, the weight of

the link related with the word is wh (wi < wh). If a word is included in Wikipedia, the

rank of the word is added by one. Finally, we obtain links from upper concepts defined in

Wikipedia, by the matching category name or Infobox template, and scraping, as proposed

in [19].
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Figure 2: Building conceptual path and relationship between concepts and words.

3.2 Clustering

We utilize a clustering method to classify the words into topics. This clustering method

introduces a similarity degree of association between words and topics. We adopt an

incremental clustering method such as that proposed in [2], rather than recreating the se-

quential clustering. The proposed method calculates a degree of similarity sim(mi, cj)
between words M = {m1, ..,mi, ..,mn} and existing clusters C = {c1, .., cj , .., ck}. If
sim(mi, cj) exceeds τ , the word is classified into the maximized cluster cj . On the other
hand, when sim(mi, cj) is less than τ , we classify the word into a new cluster ck+1. In

addition, a threshold τ is determined empirically.

3.3 Detecting Burst Topics

Next, we use a burst-detection method to determine the frequency of a topic in a given

period. The method has been proposed in [11]. This method detects whether the interval

of the arriving messages is denser than that in a normal condition through comparison with

other document streams such as bulletin board threads and current news articles.

The burst-detection method defines a probabilistic automaton (A) consisting of two states:

(1) When A is in state q0, messages arrive at a slower rate. (2) When A is in state q1,

messages arrive at a faster rate. The period (T ) is defined as the interval between the

arrival of the first message and that of the last message, n + 1. If the arrival time is
random, a gap time x between messages i and i + 1 follows an exponential distribution.
According to Poisson distribution, in state q0, the probability of arrival of the next message

at interval x is f0(x) = α0e
−α0x, where α0 = n/T . In state q1, the gap time is shorter

than in state q0. Consequently, the probability of interval x between any two consecutive

message is f1(x) = α1e
−α1x, where α1 > α0.

In addition, we determine a given set of n messages with a specified arrival time as inner-
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arrival gaps x = (x1, x2, ..., xn), where xi > 0. Similarly, we set the conditional proba-
bility of a state sequence q = (qi1 , qi2 , ....., qin). Each state sequence q derives a density
function f over sequences of gaps, which is represented by the following formula.

fq(x1, ...., xn) =
n�

t=1

fit(xt) (1)

Hence, when the inner-arrival gaps is equal to x, a conditional probability that the state

sequence is formed by q exists and, is given by the following formula.

Pr[q|x] =
n�

t=1

fqt(xt) (2)

We have assumed that a maximum likelihood (burst) state is equal to q when it takes the

highest value among probability Pr[q|x]. i.e., it is equivalent to minimum of the following
values.

− lnPr[q|x] =
n�

t=1

− ln fit(xt) (3)

We can detect a cluster burst by finding the state q that has the lowest value among those

described.

4 Experiments

We conducted a preliminary experiment to examine the semantic fluctuation of words

included in tweets. In this experiment, we collected tweets that were associated with

geotags in a 5 × 5 km area around a baseball stadium. Fig. 3 shows the possibility of

words and Fig.4 shows the log distribution of words rank and frequency of words.

From the result, we can observe that the spatial words “Tokyo” and “Shinjyuku,” which

are related with the analyzed area, frequently appear in the whole range of date. However,

the temporary words “strike” and “preemptive point,” expressly related to baseball, only

appear on a specific date, i.e., a baseball game is held on that date.

In addition, the words “strike” and “preemptive point” did not appear on every days when

a baseball game were held. This is because the percentage of tweets that indicate the event

is primitively low. The contents of major tweets are conversations and do not indicate

specific topics. The distribution of word in these tweets sampled through the API follws

a Zipfian distribution, as shown Fig. 4. On the other hand, the number of topical tweets

increases sharply only when the specific event occurs, likely to cause bursts in temporal.

Namely, these burst words depend on time. Therefore, we can pick up a word which is

related with the specific topic and is not general word in the tail of Zipfian distribution

by calculating IDF (Inverse Document Frequency) (we consider tweets per unit time as a

single document), and collect topical words efficiently.
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5 Technique to speed up the process

In our approach, we analyze tweets in each geographical region, which are positioned in

a regularly spaced grid, as shown in Fig. 5. Analyzing tweets in every region requires a

considerable amount of computation time. If our target application is not responsive in real

time due to the time required to process the calculations, the system would not be helpful

for users. Thus, we propose decreasing the computation time by reducing the absolute

number of analyzed areas.

Although Fujisaka et al. proposed an area splitting method in [8], their purpose was to

avoid the use of the API as much as possible. In our approach, our purpose is to consis-

tently reduce the number of analyzed areas. Besides, the number of tweets varies in each

area, as shown in [9]. If the difference in the number of tweets in each area is caused by

a simple splitting method, the statistical result would be unreliable. In that case we would

detect hot topics in a specific region where the number of tweets is a few, a group of few

tweets (compared to the average number of tweets in whole regions) indicates an event that

would even affect a result. Therefore, to speed up the process, if the number of tweets in

a region does not reach a certain number, we could expand the grid area until the number

of tweets reaches a specified threshold. As a consequence, the number of tweets in every

grid is normalized and the number of grids is reduced (see Fig. 5).

We define the threshold number of tweets as N . If the number of tweets in area E is less

thanN , the number of adjacent areas are calculated. Then, if the number of adjacent areas

is over α, we discontinue detecting hot topics and use the result for hot topics in these

areas because we consider that degree of interest in a topic is a spatial continuous value

and the hot topics also appear in adjacent areas. On the other hand, if the number of areas

is less than α, we integrate these adjacent areas into one area.

As mentioned above, we decrease the number of areas by expanding areas recursively and

referring to adjacent hot topics. Consequently, the computational effort is lowered.
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Figure 5: Saving calculation time by expanding the area and using hot topics of adjacent areas.

6 Conclusions

In this paper, we proposed a novel detection scheme for hot-topics on Twitter. The basic

approach is to classify tweets into topics according to their content and to select top topics

ranked according to the number of the topics’ tweets. This detection can contribute to

artificial intelligence services, such as suggesting keywords for web search system and thus

save time while inputting words into search engines. In addition, it helps to comprehend

the trend flow in a marketing analysis by observing the detected hot topics changes in

temporal-spatial. In future, we intend to elaborate the detail of the proposed system and

implement the same.
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Abstract: Modularity is a desirable characteristic for software systems. In this article
we propose to use a quantitative method from complex network sciences to estimate
the coherence between the modularity of the dependency network of large open source
JAVA projects and their decomposition in terms of JAVA packages. The results pre-
sented in this article indicate that our methodology offers a promising and reasonable
quantitative approach with potential impact on software engineering processes.

1 Introduction

The modularity of a software architecture is considered a key feature that contributes to the

sustainability of large scale software projects [PCW85]. Ideally, modularization fosters the

decoupling of software development efforts, which can then be performed independently

if a binding standard interface is established. As the software evolves in time, modula-

rity might even favor its maintainability and expandability. If the development of a given

system is meant to be sustainable, the amount of effort required to perform modifications

in the software architecture must be compatible with the resources (time, human, etc)

available at any time. Therefore monitoring the modularity of an evolving software sys-

tem promises to be an important step towards a sustainable software development regime,

however such a task would be tedious and slow if performed manually.

In this article we propose an efficient automatic quantitative approach to estimate the co-

herence between the modularity of the dependency network of large open source JAVA

projects and their decomposition in terms of JAVA packages. Our method is based on the

well-established complex networks framework [AB02][New03b]. In order to adopt this

framework, the first necessary step is to restate software modules and software systems in

terms of network structures (see [HR92][Mye03][Koh09][GS11]).

Through a network perspective, it is straightforward to visualize that the expected func-

tionality of a software module is provided by the cooperation of fundamental software

entities (functions, classes, procedures, etc) which perform the necessary operations. Thus

a software module is a mesoscopic abstraction for a collection of entities acting micro-

scopically. At the mesoscopic scale, software modules themselves become interdependent
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when integrated into a software system. Therefore the challenge in modularization of soft-

ware consists in clustering highly dependent microscopic software entities, which are then

packaged into software modules by minimizing the number of dependencies across mo-

dules after a system integration. This can be directly mapped to the software engineering

literature, where modularity is defined as a high degree of intra-module cohesion and low

inter-module coupling [GJM03]. As an example, since the number of dependencies across

modules is expected to be minimized, a modular system is relatively easy to be upgraded

through the replacement of an obsolete software module by a new one.

Our contribution is based on a quantitative metric that measures the coherence between

the decomposition of a software system into software modules and the cluster structures

found in the network model of the software at a microscopic scale. However, here we do

not attempt to construct module mappings that optimize this coherence. We only monitor

the modularity of a software system already decomposed in terms of software modules.

For this, we use a quantitative metric which describes a macroscopic property of a system

composed of microscopic and mesoscopic structures (software dependencies and modular

decomposition respectively). In other words, our method can measure the global impact of

modifications made locally during the time evolution of a given software project. To illus-

trate the dynamics of this process, we study the time evolution of the degree of modularity

expressed through our method for 28 open source JAVA projects. Our dataset contains

different versions of the source code which were extracted periodically from the respec-

tive online software repositories. We argue that the application of the complex systems

framework in the study of software systems provides valuable insights into the software

engineering processes and the sustainability of large scale software projects.

In section 2 we present the details of our implementation and approach. Section 3 discusses

our preliminary results and in section 4 we comment on related work. Finally, in section 5

we conclude our work and we then elaborate on further research ideas.

2 Methodology

The starting point of our methodology is the re-expression of source code dependencies

in terms of network structures. Conceptually, such an approach will differ for the targeted

programming language and programming paradigm.

We choose to focus our efforts on software written in JAVA, for it is an object-oriented

programming language which suggests a straightforward re-interpretation in terms of net-

works: JAVA classes are taken as network nodes, while a network edge will connect any

two nodes if the corresponding JAVA classes share at least one software dependency (call,

access of property, inheritance, etc). Another relevant aspect of JAVA is its built-in support

for software modularization through the assignment of classes to packages. Last but not

least, JAVA is a very popular programming language among free and open source software

developers, and therefore plenty of examples containing the complete source code evolu-

tion is available online in software repositories and web software development platforms,
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such as GITHUB
1 and SOURCEFORGE

2.

Figure 1 presents a visual example of the software network resulting from the application

of the aforementioned method to one of the versions of the source code of ASPECTJ, which

is a JAVA framework supporting the implementation of software using the aspect-oriented

programming paradigm. In our dataset, this network grows from 654 up to 1651 nodes

(classes). In this example, each color represents the package membership (module) of each

class found in source code. This network perspective on source code can be extended in a

relatively easy way to other programming languages and paradigms. See [HR92][Mye03]

for more examples and approaches.

Figure 1: Visualization of the modular network structure of ASPECTJ as of 01-Aug-2004 (only the
largest set of nodes connected via direct or indirect edges - largest connected component). This
visualization was generated by GEPHI [BHJ09].

1https://github.com/
2http://sourceforge.net/
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As demonstrated in Figure 1, the visualization of network structures is a very useful tech-

nique for the analysis of the modularity of a given software architecture. However, a

quantitative approach is still desirable since it allows us to capture the structural organiza-

tion of a network in terms of a single numeric measure. This can be used to analyze the

time evolution of a modular software architecture and can also be applied in a statistical

correlation analysis when considering different quantitative metrics.

In recent years, the network sciences community has developed a number of quantitative

metrics which capture structural features like e.g. clusters as well as the impact of nodes,

clusters or any other structural entities on dynamical processes like e.g. information or

failure spreading, consensus, opinion formation or synchronization [New10]. According

to our needs, we adopt a network metric which was first used to study assortative mixing

in networks, which is the tendency for network nodes to be connected to other nodes that

are like (or unlike) them in some way [New03a]. Assuming that sharing the same module

membership makes nodes alike (and unlike otherwise), this metric could then be used to

measure the modularity of network structures [NG04]. For a given definition of modules

or clusters and their underlying network structure, its respective degree of modularity is

defined by

Q =

�n

i eii −
�n

i aibi

1−
�n

i aibi
(1)

where eij is the fraction of all edges in the network that link nodes in module i to nodes

in module j, ai =
�n

j eij , bi =
�n

j eji (column and row sum respectively) while n is the

total number of existing modules. If the network is an undirected graph the matrix defined

by e is symmetric and ai = bi [New03a]. The metric defined by equation (1) measures

the fraction of network edges that connect nodes within the same module (
�n

i eii) minus

the expected value of the same quantity measured from a random network with the same

node/module allocation (
�n

i aibi). If the first is not better than random Q = 0 [NG04].

However, Q would not be defined if all edges are concentrated within a single module

because the scaling factor 1 −
�n

i aibi = 0 (no modular structure). In such a case we

define Q = 0 as well. In general, Q ∈ [−1, 1], i.e. the more modular the network, the

closer Q is to 1. Figure (2) provides two examples of networks and their respective Q

scores.

Figure 2: Two examples of undirected networks where nodes (circles) with the same color are part
of the same module. (left) modular network Q=0.8499. (right) random connectivity Q=0.0545.

178

178



In the analysis of software structures, this metric is useful because in many cases the

definition of modules is given by means of programming constructs like classes, files,

namespaces or packages. The Q–metric can thus be used to study how well the cluster

structures in the network of dependencies correspond to the modular decomposition of a

project in terms of packages, namespaces, etc. We applied the Q-metric in an analysis of

the evolution of the modularity of the software architecture of a set of JAVA open source

projects and we discuss our preliminary results in section 3.

3 Preliminary Results

Our analysis is based on a dataset containing the detailed time evolution for the source

code of 28 open source JAVA projects. The snapshots of the source code of each project

were extracted from the respective CVS online software repositories, on a monthly basis.

Table 1 displays the recorded period for each project. Most of those projects are hosted at

SOURCEFORGE and were selected because they were the largest (number of classes) at the

time the dataset was collected. The single exception is ECLIPSE, which has its own online

facilities3. The source code for ECLIPSE was thus obtained through a different setup.

For each project the CVS change history and class dependence structure were extracted,

processed and stored in a directed graph format, i.e. (c1, c2, T ) which reads as c1 depends

on c2 at time T .

Table 1: The 28 JAVA projects which compose our source code evolution dataset. Most of those
projects were extracted from the respective CVS software repositories hosted by SOURCEFORGE.

project name record start record end project name record start record end

architecturware 2004-04-01 2007-12-01 jnode 2003-06-01 2005-12-01

aspectj 2003-01-01 2008-02-01 jpox 2003-09-01 2006-12-01

azureus 2003-08-01 2008-01-01 openqrm 2007-04-01 2008-03-01

cjos 2000-11-01 2007-12-01 openuss 2003-06-01 2006-12-01

composestar 2003-12-01 2005-12-01 openxava 2004-12-01 2007-12-01

eclipse 2001-05-01 2008-03-01 personalaccess 2004-11-01 2007-12-01

enterprise 2002-11-01 2007-12-01 phpeclipse 2002-08-01 2007-12-01

findbugs 2003-04-01 2007-12-01 rodin-b-sharp 2005-11-01 2007-12-01

fudaa 2003-02-01 2007-12-01 sapia 2002-12-01 2007-12-01

gpe4gtk 2005-08-01 2006-12-01 sblim 2001-07-01 2007-12-01

hibernate 2001-12-01 2005-12-01 springframework 2003-03-01 2007-12-01

jaffa 2003-03-01 2007-12-01 squirrel-sql 2001-12-01 2007-12-01

jena 2001-02-01 2008-02-01 xmsf 2004-02-01 2007-12-01

jmlspecs 2002-03-01 2007-12-01 yale 2002-04-01 2008-02-01

Using the schema described in section 2, we applied the Q-metric to the network extracted

from each snapshot within the recorded period. In order to facilitate the presentation of the

time evolution of these projects, we first compose all projects into four groups, according

to the degree of fluctuation of the Q–metric. In Figure 3, we thus compute the mean

3http://www.eclipse.org
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fluctuation in time of the Q-metric, i.e. < Q(t + 1) − Q(t) > where t and t + 1 are

consecutive snapshots of the software and the average < · > is over all snapshots in the

dataset. This approach captures the average incremental change of the Q-metric over the

observation period. In the same figure, we also show the standard deviation of Q(t+1)−
Q(t), which captures the degree of fluctuation of the changes in modularity over the same

period. We performed a ranking of projects along both the average incremental change

and the fluctuations of modularity and these rankings are indicated in the abscissae of the

respective plots (see Figure 3).
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Figure 3: Ranking software projects using the Q-metric. (left) ranking by average incremental
change of the Q-metric over the observation period, estimated with < Q(t + 1) − Q(t) >. (right)
ranking by degree of fluctuation of the changes in the modularity over the studied period, estimated
with σ(Q(t+ 1)−Q(t)).

The resulting plot, with the projects grouped and ranked by the average incremental change

of Q (see the left pannel of Figure 3), is shown in Figure 4. Here, we observe that the Q-

metric effectively classifies projects according to different dynamic regimes. In Figure 3

(left) we can for instance focus on those projects that increase or decrease the software

modularity, while Figure 3 (right) can be used to study the most dynamical and the most

stable software development regimes.

In the following we discuss two projects with contrasting evolution of modularity in more

detail. In particular, for this we chose the projects AZUREUS, which is a torrent client

being one of the projects with the largest average decrease in the Q-metric, as well as

JENA which is a framework for building semantic web applications. In our dataset JENA

actually shows one of the largest average increase of Q (see the left plot in Figure 3). In

Figure 5, the time trajectory of the evolution of Q is shown for both projects as a function

of the total number of classes. As indicated in the Figures 5(a) and 5(b), three snapshots

of the source code have been selected which cover the states of minimum and maximum

modularity, as well as an intermediate state.
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Figure 4: Time evolution of the Q-metric score for each project in our dataset. The projects were
sorted by the mean fluctuation in time of the Q-metric, i.e. < Q(t+ 1)−Q(t) >, and displayed in
increasing order of value (top-to-bottom). (top) highest mean decrease in Q. (bottom) highest mean
increase in Q.
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Figure 5: Detailed time evolution of the Q-metric for AZUREUS and JENA.

(a) 2003-10-01 (b) 2003-11-01 (c) 2004-06-01

(d) 2001-02-01 (e) 2001-10-01 (f) 2003-01-01

Figure 6: Three snapshots of the dependency networks of the projects AZUREUS (a-c) and JENA

(d-f). Node colors in the individual networks indicate the decomposition in JAVA packages.
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In Figure 6, we show the dependency networks for the snapshots mentioned above. These

networks have been created according to the methodology described in section 2, i.e. each

node represents a JAVA class, while a dependency indicates a call, inheritance or usage

relationship. Furthermore, nodes have been colored according to package membership.

In order to visualize the coherence between the package decomposition of the classes and

the modular organization of the dependency network, the networks have been layouted

with the force-directed Yifan-Hu layout algorithm [Hu05], which spatially organizes nodes

according to cluster structures. In particular, nodes in networks with highly modular struc-

tures will be densely clustered in the resulting layouts and the modules will become clearly

distinguishable. In the resulting networks we can visually examine how well the modular

structures of the dependency network match the package structure of a project and thus

obtain a visual impression of the module coherence expressed by the Q-metric.

The effect of the different dynamical regimes in terms of the evolution of the Q-metric

can easily be seen in the respective network structures. For the AZUREUS project, which

is shown is Figures 6(a) - 6(c), the coherence of the modular structure of the network of

software dependencies with the package decomposition actually worsens over time, thus

making it difficult to clearly separate packages in the resulting network structure. On the

contrary, the evolution of the JENA project shows a very different dynamics. While the

growth in terms of the number of nodes, packages and dependencies is in the same order

of magnitude, the project maintains and even improves its modular decomposition, as is

clearly shown in the Figures 6(d) - 6(f). From a software engineering perspective, the

structure of JENA shown in Figure 6(f) is favorable, since it allows for an easy decompo-

sition, maintenance and replacement of individual packages. One of the possible reasons

for the discrepancy between JENA and AZUREUS is that the first is a framework aimed at

an audience of developers. Thus, its structure must be well organized to facilitate its adop-

tion, while the second is an end-user application and therefore the focus is on functionality

rather than structural quality.

We are currently working on the extension of our approach in a way in which we hope

to uncover the full potential of the Q-metric and its correlation with other software deve-

lopment processes, by modeling this dynamics as a simple network growth process with

an underlying modular decomposition. This is the subject of ongoing research [ZSTS12].

Along the way we aim at improving our research methodology with more insights based

on the network science framework as well as aligning it with existing results from the soft-

ware engineering community. Prior to concluding this article and giving details on future

research, in the next section we comment on related work.

4 Related Work

One of the eye catching features of the time evolution of the Q-metric, as presented in

Figure 4, is the large fluctuation of Q at early stages of the project development. This is in

accordance with results reported in [TGS11]. There, it was shown that young open source

software projects display an accelerated growth rate while mature projects stabilize their

dynamics and can grow further in a sustainable regime.
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Another possible, complementary, reason for fluctuations are refactoring events, where

software is usually rewritten or restructured in order to improve multiple features such

as functionality, flexibility, reusability or structural quality. Such events could lead to

the sudden jumps observed in Figure 4 along the time evolution of a software project.

In [DDN00], refactoring metrics are proposed which take into account the dynamics of

changing code. This line of research is well aligned with our purposes and can be easily

adapted and augmented by our network perspective on software development processes.

For an early attempt of the application of network science to the analysis of software

engineering processes we recommend [Mye03], which also contains a short review of

classical approaches used in the software engineering literature. Finally, a recent article

published in the PNAS journal used a similar network approach, though with a different

metric, to study modularity of code and its relation to module survival, drawing a parallel

to ecological systems and making use of a predator-prey model variation [FBL11].

5 Conclusion and Outlook

The results presented in section 3 indicate that the Q-metric known from the analysis of

cluster structures in network science is a promising and reasonable approach to quantify

the coherence between the package decomposition of large software projects and their

dependency structures. As such, it constitutes a macroscopic measure that allows us to

monitor and evaluate software engineering processes and reason about the sustainability

of software architectures. In particular, it provides a simple mapping from local deve-

lopment activities to their respective impact on the mesoscopic and macroscopic structures

of software systems. One of the problems of the current version of the Q–metric is that

it is not scaled according to the size of the corresponding network, therefore making it

hard to compare the Q score of different projects with vastly different sizes. This is a

well known issue [FB07]. Although the current metric offers interesting insights, a further

problem is that it is being influenced by intra-module dependencies. However it would

be more thoughtful to look at the impact of inter-module dependencies because these are

the most relevant dependencies in a modular structure. Last but not least, JAVA packages

which were used as proxy for modularity in JAVA source code have a hierarchical struc-

ture. Therefore, dependencies between packages a.b.c.d and a.b.c.e are of less concern

than between packages a.b.c.d and x.y.z.

While all these issues are the subject to future investigations, our study already foreshad-

ows a number of interesting research questions: How does the evolution of Q impact the

sustainability of distributed software engineering efforts? Can the incorporation of such

macroscopic measures into software development tools improve the design and mainte-

nance of software architectures? How is the dynamics of Q over the lifetime of software

projects correlated with software development acts like refactoring or bug fixing? How

is it correlated with social aspects, coordination acts or communication processes taking

place between developers? Intuitively, one would assume that a reasonable modular de-

composition of complex software systems facilitates distributed development processes

and mitigates change propagation between interdependent modules. An interesting future
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work is thus to augment the results in this paper with data on coordination and communica-

tion acts in the respective projects. In this line of arguments, a further interesting question

is whether the pronouncedness of modular structures in the dependency network allows us

to infer statements about the hierarchical organization of development teams.

While the exploration of these questions in this study has been necessarily incomplete, we

argue that the associated line of research is a good demonstration for the potential impact

of complex systems science on the engineering of complex software systems.
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Abstract: Future computing systems will contain more and more cores on a single
die. Permanent faults occur not only during manufacturing but may also arise at run-
time. To detect these faults, a group of cores is monitored by a single unit, receiving
heartbeats from all cores. In this paper, we present a simple method to localize per-
manent faults in a 2D mesh-based NoC by using heartbeats and by measuring the time
from source (core) to destination (monitoring unit). We introduce a heartbeat network
along with the normal application message network to guarantee a deterministic heart-
beat timing and no interferences with application messages. If the time for a heartbeat
exceeds a given interval, it can be concluded that the heartbeat is missing or delayed,
e.g. because of a faulty core, link or router. As this is not sufficient to localize a fault,
we introduce the concept of Timed Heartbeats, which uses different routing directions
in contrary to the intended routing to introduce a fixed, additional delay for rerouted
heartbeats. The delay helps to localize the fault without any additional bandwidth
consumption.

1 Introduction

Advances in VLSI technology enable to integrate a high number of cores on a single die,

communicating over an interconnection network. Examples are the 64-core TILE64 from

Tilera [BGH86], the experimental Intel Polaris 80-core [Dii09], or the recently presented

1024-core accelerator Rigel [JJK+11]. All of these many-core chips include packet-based

Network-on-Chips (NoC) in order to scale with the number of cores and reduce the hard-

ware complexity of the processor. In particular, 2D mesh topologies are currently popular

because they combine scalability with low design complexity and support simple dimen-

sional ordered routing algorithms. Therefore, we take the 2D mesh as our baseline topol-

ogy.

Due to shrinking feature sizes, rising chip temperatures etc. more and more permanent,

intermittent, and transient faults in cores, routers, and links can occur. These can have

many manifestations—not only at manufacturing time but mainly during operation. We

assume permanent link and router faults and that the end-to-end communication within the

application message network (AMN) is secured against transient faults, i.e. safeguarded

with error detecting/correcting codes (EDC/ECC).
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To check whether a component (core or router) of a many-core system is alive, we assume

a monitoring architecture similar to [WGSU11], where periodic heartbeats are sent from

each component to a monitoring unit, called Fault Detection Unit (FDU). The FDU is the

abstraction of a monitoring unit. It can be implemented either as a complex circuit with the

ability to dynamically analyze the information gathered from the monitored components

(running sophisticated algorithms) and starting actions to maintain the functionality of the

chip or (as in this work) as simple unit collecting information about faults.

The proposed Timed Heartbeat technique uses the arrival times of periodically sent heart-

beats to localize link and router faults. By comparing the expected (deterministic) arrival

time with the actual arrival time, it can be concluded if a heartbeat was rerouted due to

a fault or not. A simple switching of the routing algorithms allows to localize the fault.

Please note, that this technique can be applied to any topology as long as arrival times of

heartbeats are deterministic.

We introduce a heartbeat network (HN) along with the normal application message net-

work (AMN) to guarantee that the heartbeat timing is deterministic and heartbeats do not

interfere with the much larger application messages. In this work, we mean the HN if not

otherwise stated. In comparison with a standard packet-based communication, we do not

have any additional traffic overhead (packet header, fixed packet length, EDC/ECC) and

therefore can save bandwidth ((N−1)∗(length of packet−1)) and power each network

cycle.

This paper is structured as follows: Section 2 discusses related work and Section 3 pro-

vides a description of the basic network architecture. Section 4 presents the localization of

faults with Timed Heartbeats. Section 5 concludes the paper. For the convenience of the

reader, we provide a list of abbreviations in Table 1.

Abbreviation Meaning

AMN Application Message Network

(B)MQ (Bandwidth) Multi-Quadrant

(B)SQ (Bandwidth) Single-Quadrant

EAT Expected Arrival Time

FDU Fault-Detection Unit

HN Heartbeat Network

MAT Measured Arrival Time

MD, dm Manhattan Distance

NoC Network on Chip

QHC Quadrant Heartbeat Cycle

Table 1: List of abbreviations

2 Related work

Heartbeats are a well-known timing-based mechanism to detect faults in distributed sys-

tems [CT96, BMS02, SPTU07, SND11]. Examples can be found in many early com-

mercial fault-tolerant systems such as Tandem [BGH86] and later in the Globus Heart-
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beat Monitor [SFK+98]. Details on routing problems and algorithms can be found in

[GHKS98]. More details on heartbeats and timing intervals in multicomputers can be

found in [HS98].

Steinert and Gillblad [SG10] recently proposed to use collaborating nodes to locate a fault

in a distributed system. They applied statistical methods to compute the expected timing

from measured network delays. However, this requires the costly evaluation of a proba-

bility density function. In contrast to fault localization in distributed systems, our work

exploits the determinism of on-chip interconnects for a much simpler localization of link

and router faults.

3 Basic network architecture

As topology we assume a (n,m) 2D-mesh, where N = n ∗ m is the number of cores.

For simplicity, we assume the mesh as quadratic (m = n). Let G = (V,E) be a graph

G with a set of vertices V and edges E. The number of cores N is given by N = |V |.
Since one router is directly associated to a core, the number of routers is R = N . The

number of edges is |E| = 2(N −
√
N). The mesh has a diameter of 2

√
N − 1 and a

maximal degree of 4. The mesh (s. Figure 1 and 2) is divided in four quadrants (North-

West [NW], North-East [NE], South-West [SW], South-East [SE]), called multi-quadrant

(MQ) and four quadrants North [NO], South [SO], East [EA], West [WE], called single-

quadrant (SQ). We regard one MQ (NW) and two SQs (NO, WE) since all other quadrants

can be handled analogously. The communication of the core to the router and vice-versa

is accomplished via a local link. The router has four additional ports (North [NO], South

[SO], East [EA], West [WE]) for the communication to its neighbors. Links are assumed

as bidirectional. Several possibilities concerning the communication times can be made,

since there are four neighboring nodes and two wire delays (Δx, Δy), introducing different

skews between nodes. We assume the simplest case where all wire delays are (for every

direction) equal to one (Δx=Δy=1). Since the FDU resides in the center, the transmission

delays are equal to the Manhattan distance dM (x, y) = |x|+ |y|.

Quadrant NE

001

YX

Quadrant SE

011

XY

Quadrant SW

010

YX

FDU

NO

100

SO

111

EA

110

WE

101

Quadrant NW

000

XY

Figure 1: Coding of Quadrants
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3.1 Sending of Heartbeats

All cores send heartbeats to the FDU residing in the center of all quadrants (s. Figure

2). The localization of a faulty link or router is simple, if we allow to send the ID of a

faulty link or router to the FDU, complicating the router design. We assume that the FDU

(router) is able to handle one heartbeat at a time. It is possible to handle more heartbeats at

a time, since the FDU can be implemented effectively by using a single decrementer and

a table holding all excepted/measured arrival times.

The heartbeats propagate each network clock cycle from router to router. A heartbeat

transmission is always initiated from a core via the local router with the FDU as destina-

tion. It can only be sent if all local links (one for the heartbeat and the ones for the AMN)

are fully functional. The links are considered as functional, iff no fault occurred before.

The router therefore has a counter for each link, holding the number of detected faults in

the AMN. Additionally, we can measure the time from one fault to another, e.g. to relate

the number of faults in time to be able to detect permanent faults.

3.2 Bandwidth composition, pure XY routing

Regarding XY-routing for heartbeat transmission, the heartbeat is first routed in X direction

(dimension 0) until it reaches the destination column, then in Y direction (dimension 1).

Each router has a field, which determines the quadrant relative to the FDU. The location

field is used for routing decisions. Figure 1 shows the coding scheme for each quadrant of

the network. The first bit determines if the quadrant is a MQ (set to 0) or SQ (set to 1).

Figure 2 shows details about fault location, mesh assembly, distances and quadrants.

Quadrant NE

x

y

Fault location (xE,yE)

Quadrant NW

Quadrant SEQuadrant SW

FDU

NO

SO

EAWE

Location (0,0)

Figure 2: Quadrants, mesh assembly and distances

194

194



Routers located in the SQs NO and SO are the only ones routing in Y direction. All others

route in X direction. Since we have one FDU and a quadratic mesh, the maximum number

of cores sending to the FDU concerning each MQ/SQ can be easily computed. For SQs

WE, EA, NO, SO: BSQ =
√

N−1
2 . For MQs NE, NW, SE, SW: BMQ = BSQ∗BSQ =

1
4 (
√
N − 1)2. The total bandwidth of heartbeats in relation to each router input (RNO,

REA, RSO, RWE) results to RSO = RNO = 2BMQ + BSQ , REA = RWE = BSQ.

We check the total number of cores: 4BMQ+4BSQ = (
√
N−1)2+2

√
N−2 = N−1.

Obviously the number of heartbeats is unfairly distributed over the SQs (NO, SO). The

solution is to alternate between XY and YX routing (s. Figure 1) for different quadrants

to distribute the number of heartbeats over all SQs.

4 Fault localization in a NoC with Timed Routing

4.1 Receiving timing information

A fault can either occur at a router or link. We assume that a permanent (link or router)

fault can be detected by the router or a neighboring router due to e.g. high impedance of

the link or the methods briefly sketched in Section 3. If a link fault has been detected, the

appropriate router will reconfigure itself to route around the fault. In subsection 4.4 we de-

scribe, how this can be accomplished. The FDU receives the heartbeats and compares the

arrival times with the stored timing information, which is equal to the Manhattan distance

(MD). The heartbeat send pattern ensures that we have no conflicts, i.e. not more than a

single heartbeat arrives at a router. The heartbeat pattern is like a rope of pearls arriving

at the FDU, first heartbeats of SQs then heartbeats of MQs starting from the bottommost

(MQ NW) to the topmost row. To ensure that we have no conflicts, a delay must be in-

troduced from row to row. The tables EAT{NW,NO,NE,EA,SE,SO,SW,WE} in the FDU

hold the expected arrival times for heartbeats for each quadrant. For example, the table for

the quadrant EATNW is







n2 . . . n
...

. . .
...

n . . . 1



�
, whereas the following matrix holds the times

when heartbeats are sent:







n2 . . . n2 − n+ 1
...

. . .
...

n . . . 1



�
. The FDU associates the heartbeat

to a table entry of the measured arrival times (MAT) according to its specific arrival time.

The value in the MAT is then decremented. We must therefore conduct four subtractions

in parallel in each network clock cycle. Since the results with equal MD are the same, we

need to compute it once per quadrant table for a single MD and distribute it to the other

tables, if all heartbeats arrived. If a heartbeat arrives too late, the according value will be

less than zero. Alternatively, we can wait until all heartbeats arrived, then XOR the MAT

with the EAT, F = EAT ⊕ MAT . The fault matrix F signals any differences between

the expected and measured arrival times, iff F �= 0. In the following, a deviation means a

deviation in the timing of a single heartbeat. To generate the heartbeat at a specific time,
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only a single decrementer is needed. If the decrementer triggering the heartbeat is defect

(permanent or transient), this will lead to a deviation. Therefore, the decrementer must not

be protected against faults.

4.2 Localization of faulty links

On link-level, a fault is assumed to occur permanently at position (xL, yL). Note, that we

still regard the MQ NW.

Horizontal link fault (XY-routing): If a link fault occurs at position (xL, yL), obviously

no router above > yL or below < yL the fault position will have to reroute, not leading to

any deviation. Therefore the row in which the fault occurred can be localized perfectly. All

(fault-free) links with position < xL will not lead to a deviation. All heartbeats initiated

leftwards ≥ xL will arrive later. The fault matrix






0 . . . 0
...

. . .
...

1 . . . 1 0



�


illustrates this. The most rightwards ”1” is the router with the faulty link, since it signals

the first occurrence of the fault and thus the first deviation. Naturally, the fault can be

perfectly localized in this case, but in the worst case, we must wait BSQ network cycles.

XY-routing does not provide information about faulty links in Y direction in the MQ NW

(other quadrants analogously). Therefore, the routing algorithm is switched from XY to

YX routing after all heartbeat messages of a quadrant arrived (a quadrant heartbeat cycle,

QHC).

Vertical link fault (YX-routing): Obviously no router with position left (> xL) or right

(< xL) of the fault will have to reroute, not leading to any deviation. Therefore the column

in which the fault occurred can be localized. All links below or above the fault (< yL,

≥ yL) will lead to an increased timing. The fault matrix






0 . . . 1 0
...

. . .
...

0 . . . 1 0



�


depicts this.

4.3 Localization of faulty routers

A router fault is modeled by a maximum of five concurrently occurring link faults (note,

that core and router faults are not distinguishable and we therefore do not regard faulty

local links). The router is assumed to exhibit a fail-stop behavior. Thus, it is not able to

send or receive messages any more after a fault. Concerning XY-routing two link faults

have to be regarded (WE and EA, YX analogously). A single router failed, if the FDU
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receives only N−2 heartbeats in a given time interval. If there is a faulty router at position

(xR, yR), no router above > yR or below < yR the fault position will have to reroute (due

to the assumed XY-routing). As for link faults, the row in which the fault occurred can

be localized. All cores located right the fault < xR are able to produce heartbeats. All

heartbeats from cores leftwards ≥ xR are rerouted and introduce an additional delay. Since

the routing algorithm is switched from XY to YX routing, we detect two faulty links in

two successive QHCs and missed one heartbeat in each QHC. The following fault matrix

illustrates the situation of a router fault in the bottommost row after two QHCs:

Fbottommost =







0 . . . 1 0
...

. . .
...

1 . . . 1 0



�
.

We can also distinguish router or link faults in the topmost row of the mesh. Since the

routing algorithm is switched from XY to YX routing, we detect faulty horizontal links in

one QHC and missed one heartbeat in each QHC. F depicts the situation after two QHCs:

Ftopmost =







1 . . . 1 0
...

. . .
...

0 . . . 0 0



�
.

4.4 Rerouting around a faulty link

Until now, we did not specify, how to reroute around a faulty link. There can be several

routing possibilities. Figure 3 shows the possibilities for a link fault rightwards core S for

a heartbeat propagating to core T. We distinguish two main cases:

1. it is allowed to route back in the direction the heartbeat came from: (s. Figure 3) if

we allow to reroute back (route 3), in the MQ NW (XY routing QHC), we have two

possibilities, route westwards (WE, route 3), then to the north (NO, route 4, delay

+4) or south (SO, route 3, delay +2). Since the router receives a heartbeat from an

unexpected direction (EA instead WE), it knows that a fault occurred and that it has

to reroute to a different location (not in the direction of the fault, EA).

2. if this is disallowed: the heartbeat can be rerouted in such a way that no delay occurs

(route 1, SO) or with route 2, delay +2, NO.

Port uesd as input i

Port used as output o

Port has permanent fault x

Delay introduced by rerouting (+j)

Table 2: Notation used in Table 3

Table 3 lists the routing combinations for all quadrants, whereas we use the notation intro-

duced in Table 2.
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Type Quadrant From To Fault Reroute Reroute back

MQ NW iWE oEA xNO – –

iWE oEA xSO – –

iWE oEA xEA NO(+2),SO(+0) WE,NO(+4); WE,SO(+2)

SQ NO iNO oSO xWE – –

iNO oSO xEA – –

iNO oSO xSO WE(+2),EA(+2) NO,(WE,EA)(+4)

MQ NE iEA oSO xNO – –

iEA oSO xSO – –

iEA oSO xWE NO(+2),SO(+0) EA,NO(+4); EA,SO(+2)

SQ EA iEA oWE xNO – –

iEA oWE xSO – –

iEA oWE xWE NO(+2),SO(+2) EA,(NO,SO)(+4)

MQ SE iEA oWE xNO – –

iEA oWE xSO – –

iEA oWE xWE NO(+0),SO(+2) EA,NO(+4); EA,SO(+2)

SQ SO iSO oNO xWE – –

iSO oNO xEA – –

iSO oNO xNO WE(+2),EA(+2) SO(WE,EA)(+4)

MQ SW iWE oEA xNO – –

iWE oEA xSO – –

iWE oEA xEA NO(+2), SO(+2) WE,NO(+4); WE,SO(+2)

SQ WE iWE oEA xNO – –

iWE oEA xSO – –

iWE oEA xEA NO(+2),SO(+2) WE,(NO,SO)(+4)

Table 3: Routing combinations for all quadrants
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4.5 Congestions and optimality

The FDU receives heartbeats from N − 1 cores. Since the FDU router was assumed to

accept one heartbeats at a time, optimally in time N − 1 all heartbeats arrived. Note, that

the faster the heartbeats arrive, the faster we are able to locate and handle a fault. Two

cases must be distinguished to avoid congestions (assuming that different quadrants are

not allowed to simultaneously issue heartbeats):

1. No fault occurred: If we allow to send heartbeats from the bottommost row first, we

have to wait row-1 times for each MQ (SQ first).

2. A heartbeat must be rerouted due to a fault: We consider the MQ NW and XY

routing. Obviously, no congestion occurs, if we reroute in a direction causing no

deviation (s. Figure 3, route 1). This brings no advantage, since we want to locate

faults with the introduced delays. Let d0 be the introduced delay due to a reroute.

Then all nodes sending heartbeats with MD ≥ d0 will cause a conflict. The solution

is simple: We introduce a delay from row to row which is exactly the number of

elements in a row.

5 Summary, conclusions and future work

In this paper, we presented a mechanism to localize and distinguish faults on router and

link level in NoCs with timing as sole information. Cores are sending heartbeats to the

FDU. We extended the existing XY-routing to receive different timings for rerouted mes-

sages. We concluded and showed that the position of a fault can be determined. The

simple heartbeat network saves bandwidth and energy and enables a faster detection since

the heartbeat network can have higher clock rates in comparison with the AMN due to

the simple assembly of heartbeats. The method is able to localize four concurrent link

and router faults in different MQs perfectly. Furthermore, our technique can be applied

to any network topology as long as arrival times of heartbeats are deterministic. Many

interesting research opportunities result: what is the relation between different routing al-

gorithms, the localization accuracy and the mean time to detect a fault? How precisely
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Figure 3: Rerouting around a faulty link
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can this combination locate a fault under the influence of multiple faults in a single MQ or

SQ? Is there a lower bound concerning the timing for all rerouted messages? Our future

work will consider these open questions and also multiple link and router faults.

Acknowledgements. This work was partly funded by the European FP7 project TER-

AFLUX, ID 249013, http://www.teraflux.eu.
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Abstract: Many years of research on dependable, fault-tolerant software systems
yielded many tool implementations for vulnerability analysis and experimental vali-
dation of resilience measures. We identify two disjoint classes of fault-injection (FI)
experiment tools in the field, and argue that both are plagued by inherent deficiencies,
such as insufficient target state access, little or no means to switch to another target
system, and non-reusable experiment code.

In this article, we present a novel design approach for a FI infrastructure that
aims at combining the strengths of both classes. Our FAIL* experiment framework
provides carefully-chosen abstractions simplifying both the implementation of different
simulator/hardware target backends and the reuse of experiment code, while retaining
the ability for deep target-state access for specialized FI experiments. An exemplary
report on first experiences with a prototype implementation based on existing X86 and
ARM simulators demonstrates the tool’s versatility.

1 Motivation and State of the Art

Recent technology roadmaps [Bor05, DYdS+10, NX06] suggest that future hardware

designs for embedded systems will exhibit an increasing rate of intermittent errors in

exchange for a life extension for Moore’s Law—in terms of even smaller device sizes, lower

energy consumption, decreased per-transistor costs, and more performance. This bears

new challenges for software developers, which must incorporate software fault-tolerance

measures to compensate for unreliable hardware while still benefitting from these new

designs: An application-specific resource-efficiency/dependability tradeoff must be made,

only hardening mission-critical parts of the software stack against hardware faults. The

remaining components must economize resource consumption and are endorsed to yield

wrong results, or fail in other modes.

∗This work was partly supported by the German Research Foundation (DFG) priority program SPP 1500 under

grant no. KA 3171/2-1, LO 1719/1-1 and SP 968/5-1.
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Fault-injection (FI) experiments and dynamic trace analyses are common means to analyze

a complex software-stack’s susceptibility to hardware faults, and to assess the effectivity of

previously applied software fault-tolerance measures [BP03]. Repeating analysis/evaluation

and software-hardening steps allows system designers to converge to an application-specific

tradeoff eligible for their product.

In this context, often an ad-hoc solution—highly specific to the assessed software, the

current target platform, and a particular fault model—is chosen, resulting in non-reusable

tools. As an unfortunate side effect, such tools—although non-negligible efforts were spent

on them—are rarely published themselves, hindering experiment reproduction and forcing

the community to consistently reinvent the wheel.

Over the last decades, this situation was improved by a multitude of dedicated FI experiment

tool suites, each targeting different development phases and fault models, based on a zoo

of hardware simulators at varying levels of simulation accuracy, or on physical prototype

hardware accessed through debugging interfaces [ZAV04]. These tools can be partitioned

into generalists and specialists:

The generalists claim a certain level of flexibility regarding the target-platform back-

end. Among the benefits of this approach is that experiments can more easily be reused

on a different platform—e.g., for gaining evidence the tested fault-tolerance measure

is not platform-specific, or to move from a simulator backend to a real hardware pro-

totype in later development phases. With GOOFI, Aidemark, Skarin et al. presented

such a generic FI framework, abstracting away target systems in a plugin-based architec-

ture [AVFK01, SBK10], and additionally providing extensive pre- and post-experiment

analysis methods [BVFK05]. Fidalgo et al. [FGAF06] describe a generic tool addressing

FI via the NEXUS on-chip debugger interface. Another example is QINJECT (David et al.,

[DCCC08]), injecting faults into a target backend utilizing the GDB debugger interface.

These approaches have the common disadvantage that the chosen interface between experi-

ment engine and target backend heavily limits access to target-system state, and narrows the

possibilities for FI—e.g., obstructing the possibility to inject networking-device–specific

faults into QEMU in the latter example.

In contrast, the specialist tools are highly specific to a single target. An example is

FAUMACHINE (Sieh et al., [SPS09]), which provides access to a large part of its x86

simulator’s state, and enables various FI methods, including, e.g., hard-disk faults. David

et al. modified QEMU in [DC07], which also allows for deep simulator state access. But

despite the advantage of providing access to the backend’s full capabilities, this class of

tools is characterized by severe maintainability issues: Deep state-access usually results in

deep intrusion into the backend’s code-base. The resulting tight coupling between simulator

and FI code often complicates or even inhibits exchanging the tool’s target backend later on;

in the case of tools that were forked from an existing hardware simulator, such as QEMU,

keeping in sync with the simulator’s evolution is often too arduous, soon resulting in an

outdated FI platform. From an experimenter’s point of view, the most notable side effect is

the fact that his/her experiment setups are bound to the chosen specialist/backend couple

and completely unportable, e.g., to re-run the same experiment with prototype hardware or

another target CPU.
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A compromise between generalists and specialists—combining their strengths regarding

target-backend flexibility, experiment reuse, and deep target-state access—seems desirable.

The contribution of this article therefore is:

• A novel design approach for a fault-injection experiment framework that allows

switching target backends with little effort (Sec. 2),

• a framework API abstracting away target-backend details and thereby fostering

experiment code reuse (Sec. 2),

• and a first experience report from our FAIL* tool prototype implementation (Sec. 3).

The paper concludes with a discussion and an outlook on future work in Sec. 4 and 5.

2 FAIL*: Design and Implementation

Based on the needs emerging in our DANCEOS project—a research endeavor in the

context of fault-tolerant embedded operating systems—and the state of the art described

in the previous section, we are developing FAIL*1 aiming at combining the advantages of

generalists and specialists while avoiding their drawbacks. In the following, we elaborate

on design decisions regarding the tool’s architecture and its API, and give some details on

our prototype implementation based on existing X86 and ARM simulators.

2.1 Architecture

Two main ideas stand behind the architecture of FAIL*: A modularization scheme chosen

specifically for a flexible interchangeability of target backends and for distributing experi-

ments in a parallel environment, and an experiment API designed with the right choice of

abstractions in mind for experiment portability and implementation ease-of-use.

Fig. 1 gives an overview of FAIL*’s architecture. User-defined experiments (green) are

split up by the user in a Campaign and a Fault Injection part, which communicate by

means of parameter sets: A FI campaign typically consists of a potentially large amount

of independent single experiments that only differ in the specific fault vector, which can

be described in a parameter set. At this point, it should be noted that FAIL* is not limited

to fault injection. Other possible parameter sets can be series of input vectors of software

components allowing extensive integration testing.

The campaign generates a series of parameter sets that are distributed among several

(possibly distributed) FAIL* client instances, each iteratively running FI experiments,

consuming parameter sets, and communicating back results to the Campaign Controller.

The FI experiment controls its local target backend through a Simulator Abstraction layer,

1Fault Injection Leveraged; the wildcard operator * stands for exchangeable target backends, e.g., FailBochs

representing an instantiation with the Bochs x86 simulator as the backend.
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Figure 1: Architecture overview: The Campaign Controller distributes parameter sets from a user-
defined Campaign throughout the FAIL* instances. Each single experiment (“Fault Injection”)
consumes a parameter set, and controls its target backend through a Simulator Abstraction layer.
Actual target backends (simulators, but also real prototype hardware) can be exchanged by providing
an interfacing module to this abstraction.

and can be assisted by, e.g., a memory access tracing plugin. Actual target backends (system

simulators, or real prototype hardware in later development phases) can be exchanged by

providing an interfacing module to this abstraction. The diagram shows a FAIL* instance

interfacing with the popular x86 simulator Bochs [Law96] by means of Aspect-Oriented

Programming, a technique we apply to retain a maintainable, loosely-coupled code base

while still being able to gain deep access to the simulator’s state; though, the details

of this method are out of this article’s scope and have partially been outlined in earlier

work [SHK+11].

2.2 API Design

User-defined campaigns and FI experiments are implemented against a C++ API offering

access to both target backend meta-information and current state. The interface is designed

to abstract away machine-specific details such as the register set or events occurring during

an experiment run. The FAIL* API currently provides abstractions for:

• Machine registers: Both meta information (e.g., number of registers, platform-

independent naming of the program counter or stack pointer registers, bit widths and

byte order, an iterator interface) and read/write state access is provided.
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• Memory: Access to meta data (size, memory type) and state (read/write) is provided.

• Events: A set of system events an experiment or plugin may register for, e.g., a

specific program address is reached, memory is being written to, or a trap has been

generated.

• The target system as a whole: Mostly state access is provided, including backend

state save/restore for deterministic repeatability of experiments, and a means to reset

the system.

Each target backend may additionally introduce interfaces to target-specific state, e.g., a

means to manipulate a network device; experiments utilizing these are naturally not portable

anymore, unless an adequate abstraction is added to the generic API.

FI experiments usually follow a simple, sequential scheme:

As experiments are event-driven (e.g., wait for reaching the specified position in space/time

to inject the fault) but need to retain a substantial amount of internal state between the

sequential steps, we chose not to provide a register/callback API (that would force the

experiment developers to explicitly carry state from one callback to the next) but an API with

blocking calls that return to a sequentially written experiment flow upon event activation

(see Sec. 3 for an example).

Additionally, we currently consider to introduce a classic register/callback API for experi-

ments or companion plugins with little or no state to keep between incoming events; the

aforementioned memory-access tracing plugin seems to be such a case and could possibly

be formulated even more concisely with callbacks.

2.3 Tool Prototype

The current prototype implementation of FAIL* provides a target backend for the BOCHS

x86 simulator (version 2.4.6) accompanied with all previously described backend ab-

stractions (implemented in C++ and AspectC++ [SLU05], an Aspect-Oriented Programming

extension to C++), with an alternative ARM backend (OVP, [Bai08]) currently under devel-

opment. The campaign parameter set distribution utilizes the Google Protocol Buffer (PB)

library for lightweight communication and efficient parallelization. Analogously all result

sets are represented as PB messages simplifying post-processing, with the help of PB’s

versatile language support. As a proof-of-concept, a companion Memory Access Tracing

plugin has been implemented.
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1 // campaign: iterate over all backend machine registers

2 RegisterManager& rm = simulator.getRegisterManager();

3 for (fi::RegisterManager::iterator it = rm.begin();

4 it != rm.end(); ++it) {

5 Register *reg = &(*it);

6 // iterate over all bit positions within this register

7 for (int bitpos = 0; bitpos < reg->getWidth(); ++bitpos) {

8 // iterate over all instr. offsets in the target function

9 for (int instr_offset = 0; instr_offset < COVERAGE_NUMINSTR;

10 ++instr_offset) {

11 // encapsulate parameter set for a single experiment

12 FaultCoverageParam *p = new FaultCoverageParam;

13 d->msg.set_instr_offset(instr_offset);

14 d->msg.set_bitpos(bitpos);

15 d->msg.set_inject_register(reg->getId());

16

17 // enqueue the parameter set for retrieval by a client

18 fi::campaignmanager.addParam(d);

19 }

20 }

21 }

Listing 1: (Simplified) Fault coverage campaign implementation: The code excerpt shows the
parameter set generation.

3 An Example Experiment

In the following we describe a straight-forward implementation of a fault-coverage cam-

paign using the FAIL* API. The campaign implementation (Listing 1) uses the machine

register abstraction to iterate over all registers, every single bit in each register, and all

possible instruction offsets within a C function—the analysis subject—running in the target

system. For each point in this parameter space, a parameter set is generated (lines 12–18)

and communicated to an available FAIL* instance, which executes the experiment shown in

Listing 2.

The experiment is implemented in a concise, reusable and portable way, based on the

FAIL* API. The first action is to request a parameter set for the current experiment from

the Campaign Controller (line 2), holding the aforementioned parameter sets in a job

queue. Then we restore a system snapshot taken at the exact point when the function under

evaluation is being entered (line 5). This ensures each run starts under the exact same

conditions.

The next steps involve enqueuing a BPEvent (BP abbreviates breakpoint) that normally

fires when a specific address has been reached. In this case, though, the address is not really

“specific”: ev_fi_instr (line 7) is configured to fire at the wildcard address ANY_ADDR,

but not on its first occurrence; the optional second parameter (shared by all event types)

introduces an event count, letting the event only fire after it occurred count times, instead
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1 // retrieve parameter set from campaign

2 jc.getParam(par);

3 // restore previously saved simulator state:

4 // we’re now at the entry of the analyzed func.

5 simulator.restore("sav/p_entry.sav");

6 // breakpoint n instructions (def. in parameter set) in the future

7 BPEvent ev_fi_instr(ANY_ADDR, par.instr_offset());

8 addEventAndWait(&ev_fi_instr);

9

10 // FI: single bit-flip in register specified in parameter set

11 Register r = simulator.getRegisterManager().

12 getRegister(par.inject_register());

13 r.setData(r.getData() ^ (1 << par.bitpos()));

14

15 // Aftermath: traps, timeout, or normal exit

16 TrapEvent ev_trap(ANY_TRAP);

17 addEvent(&ev_trap);

18 BPEvent ev_timeout(ANY_ADDR, 1000);

19 addEvent(&ev_timeout);

20 BPEvent ev_func_end(ADDR_FUNC_END);

21 addEvent(&ev_timeout);

22 // wait for function exit, trap or timeout

23 BaseEvent *ev = waitAny();

24 // store experiment result in parameter set object ...

25 if (ev == &id_func_end) {

26 int result = simulator.abi_func_retval();

27 par.set_resulttype(LOG_NORMAL);

28 par.set_result(result);

29 } else if (ev == &ev_trap) {

30 par.set_resulttype(LOG_TRAP);

31 } else if (ev == &ev_timeout) {

32 par.set_resulttype(LOG_TIMEOUT);

33 }

34 // ... and communicate it back to the campaign controller

35 jc.sendResult(par);

Listing 2: (Simplified) Fault coverage experiment implementation: The code excerpt shows the FI
part, parametrized by the register, the bit to flip, and the code offset for injection.
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of firing at its first occurrence. In effect, this allows us to count down instructions until the

point within the evaluated function we want to inject the register bit-flip fault at (the “Instr”

element in the parameter set). The blocking addEventAndWait() call (line 8) combines

registering as a listener for this event, and waiting for it to fire.

Once we reach line 11, the event must have fired, and we go for the fault injection. Through

the register abstraction and the parameter set received from the campaign, we grab the

register we are supposed to inject the bit-flip into (line 11) and modify its current state in

line 13.

Having injected the fault, we want to observe the outcome of this run: failure-free returning

from the function (with a correct or faulty return value—this will be determined offline

by evaluating the log files), a hardware trap (MMU violation, division by zero, . . . ), or a

timeout. Lines 16–21 register three more events for catching these cases (without already

resuming the simulator: addEvent() is non-blocking). The remaining code waits for

one of the three events to fire (line 23: waitAny() continues the simulator execution and

blocks), and accordingly reports the result back to the campaign controller (lines 25–33) by

storing it in the parameter set (which subsequently is being transmitted in line 34). Note

the abstraction for a target system’s ABI convention to store return values (line 26).

This consequent usage of target backend abstractions allows to carry out the experiment

with another simulator or hardware backend, once an abstraction library has been provided

for it. Companion plugins, such as the memory-access tracing plugin, allow for a more

coarse-grained reuse.

4 Discussion

We believe FAIL* will achieve the claimed low-effort switching of target backends by its

explicit modular design, separating campaign descriptions, experiment instances and the

associated target backends. The aforementioned Aspect-Oriented Programming techniques

will—at least in the case of the Bochs variant—alleviate the task of updating to newer

backend versions: they allow us to reuse traditionally very tightly-coupled modules, such

as, e.g., the implementation of FI in the data bus for memory reads. Other systems, such as

for example OVP, might already provide distinct callback interfaces which can be utilized

directly.

The experiment API (as outlined in Subsec. 2.2) and its underlying abstractions for target

backend commonalities such as machine registers, memory, or system events was explicitly

designed to foster experiment code reuse. The exemplary FI campaign shown in the

previous section (Listings 1 and 2) illustrates this quite clearly: it could be reused with

another target backend without modification, even if FAIL* would be configured for a

platform with a completely different instruction set, a reversed byte-order, or another set

of general- and special-purpose registers. We are confident to confirm this educated guess

once more target backends are implemented.
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5 Conclusions and Future Work

We presented a novel concept for a versatile fault-injection framework, aiming at sup-

porting large-scale dependability evaluation and system analysis campaigns on various

target-platform backends. Our FAIL* framework provides abstractions supporting portable

experiment implementations, fostering code reuse, and reducing the familiarization efforts

for new simulator or hardware backends.

Currently our framework implementation is at a relatively early stage, providing a complete

interface layer for the Bochs simulator, with OVP interfacing currently in development. Our

next steps include advancing the simulator abstraction API, utilizing the available tracing

capabilities for conducting pre-injection analyses similar to [BVFK05], and implementing

an interface to a real hardware platform to evaluate the flexibility of our infrastructure.
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Abstract: When arithmetic components are parallelized, fault-prone interconnections
can tamper results significantly. Advances in feature size shrinking lead to a steady
increase of errors caused by faulty transmission. We suggest to employ resilient data
encoding schemes to offset these negative effects. Focusing on parallel signed-digit
based arithmetic, frequently used in high-speed systems, we found that a suitable data
encoding can reduce error rates by about 25% when using 2-bit encoding and about
62% when using 3-bit encoding. Data encoding should be driven by symbol occur-
rence probabilities. We develop a methodology to obtain these probabilities, show
example fault-tolerant encodings, and discuss the impact on communicating parallel
arithmetic circuits in example error scenarios.

1 Introduction

In times of billion-transistor processors being commercially available and transistors being

processed in 22 nanometer CMOS process [ITR11] and beyond [Iwa09], it becomes more

and more difficult to design fault tolerant [NSF01, RSKW07] or mixed critical systems

[PMN+09]. More complex circuits require increased inter- and intra-circuit connections

which become increasingly fault-prone.

Focusing on fast, parallelized, signed-digit based arithmetic, used extensively for instance

in CORDIC arithmetic processors, we propose data encodings that can significantly reduce

transmission error rates. When bit-level transmission is fault-prone, the received symbols

might be faulty. To minimize the symbolic level error rate, we apply redundancy at bit-

level by encoding more often used symbols by several bit combinations, using three steps:

• Obtain bit-level error rates.

• Obtain symbol occurrence probabilities.

• Given R ∈ N, map bit patterns with R bits to symbols so that:

– every symbol is represented by at least one bit pattern,

– the overall symbol error rate is minimized.
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The reduction of the symbol error rate depends on the available R bits per symbol. We

apply our methodology exemplarily to 2-bit and 3-bit encodings and provide an error rate

optimal encoding.

Alternative approaches for fault tolerant CORDIC are using TMR. They either require in-

creased hardware [WWY06] or increased latency when reusing hardware [KPS01]. Alter-

native approaches for signed-digit like using check symbols have been proposed [COP+06],

which are less efficient in terms of latency, since every arithmetic operation has to be done

multiple times to obtain error information.

In the following section we discuss possible communication error scenarios. In Section

3 we discuss the used signed-digit arithmetic and show our methodology to obtain digit

probabilities for signed-digit encoded data. In Section 4 we propose an algorithm to find

optimal fault tolerant data encoding, and give recommendations for error resilient encod-

ing. Applying our methodology, we provide accurate data word probabilities for common

signed-digit adder cell implementations in Section 5 and present error rates for different

encoding schemes. We conclude in Section 6 and give an outlook to future work.

2 Bit-Level Error Rates

X1 X2

l0

ln−1

T (l0)

T (ln−1)

li T (li)

pbwpci

li T (li)

pbf

Figure 1: Left: Circuit X1 communicates with circuit X2 through signal lines s0 to sn−1. Right top:
Simple error model of possible bit flip with probability pbf . Right bottom: Complex error model
with a broken wire (pbw) and/or (radiation caused) electric charge insertion (pci).

Figure 1 shows two circuits exchanging data by signal lines 0 through n−1. On each line,

the signal is sent as li ∈ {0, 1} and received as T (li) ∈ {0, 1}. The data received may

differ from the data sent due to imperfect wiring [SOHH07, KPKJ07].

Simple error model In our simple error model, pbf denotes the probability, that one bit

is inverted. The possibility of a bit flip leads to

T (li) =

�
li when no bit flip occurred,

1− li else.

P (T (li) = li) = 1− pbf

Inverting encoding schemes by flipping 0 and 1 does not change the achieved error rate.
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li

ci

0 bw

1 ci < bw

1 0

bw

1 ci

0 ci < bw

1 0

0 1

no yes no yes

no yes

no yes

no yes

no yes

Figure 2: Complex error model decision graph. ”ci” denotes current insertion, ”bw” denotes broken
wire, ”ci < bw” denotes ”ci” occurs close to X1 and ”bw” occurs closer to X2. Leafs are T (li).

Complex error model In a more complex error model, pbw denotes the probability of a

broken wire (T (li) = 0), pci denotes electric charge insertion (T (li) = 1), i.e. radiation

caused.

P (T (0) = 0) = 1− pci + pci · pbw · pci<bw (1)

P (T (1) = 1) = 1− pbw + pbw · pci · (1− pci<bw) (2)

For the simple model holds P (T (0) = 0) = P (T (1) = 1). The complex model differs to

the simple model by the influence of pci, pbw, and pci<bw on P (T (0) = 0) and P (T (1) =
1) (see Equ. 1 and 2). Inverting encoding schemes by flipping 0 and 1 can change the

resulting error rate.

3 Symbol Occurrence Probabilities

We use signed-digit arithmetic as an example to derive symbol occurrence probabilities.

A special case of a signed-digit [Avi61] number system is a signed-binary number system,

where each digit is limited to {−1, 0, 1}. In the following we focus on signed-binary

number systems.

A signed-binary adder (SBA) calculates Ssb = Asb + Bsb, where Ssb,Asb, and Bsb are

signed binary numbers. This operation is decomposed into digit operations by signed-

binary adder cells (SBAC). Figure 3 shows this decomposition. One operation at digit i

calculates si = ai + bi. Since ai + bi ∈ {−1, 0, 1}+ {−1, 0, 1} = {−2,−1, 0, 1, 2}, but

si ∈ {−1, 0, 1}, we need some carry to propagate {−2, 2} to the digit at i+1. Focusing on
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ai+1bi+1

si+1

ci+2

di+2

ai bi

si

ci+1

di+1

ai−1bi−1

si−1

ci ci−1

di di−1

Asb Bsb

Ssb

Asb +Bsb = Ssb

SBACSBA

Figure 3: Signed-binary adder (SBA) consisting of three level signed-binary adder cells (SBAC)
shown at numerical level, see [CR78, S.111].

a 3-level design as in Chow and Robertson [CR78], we describe a SBAC through atomic

operations that are in accordance to Equation 8.

ei = ai + bi (3)

ci+1(t, ai, bi) =






0 when ei > 0,

−1 when ei < 0,

γ(t, ai, bi) when ei = 0.

(4)

fi = ei − 2 · ci+1(t, ai, bi) (5)

gi = fi + ci (6)

di+1 =

�
0 when gi ≤ 0,

+1 when gi > 0.
(7)

hi = gi − 2 · di+1 (8)

si = hi + di = ai + bi + ci + di − 2 · ci+1 − 2 · di+1 (9)

The calculation of ci+1 must be independent from ci and di, the calculation of di+1 must

be independent from di. The resulting carry chain is locally constraint, the calculation of

any si depends only on ai, bi, ai−1, bi−1, ai−2, and bi−2 [Zeh92].

We construct a decision graph, see Figure 4, that shows all possible degrees of freedom

when constructing a functionally correct SBAC that is constrained by the formal model

described above. In Figure 4, all impossible choices of ci+1 and di+1 have already been

removed. We illustrated the choice of ci+1 = −1 by dotted arrows and of ci+1 = 0 by

dashed arrows. This choice also fixes the decision of di+1.
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(ai, bi) {(−1,−1)} {(−1, 0), (0,−1)} {(0, 0), (+1,−1), (−1,+1)} {(+1, 0), (0,+1)} {(+1,+1)}

ei = ai + bi −2 −1 0 +1 +2

ci+1 −1 −1 0 −1 0 0

fi = ei − 2 × ci+1 0 +1 +2

ci −1 0 −1 0 −1 0

gi = fi + ci −1 0 +1 +2

di+1 0 0 +1 +1

hi = gi − 2 × di+1 −1 0

di 0 +1 0 +1

si = hi + di −1 0 +1

Figure 4: Signed-binary adder cell decision graph. For ai + bi = 0, the dashed graph denotes a
choice of ci+1 = 0, the dotted graph a choice of ci+1 = −1. For ai + bi = 0 it is obvious, that
di+1 depends on the choice of ci+1 but not on ci. Furthermore, for ai + bi = 0,si does not depend
on the choice of ci+1, but si+1 does depend on the choice of ci+1 through di+1.

Our SBAC model offers 23 = 8 different signed-binary adder cells at the numerical level.

Let t be the type id of the design choice, 0 ≤ t < 23. All possible design choices are

shown in Table 1. Note that the formula for calculating ci+1 depends on the input digits

(ai, bi) and the chosen design parameter t. Let SBACt be the design using choice t to

calculate ci+1.

Assigning probability information to the symbols in Equations 3 through 7 we are able to

calculate the digit probabilities. As an example we give the calculation of ci+1:

P (ci+1 = −1) = P (ei = −2) + P (ei = −1) + P (γ(t, ai, bi) = −1)

P (ci+1 = 0) = P (ei = +1) + P (ei = +2) + P (γ(t, ai, bi) = 0)

P (γ(t, ai, bi) = 0) and P (γ(t, ai, bi) = −1) are calculated in accordance to Table 1 as

P (γ(t, ai, bi) = 0) = P (ai = 0) · P (bi = 0) · P (t ∈ {0, 1, 2, 3}) +

P (ai = +1) · P (bi = −1) · P (t ∈ {0, 1, 4, 5}) +

P (ai = −1) · P (bi = +1) · P (t ∈ {0, 2, 4, 6})

P (γ(t, ai, bi) = −1) = P (ai = 0) · P (bi = 0) · P (t ∈ {4, 5, 6, 7}) +

P (ai = +1) · P (bi = −1) · P (t ∈ {2, 3, 6, 7}) +

P (ai = −1) · P (bi = +1) · P (t ∈ {1, 3, 5, 6})

For any given input digit probabilities, we are now able to calculate the corresponding

output digit probabilities.
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(ai, bi)

(0, 0) (+1,−1) (−1,+1)

t γ(t, ai, bi)

0 0 0 0

1 0 0 -1

2 0 -1 0

3 0 -1 -1

4 -1 0 0

5 -1 0 -1

6 -1 -1 0

7 -1 -1 -1

Table 1: Meaning of parameter t in description of SBAC.

4 Mapping Bit Patterns to Symbols

When encoding signed-binary digit symbols {−1, 0, 1} with bit strings of a fixed length,

we either can encode every symbol with exactly one bit pattern (non-redundant encoding

scheme), or we may opt to encode one or more symbols with several bit patterns (redun-

dant encoding scheme). For any symbol, we choose one distinct encoding as the base

encoding. When using a redundant encoding scheme, all other encodings are called sec-

ondary encodings. In our approach, each symbol should always be provided as its base

encoding. However, when modified to some corresponding secondary encoding by faulty

transmission, the latter should also be regarded as correct. We get the following constraints

• any arithmetic operation produces base encoded symbols

• any transmission can corrupt base encoded symbols, producing:

– correctly base or correctly secondary encoded symbols

– wrongly base or wrongly secondary encoded symbols

• any arithmetic operation accepts base and secondary encoded symbols

Given the bit-level error rates, the symbol occurrence probabilities and the number R of

bits available per symbol, we can map bit patterns to symbols in way that every symbol

is represented by at least one bit pattern and overall symbol error rate is minimized. We

propose the following brute force algorithm to find an encoding scheme with minimal error

rate:

1. start with one symbol

2. define a base encoding for this symbol

out of all remaining encodings

3. if it is the last symbol, use all remaining encodings

as secondary encodings

4. else: for any subset of all now remaining encodings

- all encodings of this subset are secondary encodings
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to the base encoding

- recurse into 2 with an unencoded symbol

4. calculate overall error rate

5. track minimal error rate and according encoding scheme

5 Results

At first we discuss the probabilities of signed-digit symbols when applying SBAC oper-

ations repeatedly in Subsection 5.1. In Subsection 5.2 we proposed example encodings

obtained by the algorithm of Section 4 and discuss the resulting reduced error rates.

5.1 Signed-Digit Symbol Occurrence Probabilities

For any trivial digit probability, where one symbol out of {−1, 0, 1} has the probability of

1, and the others have 0, the probabilities of the output symbols are either 0 or 1.

If any other, non trivial data probability is applied to ai, bi, and the probability distribution

of si is looped back to the SBACt inputs ai, bi, the probabilities converge, see example

Figure 5, where t = 5 and initial P (ai = 0) = P (bi = 0) = 0.1 and P (ai = 1) =
P (bi = 1) = 0.9. Since the calculation of ci+1 ( and indirectly di+1) depends on t, the

converg also depends on t, see hollow symbols in Figure 6.

A sample application for signed-digit arithmetic could be a CORDIC based algorithm.

CORDIC [Vol59] transforms initial data iteratively with predefined coefficients. Let A0

be the initial N-bit data and Bi the predefined coefficients:

Ai+1 = fcordic(Ai, Bi) , with 0 ≤ i ≤ N − 1 (10)

fcordic is the CORDIC function for processing Ai and Bi by an adder/subtracter and
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Figure 5: SBAC adder operation data probabil-
ity for t = 5 and initial P (ai = 0) = P (bi =

0) = 0.1 and P (ai = 1) = P (bi = 1) = 0.9.
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Figure 6: SBAC adder/subtracter data probabil-
ity depending on type t. Solid symbols repre-
sent + operation, hollow symbols represent a
probability of 50% for +/− alternation.
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shifter. AN is the final result, A0 the input data to be processed. To simulate the im-

pact of subtraction, we assume a probability of 50%, that input for bi has opposite signs.

The solid symbols in Figure 6 correspond to this more realistic use case.

5.2 Example Encodings and According Symbol Error Rates

Table 2 (3) shows a 2-bit (3-bit) redundant encoding of signed-binary digit symbols with

a minimal error rate when using a SBAC type t = 7, non trivial initial digit symbol

occurrence, and a probability of +/− alternation of 50%.

symbol 0 -1 1

encoding 00 10 11 01

error prob. pbf 2 · pbf − p
2
bf

2 · pbf − p
2
bf

Table 2: Example encoding scheme for R = 2. Base encodings are marked bold.

symbol 0 -1 1

encoding 000 001 010 100 111 101 110 011

Table 3: Example encoding scheme for R = 3. Base encodings are marked bold.

The error ratio of any redundant encoding scheme to the non-redundant 2-bit encoding can

be calculated by

error ratio =
error rate redundant encoding

error rate of 2-bit non-redundant encoding
(11)

For the two bit redundant encoding fo Table 2 we investigate the digit error depending on

the bit flip error and the encoding, as shown in Figure 7. The error ratio is 75% for small

pbf and increases to expected 100% for pbf = 1. This means by using error correction

and redundant encoding for digit 0 instead of no error correction for any digit, when using

SBAC type t = 7 in a CORDIC like arithmetic with switching sign possibility of one

operand of 50%, error rate drops by 25%.

The three bit redundant encoding of Table 3 reduces the error ratio further to 38%, as can

be seen in Figure 8. This means by using error correction and redundant encoding for digit

0 instead of no error correction for any digit, when using SBAC type t = 7 in a CORDIC

like arithmetic with switching sign possibility of one operand of 50%, error rate drops by

62%.

Comparing the two bit redundant and three bit redundant encoding, the error ratio is

redundant error ratio =
error ratio of 3-bit red. encoding

error ratio of 2-bit red. encoding
=

0.38

0.75
≈ 51% (12)
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Figure 7: SBAC adder/subtracter digit error
probability for t = 7 and non trivial initial digit
occurrence. Probability of +/− alternation is
50%. ”no red” denotes no redundant encoding,
”-1 (0,1) red” denotes redundant encoding and
error correction for -1 (0,1), ”e(0)” denotes the
error ratio of redundant encoding and error cor-
rection of digit ”0”, see equation 11.
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Figure 8: SBAC adder/subtracter digit error
probability for t = 7 and non trivial initial digit
occurrence. Probability of +/− alternation is
50%. ”no red” denotes a 2-bit non redundant
encoding (enc 1), ”optimal enc” denotes 3-bit
optimal redundant encoding and error correc-
tion (enc2, see Table 3), ”ratio” denotes the er-
ror ratio enc2 normed to enc1, see equation 11.

Using redundant encoding, increasing the minimal required encoding bits (2 bits) by 50%
(3 bits) reduces error rate by ≈ 49%.

6 Conclusion and future work

When reliable signed-binary adder cells are connected to each other or to further reliable

system components via highly unreliable switching networks,the knowledge of symbol

occurrence probabilities offers a chance to use a data encoding scheme that provides some

implicit fault tolerance. We have shown a methodology to gain data flow probability infor-

mation for signed-binary based arithmetic operations and have proposed a data encoding

scheme that provides advanced fault tolerance properties.

To validate these results, we intend to implement a complete arithmetic processor based

on the chosen signed-binary adder structure and run some benchmarks on it. For 2-bit

encodings, alternative signed-binary adder structures have been described, that might be

worth further investigation with our methodology; cf. in particular [GHM89], [Zeh92],

and the references in the latter. We will also try to improve the run-time complexity of our

exploration algorithms to gain predictions for encodings with considerably higher redun-

dancy.
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Abstract: Mobile robots are complex systems that tend to become even more com-
plex. Since these systems show often graceful degradation in case of hardware faults
the applied control strategies should be taken into account. The overall fitness of a
robot can be condensed into health signals. Depending on this signal the control of the
robot can be adjusted to counteract reduced sensing or acting capabilities, by follow-
ing the design principles of organic computing. This work introduces techniques to
estimate possible hazards that are introduced by the presence of obstacles in the close
proximity of a damaged robot and might threaten its task.

1 Introduction

Since robotic systems have increased their complexity over the last years, it is desirable to

equip these systems with fault tolerance as well as adaptive control strategies to guarantee

a high reliability and dependability even in unforeseen situations.

In the context of path planning, factors such as decreasing energy resources or failing

hardware can lead to a variety of new constraints. A robot with low energy resources

should move along a very energy-efficient path, while a defective robot with decreased

maneuverability should avoid paths that require many course changes.

An example for the effects of hardware failures on the maneuverability of a robot is given

in [ALM08]. It could be observed that the compensation of the leg loss introduces a drift

to the side of the defective leg during the movement.

Similar effects can be observed on wheeled robots that feature omni-drives [GWT+12].

A four wheeled omni-drive may compensate the defect of one wheel, but loses propulsive

power and agility.

The planning of paths can be achieved with a variety of different algorithms like trajectory-

based [JC89], graph-based (A*, HPA*) [BMS04], artificial potential fields [Ark98] or

wave front based approaches [NI09, NN09].
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A path planning approach that uses stereo vision to derive a difficulty measure for the

surrounding terrain based on its height can be found in [CH09].

In a previous work, the effect of decreasing capabilities of the moving unit has been con-

sidered in [MM11], where health signals were used to influence the path planning to avoid

regions that have become too demanding for the remaining capabilities by placing virtual

obstacles into these regions. An alternative setup was the adaptation to energy constraints

during paths planning.

In addition to these problems and approaches, some faults may also influence the sensing

capabilities of the moving unit and must be taken into account. For example, if the sensors

of a robot are damaged the path planning should avoid regions with a lot of obstacles and

should choose free/plain regions instead. This paper presents algorithms that approach

these problems on a generic level.

This paper is organized as follows: First, the underlying architecture of the adaptive and

fault tolerant path planning is introduced in section 2. Then the path planning and fault

tolerance methods are presented in section 3. Section 4 describes the environment of the

experimental setup and sections 5 and 6 conclude the paper with the results and an outlook.

2 Organic Robot Control Architecture (ORCA)

ORCA [ALM08, MBG+11] is a hard- and/or software approach to design systems that

keep the robot in a safe and optimal state during its operation, even in the presence of

faults. In general, an ORCA controlled system monitors its current state and counteracts

unhealthy changes in the overall system state in the best still possible way, without an

explicit fault model. To rate the performance of a system health signals are used as a

measure of the system’s fitness.

The following sections will give a more detailed overview over the general design of

ORCA and its implementation in this work.

2.1 The Design of ORCA

Basically, there are two types of functional units within ORCA. The first one is the Basic

Control Unit (BCU) and the second one is the Organic Control Unit (OCU). These units

may be connected, grouped and hierarchically layered to generate the overall function of

the system.

On the lowest level a BCU encapsulates a basic function of the system. A more complex

functionality can be achieved via the combination of several fundamental BCUs.

A system consisting of layered and interconnected BCUs is already capable of performing

an arbitrary task. The OCUs are not needed in the design, as long as no fault tolerance is

desired.
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The OCUs are introduced into the design of the system to ensure the flawless operation in

case of faults. These units observe attached BCUs and may alter parameters within them

to counteract undesired system states that are considered as faults. However, if the system

runs smooth the OCUs adhere to passive monitoring.

ORCA can be seen as a distributed variant of the observer/controller architecture presented

in [RMB+06].

As mentioned above the OCUs monitor the BCUs and counteract undesired system states.

Therefore, the OCU has to rely on a measure that indicates the fitness of a BCU. In the con-

text of ORCA such a characteristic value is called health signal [LJA+07] and is generated

by the unit that is under observation.

2.2 Implementing ORCA

In context of this work the principles of ORCA have been implemented as a software

framework. For this approach the BCUs and OCUs are defined as (typed) interfaces. The

general layout can be seen in Figure 1. Each BCU can have an OCU and vice versa. BCUs

and OCUs can also have superordinated or subordinated variants on different hierarchical

layers. A unit on a higher or lower layer is addressed via the Parent or Child property. In

addition, both interfaces are inherited by typed variants of their corresponding interfaces.

These typed interfaces offer a method to parameterize a class of the given type. (This

concept will be described with the help of an example in the next paragraphs.) Finally, as

defined in the previous section, the BCU has an instance of a health signal.

Figure 1: The class diagram of the chosen ORCA approach.

In case of adaptive path planning the planner BCU is defined as a new class that imple-

ments the BCU interface of its own type. Thereby the planner becomes a BCU of the type

”planner”. This guarantees that the planner can only be connected to OCUs, which are

appropriate to observe a planner, because a typed BCU can only be connected to OCUs of
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the same type. Therefore a planner OCU is capable of observing a planner BCU, where

an OCU of the type engine for example is not, because of the different types.

As can be seen in Figure 1 each BCU and OCU must implement a method called Parame-

terize. This method expects a typed BCU of the same type as the implementing class and

returns a modified version of this BCU. In the context of the planner it would accept an

instance of the planner class, which is a BCU and return a modified version of this instance

of a planner.

The Parameterize method of a BCU is only active, if no OCU is attached. Otherwise,

it will hand over all control to the Parameterize method of the OCU. The HealthSignal

class allows the hierarchical organization of health signals by offering the possibility to

connect one health signal to other health signals that are vital to the functionality of its

associated BCU. For example the health signal of a planner has to be connected to the

health signals of the robot, because the planner cannot function normally if the robot is

faulty. The internal combination logic of the different health signals can be adjusted via

the definition of custom made, suitable LogicMethod delegate that fits the specific needs

of a certain task.

3 Adaptive Path Planning

This section offers an overview over the algorithmic approach towards adaptive path plan-

ning. The path planning itself is carried out on a two dimensional (2D) grid of the envi-

ronment, representing the terrain. The smallest unit within the 2D grid is a single cell that

holds information like an abstract measure of the difficulty to cross the represented area,

the distance to a goal or a measure that can be used to indicate possible hazards.

The use of abstract measures is on one hand a generalization, but offers on the other

hand the possibility to represent different situations at once. Climbing a certain slope

is a different task than walking over varying types of subsoil, but both can be described in

terms of difficulty that they cause to the robot.

The path planner follows the ORCA design and is divided into BCU and OCU in a similar

fashion as described in the examples in subsection 2.2. The BCU performs a shortest path

planning between the robot and the goal, while avoiding obstacles. The associated OCU

observes the health of the BCU, which is influenced by the health of the controlled robot.

Basically, the OCU parameterizes the path planner to consider certain cells as blocked or

hazardous, thereby counteracting paths that are not suitable for a robot in the current health

state and might threaten the robot’s mission.

3.1 Path Planning BCU

The shortest path planning is performed via wave front propagation. This algorithm can

be best paraphrased by the effect that may be observed when an object plunges into water,
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creating ripples that expand over the whole surface.

The algorithm that serves as basis for this work can be found in [MM11, MBG+11]. In

addition to this approach each cell now features a value to indicate possible hazards within

this cell. The value depends on the presence of obstacles in the near surrounding, thereby

virtually increasing the area of an obstacle.

A cell at position (x,y) is denoted as cxy . The hazard h of each cell cxy is defined as

hcxy
=

�
r − ⌈d− 1⌉

0
for d ≤ r
for d > r (1)

with d =
�
△ x2+ △ y2, r being the desired radius of effect and △ x2 as well as △ y2

being the distance of cxy to the next obstacle.

3.2 Path Planning OCU

As mentioned in the previous subsection the path planner BCU generates a value to indi-

cate areas that might become hazardous to a damaged robot. This information is not taken

into account during normal operation.

As shown in [ALM08] the defect of a leg in a six-legged walking robot might introduce a

drift to the side of the affected leg. Therefore, a path with many turns to different sides or

obstacles on both sides of the path is mostly unfavorable. Hence, if the robot gets damaged

the OCU is able to modify the path planning by increasing r in dependency of the current

health signal and persuading the BCU interpret cells with h > 0 as obstacles.

This approach works well if the robot has enough space to avoid hazardous areas, but needs

some additional interventions by the OCU, if a hazardous area has to be crossed in order

to reach the goal. This is due to the fact that a goal cannot be reached if it is surrounded by

hazards that are strictly avoided. Hence, if the OCU recognizes that the goal is surrounded

and cannot be reached it modifies the path planning such that the robot will only traverse

the safest cells in a hazardous area, while allowing cells with t > h > 0 to be traversed.

If cxy holds no obstacles and is not part of a path it is termed as ĉxy . The adaption per-

formed by the OCU, if no path is possible (while avoiding all hazards), searches path

element by considering all cells that belong to the set

Apq := {ĉxy |� ĉxy − g �2≤� cpq − g �2} , (2)

with abs(p − x) ≤ 1 and abs(q − y) ≤ 1 for further analysis. In this case g denotes the

position of the goal. As a next step the set with the lowest hazard is defined as

Hmin := {α ∈ Apq | min (hα)} (3)

and finally the algorithm chooses the next cell of the path pi by choosing an element from
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the set Hmin according to the definition

pi := h ∈ Hmin (4)

with min(� h− g �2).

The approach described above guarantees that the OCU parameterizes the planner in a way

that it will ultimately find a static path through hazardous areas by adjusting the parameter

t. The term static means that the path is planed once and the robot follows this path until it

reaches the goal. The problem of a dynamic path planning, where the robot has to replan

at each new cell, is the fact that the path planning prefers cells with a minimal hazard (see

Equation (3)). This effect is illustrated in Figure 2. The path of the robot is indicated by

arrows and hazardous cells are marked in gray. The left subfigure shows the initial path of

the robot and the right subfigure shows the resulting path after a replan at the cell marked

with an x. If the robot follows the new path the replan at the next cell will lead it back to

the cell marked with an x and so on.

Figure 2: Due to the fact that the path planner avoids hazardous cells (shown in gray) as long as
possible a robot might get stuck in a livelock during path planning, if the path is replanned at each
cell. The initial path is shown in the left subfigure and the new path that occurs once the robot
reaches the cell marked with an x is shown in the right subfigure.

Luckily the problem stated above can be easily overcome, because the shortest path to a

given goal contains per definition no cycles. Therefore, each cell within any valid path

can only be traversed once and the planner can mark traversed cells and avoid them during

path planning, so that dynamic and static path planning result in the same path.

It has to be mentioned that one possible drawback of the approach given by Equation (2) to

(4) is the fact that the overall quality of the resulting path is bound by the local maximum

of h of all hazardous areas that have to be crossed. Therefore, the OCU has to increase t in

order to mark hazardous areas as traversable. This fact in combination with certain spacial

conditions can lead to paths that cross hazardous areas that could be avoided. Figure 3

shows this effect. The left subfigure depicts the path of a damaged robot. Hazardous areas

are only crossed if no other choice is left. When the health signal drops lower the OCU

has to adjust t even further, while hazardous areas are enlarged. This may lead to the effect

that is shown in the right subfigure. The avoidance of hazardous areas is now bound by

Equation (2), allowing only cells that do not increase the distance to the goal, while the

OCU marks hazardous cells as traversable in order to reach the goal.

To overcome the problem stated above the robot can increase the quality of an obtained

path by the iterative insertion of waypoints at the borders of hazardous areas that have to be
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Figure 3: The left subfigure shows the path (dotted cells) of a damaged robot, while the right subfig-
ure shows the path for an even further degraded health signal. A combination of the health state and
certain spatial condition lead to the effect that the path planner chooses a path through hazardous
areas that could have been avoided. Different levels of hazards are shown as shades of gray.

traversed. Figure 4 shows a segmented path with four waypoints. Basically the robot uses

the path from Figure 3 (right) and inserts the two waypoints (cells marked with a cross)

that are closest to the goal. The combination of two waypoints serves as a passage from a

hazard free area to a hazardous area. Now the path is replaned to the waypoint within the

hazardous area. Again two waypoints are added to allow the passage back to a hazard free

area and a last replanning delivers the last part of the path that now avoids the hazardous

cells that were traversed before.

Figure 4: The figure shows a path that has been improved by the insertion of waypoints. Hazardous
areas are only traversed if there is no other choice left. The path is depicted as dotted cells and the
waypoints are shown as cells marked with a cross.
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4 Simulation Environment

With respect to the suggestions presented in [ARS10] the experiments have been carried

out in simulation to achieve a fast and reproducible evaluation of the algorithmic approach.

The implementation of ORCA described in subsection 2.2 is used in a custom made simu-

lator written in C#. It allows the simulation of the approaches presented in [MM11] as well

as this work. A simplified and adapted overview can be found in Figure 5. GUI and Sim-

ulator are decoupled, meaning that the Simulator is capable of running without the GUI

to allow fast, automated simulations without user interaction. ORCA specific connections

are depicted as dashed lines.

Figure 5: A simplified overview of the simulator’s structure. As an adaption the ORCA specific
connections are shown as dashed lines.
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5 Results

In the following the behavior of the proposed approaches for path planning in crowded en-

vironments with OCU adjusted hazard estimation will be presented. The first two subsec-

tions show exemplary setups for certain path planning aspects, while the third subsection

presents results for a path planning scenario on ten arbitrary maps.

5.1 Avoidance of Crowded Areas

A basic variant of the modified path planning, where the OCU modifies r in respect to the

health signal was simulated in the environment shown in Figure 6. In this case each hazard

is treated as an obstacle. The left subfigure shows the path for a healthy robot. As can be

seen the robot travels through very narrow corridors and has to perform several turns.

In the right subfigure of Figure 6 the resulting path avoids narrow corridors and a lot of

turns to different sides, because the narrow spaces between obstacles have been interpreted

as virtual obstacles.

Figure 6: The effect of different health signals (left: 100%, right: 63%) on the resulting path. Fixed
obstacles are depicted in black, hazardous areas are colored in shades of gray and the path is shown
as a interconnected line of white cells.

5.2 Hazard Adaptation

For a better understanding of the result it has to be recalled that the path planning via a

wave front expansion works in two major steps. First, the whole terrain is flooded from

the goal by the wave front to generate distance measures and additional information like

hazard estimations. Secondly the path is chosen by a local operator starting at the position

of the robot. An exemplary result of this approach is shown in Figure 7.
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The left subfigure in Figure 7 illustrates the effect of OCU interventions in case of very

lose hazard avoidance during the wave front expansion, by accepting all hazardous cells

as possible path cells, but a strict avoidance (if possible) in the local operator. As one

can see the resulting path avoids hazardous cells as long as possible while still moving

toward the goal. At a certain point the local operator has no other choice than to enter

possibly hazardous cells in order to get closer to the goal, but stays on cells that are the

least dangerous in the local surrounding. It has to be mentioned that this is a very extreme

example to show pure performance of the local operator without hazard adjustment of the

OCU (all cells without obstacles are ultimately traversable).

A better solution is a stricter avoidance of hazards during the wave front expansion that

threads areas with large hazard index as fixed obstacles, which should never be traversed.

Then the local operator can choose a more suitable path for the robot. The result of such

an approach under same conditions is shown in the right subfigure of Figure 7.

Figure 7: The effect of different OCU adjustments during the path planning in case of a very severe
damage (health signal = 6%). In the left subfigure all hazards are marked as ultimately traversable
if needed, whereas in the right subfigure severe hazards are marked as virtual obstacles. Fixed
obstacles are shown in black, hazardous areas are colored in shades of gray and path elements are
shown as dotted cells.

5.3 Automated Test Set

For the automated test the robot had to traverse ten arbitrary grids of 600 × 400 cells

with the top left cell as starting point and the bottom right cell as goal. The first five

maps feature fixed obstacles on an evenly difficult terrain, while the other maps feature

fixed obstacles on arbitrary difficult terrain. The path planning on this set of maps was

performed with an OCU as described in subsection 3.2 (including path segmentation) and

a linear dependency between the health signal and t. Each map had to be traversed twice.
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First with a fully functional robot (health signal = 100%) and then with the lowest health

signal possible that still allows the robot to reach the goal.

The results of the automated test with ten arbitrary maps can be found in Figure 8. The

value next to the name of the map shows the minimal health signal value that guaranteed

a valid path to the goal. The value Minimal Distance (healthy) describes the minimal dis-

tance between the nearest obstacle and the robot (health signal = 100%) while it traverses

the map. Due to reasons of clarity this value is also shown as number. The next value

(Minimal Distance) is the minimal distance between the nearest obstacle and a damaged

robot (the corresponding health signal is shown next to the name of the map). The Average

Distance Ratio is the average distance between obstacles and the damaged robot compared

to the average distance between obstacles and a healthy robot. The last value (Path Ratio)

rates the traveled distance of a damaged robot in comparison to a healthy robot.

As can be seen the damaged robot holds a greater safety distance to obstacles than a healthy

robot and accepts detours to achieve this goal. On average a faulty robot keeps an 1.47
times greater distance to obstacles, while traveling a path that is 1.32 times longer.

Figure 8: This figure shows the results of the automated test set. The term distance describes the
minimal distance between the nearest obstacle and the robot during its movement. The first value is
the minimal distance of a healthy robot. The other three values rate the performance of a damaged
robot proportional to a healthy robot.

6 Conclusion and Outlook

It has been shown that adapting path planning is able to avoid possible hazards that are

introduced by obstacles in the near surrounding of a faulty robot. This is done via the local

calculation of possible hazards in dependence of the distance to an obstacle. With these

hazard estimations the path planner is able to plan paths that keep a greater safety distance

between the robot and fixed obstacles by accepting detours on its way towards the goal.

Future work on this topic will focus on the extension of the presented approach towards

the support of multiple robots.
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Abstract: In this paper, the potential of adaptive resonance theory (ART) networks
for dependability issues is considered. The basic properties of ART architectures
are described, and some strategies are discussed to enable a balanced combination
of performance and dependability requirements by these networks.

1 Introduction

The development of IT systems in general is mainly realized under observing constraints
as costs and resulting perfomance. Dependability issues usually have to be brought into
compliance with these two major requirements. In real-time computing, this need is
explicitly shining up in the requirement that the system is not only correctly working, but
guarantees to fulfil tasks within given upper time bounds: I.e. functioning alone is not
enough, sufficiently quick functioning is necessary.

In many applications, the relation between performance orientation and dependability
orientation must not be fixed, as e.g dependability-critical and -uncritical situations may
quickly follow each other. Consider e.g. a robot moving in unknown territory. The
cautious approach, always to move very slowly, always to perfectly check for all
possible dangers might imply too much loss of velocity, to reach the goal location in the
required time. So, what we would need is a flexible strategy, which also considers
performance issues, while not neglecting some background cautiousness.

Here I would like to propose to consider adaptive resonance theory (ART) [CG88], a
subfield of the theory of neural networks, as an interesting offer, albeit not yet
investigated in more detail with regard to application in the dependability community. In
section 2 the main characteristics of ART networks will shortly be exhibited.
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Subsequently, in section 3 some ideas about exploiting the ART structure for
dependability issues are discussed.

2 Basic Structure and Properties of ART Networks

Standard neural networks, as e.g. backpropagation networks, work in two different
modes: the training phase and the recognition phase. In the training phase, given pairs of
an input pattern and an output pattern are offered to the – arbitrarily initialized –
network. The network tries to systematically minimize the error in reconstructing the
output from the input pattern, by corresponding changes of the weight factors of the
neurons, until the error reaches 0 or a sufficiently small value. After the end of the
training period, these values are frozen so that no change of the learned experience is
possible any more.

Then, in the recognition phase the network is to classify unknown input patterns as
similar to certain learned inputs, and, thus, to sufficiently exactly reproduce the
corresponding output patterns.

In many applications, however, as e.g. for the movement of autonomous robots in
unknown territory, it would be desirable to adapt again the experience of the network to
the changing environment. However, simply extending the training to the operational
phase of the system causes the tradeoff that this treatment would destroy part of the
experience learned during the initial training phase.

Here, ART networks have been proposed as a remedy [CG88]. In the basic ART
architecture, the entire recognition process mainly proceeds as follows (see also Fig. 1):
The input pattern inp is implemented as a vector of Boolean numbers. It activates the
neurons i (i=1,...,m) of the so-called comparison layer F1. The output of the layer
neuron i is a function si= f(inpi); often simply the identical reproduction of the input
vector inp is assumed: si=inpi (i=1,...m). For the subsequent discussion, we shall also
adopt this assumption s=inp.

The vector s is multiplied by the so-called bottom-up matrix Bij the elements of which
are real numbers. This produces a real number vector t comprising as components the
weighted sums

m
tj= ∑ Bij *si = Bi *s (j=1,...,n ; Bi being the row vector i of matrix Bij )

i=1

The maximum of these sums is determined:

tk= max tj
j

Neuron k of the recognition layer F2 is then set to 1; all other neurons of this layer are
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Fig. 1 Basic architecture of ART networks ( according to [CG88, Ze 97])
F1 comparison layer, F2 recognition layer, B bottom-up matrix, D top-down matrix,
Reset reset line, inp input vector; s, t, u,v generated vectors (see text), k winning neuron
of layer F2

set to 0 (neuron k is the „winner neuron“). I.e. the neuron k of F2 represents the class of
patterns, to which the input pattern inp is, in this first selection, estimated to belong.

Subsequently, this decision is checked by a control computation. To do so, the vector u
of the Boolean values of the recognition layer neurons is multiplied by a second matrix,
the so-called top-down matrix Dij , producing a real number vector v:

F2

F1

BD

inp

s

tu

Similarity
check

Reset

v 1..m

1..n

...... k ......
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n
vi= ∑ Dij uj= dik *uk= dik for i=1,...,m

j=1

By AND ing the components of vector v and of the input vector inp of layer F1, a
check vector c is formed:

ci= vi AND inpi for i=1,...,m

Finally, the similarity of c and input vector inp is compared. This similarity is measured
by counting the numbers nc and ninp , respectively, of 1s in both vectors, and forming
their quotient

q= ns/ne.

If q is larger than a previously selected value of a so-called tolerance parameter p, the
input inp is assumed to be sufficiently close, „in resonance“, to the column vector Di of
matrix D. If this is not the case, the classification approach is decided to be not fitting.
Then the entire recognition process is repeated, with the previous winner neuron k being
excluded from the selection process. This causes that the new maximum

tl= max tj
j=1,...,k-1,k+1,...,n)

is etstablished, so that now another neuron l is the winner neuron and the subsequent
check for its resonance with the input vector inp is carried out.

This search loop is repeated until a resonant solution is found. If all the actual n class
representations of the neural network do not fit to the input vector, an additional neuron
n+1 is created in layer F2, and is set to 1. Correspondingly, the number of pattern classes
distinguishable by the ART network, increases by one. So, the network is able to
respond to the appearance of unidentified patterns, by the creation of new classes.

After the search process for the given input vector inp has been completed, the elements
of the matrices B and D are updated. Updating of bottom-up matrix B is done by
changing the row vector which had, in the procedure described previously, produced the
maximum sum; this row vector is torn towards the input vector inp. All other rows of
matrix elements remain unchanged. Updating of the top-down matrix D is done by
component-wise ANDing by the vector s. For the mathematics of the update formulas,
and also the influence of some additional so-called gain factors see [CG88, Ze97] which
provide a comprehensive discussion of these details.

Also, in this position paper, for ease of understanding we confine the discussion to
considering the basic ART architecture ART-1 described in this section; upgrading
modifications of this architecture allow e.g. the use of real number input vectors [CG91a,
CG91b] or combinations with fuzzy logic [CG91c].

236

236



3 Application of ART Networks for the Dependability of Systems

As the main advantage of ART networks their „plasticity“ is claimed, i.e. the ability to
integrate new knowledge into the network without destroying old one. Moreover, this is
done in a balanced way where still the attempted changes are checked aginst the
memorized knowledge, stored in the top-down matrix. So, the network emulates, to a
certain degree, the cooperation between short term storage and long term storage known
from biological systems: Actual on-the-fly experience or situation estimation might flow
into the current input vector inp, and then can be integrated into memory under the
surveillance of the long-term knowledge stored in the top-down matrix D.

This scheme might be applied to many applications, especially of autonomous systems
as, e.g., robots: In easily-manageable landscapes like plains, the robot without risk could
be allowed to move quicker. On the other hand, a situation where none of the stored
strategies (each represented by one neuron of the recognition layer) is acceptable, would
indicate an extraordinary situation where a high degree of cautiousness has to be paid
while exploring this situation and its potential consequences; i.e. where the robot should
be in a „high alert“ state.

So, the use of an ART network for control would enable a a three-stage scheme of
adaptivity:

- on the one hand, we have individual strategies (each represented by one neuron of the
recognition layer) which have learned to adapt to a class of input patterns;

- the network provides switching from one strategy to another one in a quite simple
way;

- moreover, for extraordinary situations, considering a new, additional strategy is
possible.

We have pointed out that the ART network very flexibly enables the implementation of
new distiguishable decision classses. In the basic ART approach, however, it is left
open, how, as response to the input, a certain output pattern o, e.g. comprising control
signals, is to be generated.

Here we propose to adopt the solution used e.g. in counter-propagation networks [He88],
to utilize, after having completed the search for the winner neuron, the recognition layer
contents u, also for a matrix vector multiplication with an additional matrix, called here
the output pattern matrix OP (see Fig. 2):

n
oi= ∑ OPij * uj= OP ik (i=1, ..., n*),

j=1

k being the index of the winning neuron in F2, and n* the number of rows in matrix OP
(i.e. n* is the width of the control pattern output).
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Fig. 2 Extension by an associative memory
F1 comparison layer, F2 recognition layer, B bottom-up matrix, D top-down matrix,
Reset reset line, inp input vector; s, t, u,v generated vectors (see text); k winning neuron
of layer F2. Additionally the matrix–vector multiplication OP * u produces as result the
column vector OPk of matrix OP, thus providing output of a data pattern associated to
the winner neuron k of layer F2. That means the result vector o is just the column vector
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OPk of matrix OP. So, depending on the contents of the input vector inp (not via a
memory address !) the output pattern is accessed from the „memory“ OP, i.e. OP
functions like an associative memory.

To conclude, the ART network approach provides a promising strategy to implement
control schemes especially for autonomous systems, where dependability issues as well
as performance considerations can flexibly be combined in a balanced way. Of course,
beyond the general concept outlined here, several detail problem areas are still open for
further investigation, e.g

- efficient definition of the traning procedure for the matrix OP, to produce the contents
of the associative memory;

- extending or modifying the strategy sketched here, to cope with the modifications of
the basic ART network, mentioned in the literature.

For tackling such problems, we would welcome colleagues interested in this field, for
some future cooperation.

4 Conclusion

In this paper, the potential of adaptive resonance theory (ART) networks for
dependability issues has been discussed. The basic properties of ART architectures are
outlined, and some strategies are shown to enable a balanced combination of
performance and dependability requirements by these networks.
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Abstract: The use of autonomous systems, including cooperating agents, is

indispensable in certain fields of application. Nevertheless, the verification of

autonomous systems still represents a challenge due to lack of suitable modelling

languages and verification techniques. To address these difficulties, different

modelling languages allowing concurrency are compared. Coloured Petri Nets

(CPNs) are further analysed and illustrated by means of an example modelling

autonomous systems. Finally, some existing structural coverage concepts for Petri

Nets are presented and extended by further criteria tailored to the characteristics of

CPNs.

1 Introduction

For reasons of flexibility and time efficiency modern software-based applications tend to

decentralize the target functionality among a number of cooperating autonomous

subsystems. This results in highly decoupled system units and an increasing multiplicity

of interplay. Examples include mobile agents, as typical for robot applications.

In general, the term autonomy is taken to indicate entities (humans, populations or

technical systems) capable of providing themselves with their own laws. This includes

the moral responsibility of individuals for their actions, the self-government of human

populations, as well as the capacity of technical systems to make rational and informed

decisions.

The optimal degree of autonomy lies between the two extremes represented by fully

decoupled agents and fully central controllers. It relies on essential rules of co-existence

involving different communication patterns like the following ones:
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Separation of concerns: different agents may autonomously cooperate by carrying

out parallel individual and independent sub-tasks.

Synchronization: as soon as each independent sub-task has been separately and

autonomously concluded, a synchronization mechanism establishes appropriate

communication between the cooperating parts for the purpose of organizing the next

common activity.

Coordination: the communication of synchronized agents must be supported by a

coordination mechanism determining a consensus on how to proceed. Typically,

coordination tasks may be required to avoid or resolve conflicts due to concurrency,

e.g. by mutual exclusion in case of shared resources.

Delegation: for the purpose of carrying out a complex activity, a process may

delegate a sub-task to another process by invoking its support through synchronous

or asynchronous message passing.

Feedback: agents may mutually influence their local or global behaviour by

providing information on particular operating scenarios recently experienced, e.g.

information on road traffic exchanged among communicating vehicles. The degree

of influence exercised may depend on the amount and consistency of information

broadcasted or by the number of agents broadcasting it.

From the perspective of verification, one of the major challenges posed by autonomous

systems refers to their inherent lack of compositionality. In fact, understanding the local

behaviour of each individual system part does not suffice to comprehend all potential

implications on global behaviour. In other words, the classical verification strategy based

on separation of concerns provides only limited support here, as it does not allow for the

deduction of global properties by derivation or composition of local properties.

The observable emergent behaviour may reflect the intended target behaviour to be

achieved by cooperation, but sometimes it may also reveal as surprising, undesired, or

even unsafe by cascading of unpredicted side effects.

In order to model concurrent behaviour of cooperating autonomous systems capturing

the interaction patterns mentioned above, an appropriate modelling notation is to be

selected, capable of supporting both the representation and the analysis of the system

considered. As the observation and measurement of system behaviour in real situations

is crucial for testing autonomous systems, representative test scenarios have to be

derived from the modelling notation selected.

The rest of the article is structured as follows: in section 2 different modelling notations

are compared w.r.t. the considerations mentioned above. In section 3 CPNs are

introduced by illustrating their syntactical and semantical highlights. In section 4 a CPN

model of a system consisting of autonomous robots is introduced and illustrated in detail.

This example confirms the decision taken in favour of CPNs and emphasizes the value

of the corresponding modelling tool CPN Tools [JKW07]. In chapter 5 existing coverage

criteria for Petri Nets are presented before introducing novel coverage criteria explicitly

tailored to CPNs by focusing on token colours and on the occurrence of interleaving

events in the net.
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2 Comparison of Modelling Notations for Autonomous Systems

For the purpose of comparing different notations modelling autonomous systems, the

following evaluation criteria were considered:

Understandability concerns the clarity of a modelling representation, including the

availability of graphical visualization techniques.

Well-definedness ensures a unique interpretation of the underlying operational

semantics as offered by formal languages and required for the analyzability of

central properties like state reachability. A well-defined semantics is the basis for

tool support concerning the analysis of model data.

Scalability concerns the ease of widening the problem dimensions without

prohibitively increasing problem complexity and representational size.

Testability concerns the ease of capturing and visualizing the multiplicity of

behaviour by adequate coverage concepts and metrics; central to these activities are

tools supporting the editing, import and export of data.

In the light of the criteria mentioned above a number of well-known and widely used

modelling languages allowing for concurrent behaviour are compared in the following.

Process algebras like CCS [Mi80] or CSP [Ho78] provide a formal algebraic

description of model concurrency aspects capturing communication by explicit

algebraic send and receive operators.

UML activity diagrams provide a semi-formal, graphical representation of activity

flows which can be extended by dedicated profiles to include real-time concurrent

behaviour; among them are the profile "Schedulability, Performance and Time"

(SPT) [Om05], which allows for quantitative performance predictions, and its UML

2 successor "Modelling and Analysis of Real-Time and Embedded Systems"

(MARTE) [Om11].

Petri Nets [Mu89] formalize concurrent behaviour by graphical entities

representing actions (so-called transitions), as well as pre- and post-conditions (so-

called places). The fulfilment of conditions is represented by tokens marking

corresponding places. In this way, Petri Nets succeed in capturing the interactions of

autonomous systems by decentralizing the information referring to their states.

Coloured Petri Nets [JKW07] are an extension of Petri Nets allowing for the

refinement of pre- and post-conditions while supporting scalability by use of

different token types (so-called token colours). Details are presented in section 3.

Process algebras possess a well-defined algebraic theory making them adequate for static

analysis purposes. The lack of visual representation, however, does not offer sufficient

support to intuitive comprehension and graphical coverage concepts.

UML activity diagrams are widely used and provide an intuitive visualization of

concurrency aspects. They lack, however, a formal operational semantics [SH05], as

required by rigorous analysis techniques.
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Petri Nets are well suited for visualization and analysis purposes [Mu89]; unfortunately,

the decentralized representation of states by generic tokens may lead to an exponential

growth of places and transitions. In other words, their scalability may be severely

limited.

Compared to the other approaches, Coloured Petri Nets reveal as a promising candidate

for modelling autonomous systems: CPNs are based on a sound mathematical basis

resulting in unambiguous models that can be analyzed by simulation or formal

techniques. Furthermore, they benefit from the visual clarity of Petri Nets by sharing

their graphical elements, while overcoming the Petri Nets limitations concerning

scalability: in fact, the use of specific tokens supports a compact state representation. In

other words, when compared with Petri Nets CPNs offer higher scalability thanks to the

higher level of the language.

Consequently, CPNs are selected as a modelling notation to be further investigated.

3 Coloured Petri Nets

Coloured Petri Nets [Je94] differ from the original Petri Net notation by type-specific

tokens. Depending on the colour set associated with a particular token, this token may

assume different values denoted as the token colours. Additionally, transitions and arcs

can be annotated by conditional expressions controlling the transition firing. In more

detail, a CPN is a 9-tuple (P, T, A, , V, C, G, E, I), where

P denotes a finite set of nodes p P denoted as places;

T denotes a disjoint finite set of nodes t T denoted as transitions, i.e. P T = ;

A P T T P denotes a set of directed arcs connecting either places with

transitions or transitions with places;

denotes a finite set of non-empty sets denoted as colour sets; the elements of each

colour set are denoted as colours;

V denotes a finite set of variables, each varying over a colour set, i.e. type[v]

v V;

C: P denotes a function (the so-called colour function) attaching to each place p

P a colour set C(p) ; C(p)MS denotes the multi-set over C(p) where each colour

of the colour set C(p) may occur more than once;

G: T EXPV is a function attaching to each transition t T a guard, i.e. a

conditional expression G(t) over variables v V with type[G(t)] = Bool;

E: A EXPV is a function attaching to each arc a A an expression E(a) over

variables v V, with type[E(a)] C(p)MS, where p is a place connected with arc a;

I: P C(p)MS denotes a function attaching to each place p P a so-called initial

markingM(p) of type C(p)MS.

The dynamic behaviour of a CPN is given by state changes due to successive firings of

transitions.
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For a given transition t T a variable binding associates each variable occurring in at

least one input arc expression of t with one of the colours belonging to the colour set of

the corresponding input place(s).

A transition t T with input places pi and input arcs ai: pi t, i {1,…,k(t)} is enabled

w.r.t. a particular variable binding if and only if

the value of G(t) w.r.t. the given variable binding is true and

for each colour of an input place the colour multiplicity in the multi-set obtained by

evaluating the input arc expression E(ai) w.r.t. the given variable binding is not

higher than the number of tokens of the same colour in the corresponding input

place.

After firing a transition t w.r.t. an enabling variable binding, a new marking is obtained

from the previous marking by

removing from each input place as many tokens for each of its colours as indicated

by the colour multiplicity in the multi-set resulting by evaluating the corresponding

input arc expression w.r.t. the enabling variable binding;

adding to each output place as many tokens for each of its colours as indicated by

the colour multiplicity in the multi-set resulting by evaluating the corresponding

output arc expression w.r.t. the enabling variable binding.

4 The Robot Factory

In the following, a CPN model of an autonomous robot system is presented. The model

was built using CPN Tools [JKW07]. Net annotations are expressed in the language

CPN ML which extends the functional programming language SML [Mi97] by

additional constructs for defining the CPN elements presented above. As commonly used

in Petri Net visualizations, places and transitions are represented by circles and

rectangles respectively. Guards are encapsulated in square brackets, arc inscriptions are

annotated along the corresponding arcs and places are assigned corresponding colour

sets by cross products of pre-defined basic colour sets.
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Figure 1: CPN Model of the Robot Factory

The example depicts a factory where robots of type RB move from one area – a so-called

SEGMENT – to another one. A central controller sends orders (r, s, scurr) to the local

robot controllers where

r represents the robot addressed,

s represents the target segment of robot r, and

scurr represents the current location of robot r.

To limit the complexity of the example, the robots only move along narrow lanes and

obstacle passing manoeuvres are not included, thus limiting the robot behaviour to

forward movement. It should be noted that the central controller does not hinder system

autonomy, as it only provides the robots with orders, without dictating their behaviour

for fulfilling their missions. Robots autonomously check whether their way to the next

segment is free or blocked (modelled by transition look ahead). A robot can access this

information thanks to its sensors (e.g. by camera or laser techniques). The functioning of

the sensors is not explicitly modelled here, but could be easily included, e.g. by a

hierarchical design.
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For the purpose of deriving valuable test scenarios from the modelled CPN, the

necessary sensor data are simulated by the place blocked segments containing the local

knowledge of each robot about the segment lying ahead.

If the sensors of a robot detect a blockade, the information about the target segment and

the robot is logged in the place way blocked by maintaining a list of blockades for every

robot. Five continuously detected blockades of a certain robot trying to access a specific

segment raise an alarm (modelled by transition alarm). To ensure this, CPN Tools

allows to assign different priorities to transitions. The alarm was prioritized to avoid the

interference of other transitions resulting in a potential alarm delay. Raising an alarm

prevents any further transition from firing, requiring the intervention of a human

operator. If a blockade can be resolved before raising an alarm, the blockades are flushed

from the corresponding list. This is realized by the use of list colour sets in analogy to

abstract list data types in programming languages.

As soon as the way is not blocked by obstacles or other robots, a robot can move on

(modelled by transition go ahead) resulting in an update of its current location scurr.

If a robot eventually detects that its current segment position scurr equals its target

position s, the given order is completed (modelled by transition mission completed) and

logged.

The strength of modelling the behaviour of autonomous systems by CPNs lies in their

ability to capture a wide multiplicity of possible execution traces by a relatively compact

representation. This results in a flexible format that can be easily adapted to application-

specific scenarios by changing the configuration of the CPNs (e.g. by varying the

number of segments or robots).

Possible execution traces regarding an initial net marking can be statically analyzed by

exploring the reachability graph [Je94] or dynamically analyzed w.r.t. different test

coverage criteria, as presented in the next chapter.

5 Testing Coverage Criteria for CPNs

Several CPN coverage criteria can be defined to determine appropriate scenarios during

testing. For example, [ZH00] and [ZH02] introduce a number of coverage criteria

originally defined for Predicate-Transition Petri Nets [GL81] which inspired the

following classes of CPN testing criteria.

Transition-based coverage criteria focus on the occurrences of transition firings,

requiring individual transition firings as well as sequences of transition firings of

given length.

State-based coverage criteria focus on individual states or on state representatives

of pre-defined state classes.
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Flow-based coverage criteria focus on the production or consumption of at least

one token (regardless of its colour) by individual transition firings or by sequences

of transition firings.

The above mentioned criteria can be extended to include the following coverage

demands concerning CPN-specific entities, namely colour sets and variable bindings.

Colour-based coverage criteria focus on the production or consumption of tokens

belonging to pre-defined colour sets.

Event-based coverage criteria focus on the individual or sequential occurrence of

CPN events, where an event is defined as a transition together with an enabling

variable binding.

The information needed to measure the coverage regarding the criteria presented above

can be extracted from models created in CPN Tools by the framework Access/CPN

[WK09] which permits to access the internal model data. It is planned to apply this

framework in order to generate test cases fulfilling the above mentioned CPN coverage

criteria by means of evolutionary techniques. Analogous approaches have already been

successfully applied to structural code coverage [OS06], to integration testing [SP10], as

well as to the filtering of operational experience for the purpose of reliability assessment

[Sö10].

6 Conclusion

This article compares different modelling notations in terms of their expressive power

and graphical support concerning structural testing of autonomous systems. The

comparative evaluation of a number of alternative notations resulted in the selection of

Coloured Petri Nets as the most promising option. As an example, a simple version of a

robot factory was modelled by a CPN illustrating the benefits offered by its high

scalability. Finally, a number of different CPN-based coverage criteria were introduced

which will provide the basis for future research focused on the automatic generation of

adequate testing scenarios.

Acknowledgement: It is gratefully acknowledged that part of the work reported was sponsored by

the European Union Research Programme ARTEMIS (Advanced Research and Technology for

Embedded Intelligence and Systems), project R3-COP (Resilient Reasoning Robotic Co-operating

Systems).

248

248



References

[GL81] Genrich, H. J.; Lautenbauch, K.: System Modelling with High-Level Petri

Nets. In: Theoretical Computer Science, Vol. 13, Issue 1. Elsevier, 1981; pp.

109-136.

[Ho78] Hoare, C. A. R.: Communicating Sequential Processes. In: Communications of

the ACM, Vol. 21, No. 8. ACM Digital Library, 1978; pp. 666-677.

[Je94] Jensen, K.: An Introduction to the Theoretical Aspects of Coloured Petri Nets.

In (de Bakker, J. W.; de Roever, W.-P.; Rozenberg, G. Eds.): A Decade of

Concurrency - Reflections and Perspectives, Proc. REX School/Symposium,

Noordwijkerhout, the Netherlands, 1993. Vol. LNCS 803, Springer-Verlag,

1994; pp. 230-272.

[JKW07] Jensen, K.; Kristensen, L. M.; Wells, L.: Coloured Petri Nets and CPN Tools

for Modelling and Validation of Concurrent Systems. In: International Journal

on Software Tools for Technology Transfer (STTT), Vol. 9, No. 3-4. Springer-

Verlag, 2007; pp. 213-254.

[Mi80] Milner, R.: A Calculus of Communicating Systems. Vol. LNCS 92, Springer-

Verlag, 1980.

[Mi97] Milner, R. et al.: The Definition of Standard ML (Revised). MIT Press, 1997.

[Mu89] Murata, T.: Petri Nets: Properties, Analysis and Applications. In: Proc. IEEE,

Vol. 77, No. 4. IEEE, 1989; pp. 541-580.

[Om05] Object Management Group: UML Profile for Schedulability, Performance and

Time Specification. Version 1.1, formal/05-01-02, 2005.

[Om11] Object Management Group: UML Profile for MARTE: Modeling and Analysis

of Real-Time Embedded Systems. Version 1.1, formal/2011-06-02, 2011.

[OS06] Oster, N.; Saglietti, F.: Automatic Test Data Generation by Multi-Objective

Optimisation. In (Górski, J. Ed.): Proc. 25th Int. Conf. on Computer Safety,

Reliability, and Security, SAFECOMP 2006, Gdanks, Poland, 2006. Vol.

LNCS 4166, Springer-Verlag, 2006; pp. 426-438.

[SH05] Störrle, H.; Hausmann, J. H.: Towards a Formal Semantics of UML 2.0

Activities. In (Liggesmeyer, P.; Pohl, K.; Goedicke, M. Eds.): Proc. Software

Engineering 2005, Essen, Germany, 2005. Vol. LNI 64, Köllen Verlag, 2005;

pp. 117-128.

[SP10] Saglietti, F.; Pinte, F.: Automated Unit and Integration Testing for Component-

based Software Systems. In: Proc. Workshop on Dependability and Security

for Resource Constrained Embedded Systems (D&S4RCES’10), Vienna,

Austria, 2010. ACM Digital Library, 2010.

249

249



[Sö10] Söhnlein, S. et al.: Software Reliability Assessment based on the Evaluation of

Operational Experience. In (Müller-Clostermann, B.; Echtle, K.; Rathgeb, E. P.

Eds.): Proc. 15th International GI/ITG Conference on Measurement,

Modelling, and Evaluation of Computing Systems and Dependability in Fault

Tolerance, MMB&DFT 2010, Essen, Germany, 2010. Vol. LNCS 5987,

Springer-Verlag, 2010; pp. 24-38.

[WK09] Westergaard, M.; Kristensen, L. M.: The Access/CPN Framework: A Tool for

Interacting with the CPN Tools Simulator. In (Franceschinis, G.; Wolf, K.

Eds.): Proc. 30th Int. Conf. on Applications and Theory of Petri Nets, PETRI

NETS 2009, Paris, France, 2009. Vol. LNCS 5606, Springer-Verlag, 2009; pp.

313-322.

[ZH00] Zhu, H.; He, X.: A Theory of Testing High Level Petri Nets. In (Feng, Y.;

Notkin, D.; Gaudel, M.-C. Eds.): Proc. 16th Int. Conf. on Software - Theory

and Practice, IFIP World Computer Congress 2000, Beijing, China, 2000.

Publishing House of Electronics Industry, 2000; pp. 443-450.

[ZH02] Zhu, H.; He, X.: A Methodology of Testing High-Level Petri Nets. In:

Information and Software Technology, Vol. 44, No. 8. Elsevier, 2002; pp. 473-

489.

250

250



Hierarchical Self-repair in Heterogenous Multi-core

Systems by Means of a Software-based Reconfiguration

Sebastian Müller, Mario Schölzel, Heinrich Theodor Vierhaus

Institut für Informatik

BTU-Cottbus

Walther-Pauer-Str. 2

03046 Cottbus

{smuelle2 ⑤mas ⑤htv}@informatik.tu-cottbus.de

Abstract: This paper deals with the problem of a software-based self-repair in a stati-
cally scheduled multi-core system in the presence of permanent faults. The basic idea
is to adapt the application in a way that the use of faulty components is avoided. This
goal is achieved by re-compiling the program-code via an off-line repair process in
the field. The repair process is organized in a hierarchical manner. At the beginning
a local repair is applied considering only one core. If the local repair fails, a retry at
a higher system-level is performed. For that purpose, the local repair techniques are
re-used in a global context. The repair at a global system level results in some specific
system constraints and properties, which are investigated in this work. Due to the use
of pure software-based methods one gains the possibility to repair defects in different
components (even multi errors) or defects in spare components. The presented ap-
proach is not bounded to a concrete architecture and is therefore adaptable to systems
like MPSoCs or NoCs, if these systems provide some basic functionality.

1 Introduction

The on-going downscaling of the feature-size for integrated circuits (currently 32nm) pro-

vides the possibility to combine a higher amount of transistors with a decreased switching

time and a decreased energy consumption. But these positive effects also come along with

negative ones, e.g. a higher vulnerability to faults and early life failures due to wear-out

effects. The reasons are, on the one hand, higher stress density [BGM04] and, on the

other hand, deviations in the production [MG04]. To lower the production costs and to

guarantee certain emergency properties it is necessary to develop fault tolerant systems,

which can cope with such permanent faults. Due to the possibility of integrating an in-

creasing amount of transistor in an steadily decreasing chip area, we can observe the trend

to multi-core systems [OH05]. To design such systems as fault tolerant, it can be helpful

to combine techniques, which were developed isolated, in a hierarchical approach.

Statically scheduled VLIW-processors (very long instruction word) are easily scalable and

therefore well adaptable to different requirements of certain applications. In addition, they

provide a feasible degree of performance, due to the super-scalar architecture, for signal-
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and video-processing in an automotive or avionic environment. A crucial advantage of a

VLIW-architecture is the small controlling logic. In contrast, the control logic in dynam-

ically scheduled processors makes up a major portion of the overall gate count. These

dynamic scheduled processors are therefore hardly to repair.

2 Related Work

In the past decades, several hardware-based as well as software-based self-repair ap-

proaches have been proposed for processor based systems. An established approach is

the re-configuration of a FPGA in the presence of permanent defects [MHS+04]. In

[MHS+04] the re-configuration is done by a micro-controller which is implemented in

a second FPGA. The disadvantage of this approach is the increase of the necessary mem-

ory size (configuration data) and the fact that an FPGA-implementation, in contrast to an

ASIC-implementation, tends to have a higher consumption of area and energy.

To replace logic blocks in non-FPGA systems it is possible to use switches, which can

shutdown blocks and activates spare-blocks [KSV09]. Such an approach is only feasibly

for large logic blocks, since the administration of the repair requires additional hardware

which is error prone itself. To gain an actual improvement of such a fault-tolerant system,

it is necessary that the portion of the administrative logic is relatively small compared with

the overall chip area [KV11].

There exist other approaches, which focus on a software-based self-repair. In [KKP00] it

is proposed to calculate all necessary schedules for every fault situation in advance. These

schedules are stored in the memory and the appropriate schedule is executed at run-time,

according to the detected faults. The obvious disadvantage of this method is the extra cost

in memory for storing all these additional schedules.

Another approach is presented in [MS08]. It is proposed to implement most of the hard-

ware operations in a software routine. If an operator is defective, its function is assumed by

the associated software implementation. In case of an error the performance degradation

might be substantial due the overhead of the implementation in software.

The presented solutions so far are all bounded to the repair of at least one single core

or only a few components in a single core. But just with the upcoming of multi-core

systems further techniques for handling permanent faults in such an environment have

been proposed. In [ARJS07] and [RS08] similar approaches are presented. The idea is

that a defective core can borrow resources from other cores in the system; e.g. a core

C1 can use the execution stage of a different core C2 to finish the execution of one of its

operations. The major disadvantage of this approach can be found in the administration.

For this purpose it is necessary to extend the control logic and to enlarge the connection

between the cores.

There exist further publications, in which the repair of permanent faults is done with the

help of virtualization in homogenous multi-core systems [Jos06, CASP10]. In [Jos06] a

hypervisor is introduced between the hardware and the operating system. The hypervi-

sor can e.g. emulate operators in software, and it can shift threads from a faulty core to
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a non-fault one. In [CASP10] an additional layer is introduced, which maps defective

components of a certain core to a fault-free core.

All these methods are bounded to homogenous multi-core processors. Moreover, all the

presented methods have a low system performance in case that an error is present. This

performance degradation arises from the virtualization and therefore an additional runtime

due to the necessary software layers.

3 Description of the Basic System

The multi-core system, depicted in fig. 1, consists of several VLIW-Processors, the nec-

essary program memories, one common used data memory, and a connection network.

All components are clocked synchronous via a global clock. The processors can be het-

erogeneous, if they belong to a family of processors. To every processor Ci exists one

program memory Pi. The cores are not connected directly to their ROM. Instead, they are

connected to the connection network, which implements the external interface for every

processor. Via the connection network every access to the program and data memories is

handled as well as the communication between the cores. The controller of the connection

network guarantees a mutual exclusion regarding the access to resources of the system.

VLIW 1

(Core)

ROM 1

VLIW 2

(Core)

ROM 2

VLIW n

(Core)

ROM n

Spare-

Core

Spare-

ROM

Connection network

I/O-Network

Shared

memory

...

...

Figure 1: Scalable MPSoC with several cores, ROMs and one shared memory

A single VLIW-core has no information about the global design of the system. Every core

addresses a local program memory and a common used data memory, which seems to be

exclusive for every core. Furthermore, there are I/O-ports available for every core to com-

municate with external components. The cores are implemented in a VLIW-architecture.

The advantage of such an architecture is its scalability. With such architecture a varying

range of several heterogeneous systems can be configured in an easy manner. A VLIW-

core consists typically of multiple execution slots. The calculation in one slot is done

253

253



by an FU (functional unit), whereas those can perform different operations. A statically

scheduled instruction word controls in every cycle, which operation is calculated in which

slot. There is no dynamic scheduling within the processor. The scheduling is done at the

compile time of the system. The given processor has a 4-stage pipeline (FE, DE, EXE and

WB) as well as a bypass network to avoid hazards.

In the program memory of every core exists a program for a self-test. The software-based

self-test is executed at the system start-up or during short breaks of the system runtime.

Even the spare cores executes this self-test. The results of the self-test are stored in a

dedicated part of the data memory. In the presence of any error an appropriate self-repair

routine is executed. The self-repair is software-based and can cover local repair techniques

as well as global ones. The major goal of the repair is to re-configure the application in a

way that the use of faulty components is avoided.

4 Local Software-based Self-repair

This section presents two repairing techniques which can be applied as a local repair in

a VLIW processor. The first method implements a re-binding, whereas the second one

executes a re-scheduling based on entire basic blocks. Both techniques re-configure the

application to avoid the use of defective components. This adaption is done as an off-line

repair, and the repair process itself is a pure software-based solution.

The software-based re-binding, developed in [Sch09, SM10], binds the operations of an

instruction word to a different hardware resource in the case that the original binding plans

the use of a defective component. The algorithm iterates over the program memory and

transfers in every step initially one instruction into the data memory. After that, every

operation is bound to an unused non-defective resource. Then the new created instruction

word replaces the old instruction in the program memory. The software-based re-binding

is a fast technique in respect to the execution time, which can only handle single cycle

operations.

A more powerful technique is called Scoreboarding, which can handle multi-errors for

any number of components. The method is described in detail in [SM10]. The basic

idea is the following. The program code of an application is re-compiled stepwise at the

granularity of basic blocks. The algorithm transfers at the beginning an entire basic block

from the program memory into the data memory. The machine code is then inserted into

a priority list. Based on the priority list, a re-scheduling is executed, which generates a

new schedule for the basic block. For re-scheduling a simple list-scheduling algorithm

is used. The schedule is converted into machine code and written back into the program

memory, where it replaces the old machine code. The Scoreboarding algorithm takes into

account that several components can be faulty. Due to that a fine grained repair of the

system is possible with this technique. The repairable defects can be located in different

system components like single operators, FUs, register of the pipeline, regular registers or

read- and write-ports. The presented method is a pure software-based technique, which is

executed at the system start-up.
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5 Global Self-repair

If a repair at the local level fails, the next objective is to apply a global repair strategy.

A local repair can fail, if there are too many defects present or if a critical component

(e.g. all components of the control path) fails. This can lead to severe problems during the

repair process. A first scenario could be that the repair algorithm is not able to determine a

valid schedule. In another scenario, it is possible that the software-based self-repair itself

is not correctly executable. This problem can arise if the repair algorithm uses a defective

component (e.g. a faulty branch unit). In the first case, a spare core Cs shall overtake

the task of the defective core. In the latter case it is sufficient to execute an appropriate

repair algorithm, which does not use any defective component. This can be achieved by

e.g. repairing the repair algorithm itself.

Case 1: Compilation to a spare core

Figure 2 shows the corresponding process for the global repair strategy. In this example it

is assumed that core Cx is faulty and its task shall be overtaken by core Cs. To achieve this

it is necessary to transfer all relevant parts of the program memory of Cx into the memory

of Cs. Meanwhile it is possible to replace the program code of Cx with nop instructions,

so that Cx is denied from any writing access to system resources. Due to the fact that Cx

might differ in its architecture from Cs, it can be necessary to adapt the program code to

the architecture of Cs. For that the scheduling method, which was described in the last

chapter, will be applied. With the help of the Scoreboarding algorithm the application of

Cx is re-compiled to the architecture of Cs, whereas the algorithm consideres parameters

like FU amount and operator configuration. After completing the re-compilation of the

application the repair process is done and the regular system execution can be started.

ROM Cx

Repair

alogrithm

Application

ROM Cspare

Core

Cx

Core

Cspare

NOP

NOP

. . .

Copy entire ROM

from Cx to Cspare

Interconnect

ROM Cx

Repair

algorithm

Application

ROM Cspare

Core

Cx

Core

Cspare

NOP

Interconnect

Overwrite Cx with

NOP-operations

Re-scheduling to adapt

the code to Cspare

(a) (b)

Figure 2: (a) Transferring the program code from Cx into the ROM of Cs; (b) Overwriting the ROM
of Cx with NOP-Instructions and adapting the program code to Cs

Case 2: Repair of the Repair Algorithm

This section presents two strategies of how a repair algorithm can be adapted to a certain

defect situation. The first method adapts the program code of the repair algorithm at the
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compile time of the system. In comparison, a second method will execute the adaption in

the field as a off-line repair procedure.

In the first approach the decision, which version of a repair algorithm has to be executed, is

based on differently compiled versions of this algorithm. At system compile time, several

versions vi of the same algorithm are generated. Every version vi uses only operators of

an corresponding FU fi. As long as there exist on fault-free FU fj in the datapath, it also

exists a working version vj of the repair algorithm. An external core Ce can determine

at repair time an appropriate algorithm version, based on the results of the self-test. After

determining a version v, it is necessary to start the execution of v on the defective core.

To do so Ce manipulates a jump instruction in a way that the target of the instruction is

the start address of v. Figure 3 shows the procedure of launching an appropriate algorithm

version.

Core CM

I/O

sub system

ROM Px

jmp 0xA70x00

algorithm

version 1

changing the

initial jump target

to e.g. 0xF0

algorithm

version n

0xA7

0xF0

. . .

Figure 3: Launching an appropriate algorithm version by changing a jump address

In the second alternative, we propose to adapt the repair algorithm in the field in an off-

line repair process. The advantage is that no additional schedules have to be stored in the

memory. This approach is especially effective, if defects in the regular registers or the

read- and write-ports of the register file can occur. In such a case, it is not practicable

to calculate several schedules in advance for all possible combinations of faults. For that

purpose it is more feasible to adapt the local repair algorithm in the field to the current fault

situation. Thereby the procedure is quit similar to the procedure in the first alternative. The

difference is that no spare core is necessary, and instead only the repair algorithm in the

ROM of a defective core Cx is changed. The residue application of Cx is self-repaired by

Cx after its repair algorithm is re-compiled. To support this repair strategy, it is helpful to

compile the local repair algorithm only with a few or even with no parallelism at instruction

word level. This can be done by the compiler at the compile time of the system.

6 Extension of the System

The proposed repair strategy has some consequences, which affect the system architecture.

The first issue to mention is that it is necessary to organize and administrate the repair in

an appropriate manner. A next important point is that the requirements concerning the
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connection network has changed; e.g. access to the program memories. Other points are

the extensions regarding the spare core and creating necessary meta-data for supporting

the repair. These meta-data can be generated and gathered during the compile time of the

system.

6.1 Organisation and Administration of the Repair

The system start-up is divided into two phases. At the end of a phase, every core has to be

in a valid state. In the first phase, every core (even spare cores) execute a software-based

self-test followed by a local software-based self-repair if necessary. At the end of every sub

phase, the result (e.g. fault detected, repair successful) is written into the shared memory.

For coordinating the organisation and administration of the repair, a designated core of the

system (referenced as CM ) is determined. The core which finishes first successfully the

first phase of the system start-up declares itself as master core CM . After that CM informs

the other cores about this fact via the shared program variable mID. The evaluation of all

of the results generated in the first phase is done by CM . The possible situations are the

following:

• Case 1: No defects respectivle successfully repaired

• Case 2: One or more cores are faulty but not repaired yet (Repair failed or did not

stop)

• Case 3: One or more cores are without result (Self-test did not stop)

After determining the master CM , the second phase is started. First of all CM waits until

the necessary execution time of the several self-tests is over. Thereafter CM knows if a

local self-repair is executed and waits for the end of it as well. Now CM can determine,

which of the latter described cases is present. If case one is present, the regular system

execution can be started. The other two cases will be handled as follows:

Case 2:

In this case a faulty core Cx could successfully determine its fault situation. However, the

local repair was not able to generate a valid schedule. CM determines, based on the results

in the shared memory, that the execution of the self-test was finished successfully, but that

the self-repair failed. There are two reasons why a local self-repair might fail:

• 1. If the local self-repair algorithm uses defective components it can not be executed

correctly. Therefore the repair algorithm might not stop (e.g. defective branch unit)

or it calculates wrong results (e.g. defect in a register).

• 2. Due to many faults or a lack of resources, it is not possible to determine a valid

schedule. A possible scenario might be that all operators of a certain type are faulty.

In certain circumstances it is also thinkable that undetected errors influence the re-

pair algorithm.
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CM can in the first case adapt the local repair algorithm with the strategy described in

case 2 of the global repair. After that Cx could re-executed the local repair algorithm with

the appropriate algorithm. Alternatively CM can execute the local repair and re-schedule

the application of Cx. As already mentioned, the second strategy is useful, if registers are

faulty.

In the second case, core Cx has to be replaced by a spare core due to many or critical faults.

It is assumed that undetected errors can occur. Therefore an external software-based test is

executed to re-investigate Cx for undetected errors before a spare core is used in the end.

If any differences between the results are identified, the self-repair is re-executed with the

new information.

The last thing to mention is how CM can decide whether a local repair algorithm uses a

faulty component or not. It would normally imply that every instruction word has to be

checked for a certain binding to a faulty component. As solution it is proposed that the

compiler (at system compile time) compiles the algorithm in a way that only the first slot

is used. If a fault in the first slot is present, CM now knows that the local repair algorithm

is not executable. A similar agreement can be made regarding the registers by declaring a

fixed range of register as usable.

Case 3:

In this case, no result of the self-test of core Cx is present. CM can check this by evaluating

the shared memory. In this scenario CM externally re-tests Cx. After that Cx will be

repaired with respect to the detected faults. This can be done externally or locally. It is

marked that Cx has been successfully tested. If now a repair fails, the situation changes

into the second case, which was discussed before.

6.2 Requirements for the Connection Network

The access to the program memories is managed by the connection network. Every core

can communicate with the connection network via certain I/O-ports. Three different ports

are necessary. The first port specifies the address in the program memory, the second

port declares the address in the data memory, and the third port specifies the required

command word. In the command word is the access mode (read or write) and the target

core coded. The connection network ensures a mutual exclusion during the access to the

program memories. Every core, which requests a further access during a granted access,

will be set into a stall-mode.

During system start-up no write access to the program memories will be granted by the

network. Therefore it is avoided that a faulty core accidently writes to system resources.

At the global system repair phase, write access has to be explicitly activated by sending a

certain command via an I/O-port to the controller of the connection network.

In the last section it was described how the core CM is determined. After CM has declared

it self as master, this fact is communicated to the other cores via the global variable mID.

The access to this variable has to take place exclusively. Therefore the system is extended

with a global instrument for synchronisation. To do so, a dedicated port pm is declared,
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which has to be accessed before an access to mID is issued. The synchronisation via

port pm is managed by the controller of the connection network. After an access to pm,

no further access will be granted for the next 10 clock cycles. If the controller registers a

further access within this 10 cycles, the corresponding core will be stalled.

6.3 Metadata for the Administration

For coordinating the repair, it is necessary to provide some information about the system

to the core CM . These data are stored in a data structure, to which every core has access

during the runtime of the system. The necessary data are the amount and id of the cores, the

runtime of the self-tests, start addresses and size of the repair algorithm, memory address

of the self-test results, and addresses of the jump instructions into the local self-repair

routines. The determination of the metadata takes place at the compile time of the system.

This task can be done automated by the compiler. The runtimes of the local self-tests

can be determined by simulation and profiling of the algorithm. At the end, all data are

gathered in one data structure. This data structure is stored in the shared memory.

7 Results

The presented multi-core system has been implemented in VHDL (and synthesized) and,

furthermore, a scalable multi-core simulation environment has been developed in C++.

The simulator emulates for every VLIW-core in the MPSoC one instruction set simulator.

The proposed software-based self-repair algorithms have been developed in assembler,

translated into binary code, and tested on the VDHL-model and in the simulation environ-

ment.

7.1 Synthese Results

Two VHDL-Implementations have been developed. The first implementation is the non

fault-tolerant system with four cores. In a next step this system was extended with a spare

core and the necessary functionality for our fault-tolerant strategies. Both systems were

synthesized using a 45nm library. The delay on the longest critical path amounts to 2.9 ns.

Therefore the resulting system clock is about 340 MHz. Table 1 shows additional results

of synthesise for some selected components and its area dimensions. The major portion

of the overall chip area belongs to the data path, whereas the control path makes up only

a few percent. This is the major advantage of such a VLIW-Architecture. The probability

that an error in the control path occurs, is decisively lower compared to the occurrence of

an error in the data path. Furthermore our repair strategy concentrates on components like

the FUs, registers and ports, which define the major part of the data path. The necessary

extensions of the connection network which are crucial for our software-based repair are,
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compared to the overall chip area, relatively small with only 2.8 percent. This is an another

advantage in contrast to a fault-tolerant hardware solution.

Table 1: Synthese results (relative area dimensions) of the original system (4 cores) and the fault-
tolerant system (4 + 1 cores) - values in Nand2-aquivalents

Component Original System Fault-tolerant System

MPSoC overall 92240 118510

Connection network 1274 2844

1 core 22869

1 slot 965

1 FU 748

Register file 14835

Control path 270

7.2 Runtime of the Software-based Re-binding

The following scenario (Case 2 of the global repair) presents the necessary execution time

of a global repair strategy if the local repair algorithm is adapted to the current fault situa-

tion. The program code of a core Cx is adapted by the help of a software-based Re-binding

executed on core CM . The code size, which has to be repaired, amounts to about 500 in-

struction words. The Re-binding algorithm reads in every step one instruction word from

the program memory, disassembles it, creates a new binding, assembles it, and overwrites

the old instruction word in the program memory with the newly created one. The neces-

sary overall execution time for repairing a single instruction word is 306 cycles. To adapt

the Scoreboarding algorithm (around 500 instruction words), the repair will need 0.72 ms

of execution time in respect to a system clock of 340 MHz.

7.3 System Reliability

Based on the synthesis results the overall system reliablity of the original system and the

fault-tolerant system has been determined. Figure 4 compares the reliabilities of both

systems against each other. The reliability was calculated in respect to a constant rate of

failure. For the calculation of the reliability of the original system, the reliabilities of the

four cores and the non-fault tolerant connection network have been used. For the fault-

tolerant system, the reliabilities of the spare core and of the extended connection network

were used. The fault-tolerant system is modelled as 4-out-of-5 system due to the fact

that a failing of an entire core can be tolerated. Figure 4 shows that the system with a

software-based repair (Rft) provides a higher system reliability then the original system.
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Figure 4: Overall system reliability of the original system (Rnon) and the fault-tolerant system (Rft)

8 Summary

We presented a fault-tolerant heterogeneous multi-core system. The applied repair strate-

gies are organized in a hierarchical manner, and the main focus lays on a software-based

self-repair. The proposed method abstracts from a certain architecture and can be em-

ployed on a varying set of platforms (MPSoCs, NoCs). A prototypical system has been

implemented and synthesized in VHDL. The results of the synthesis process were used

to determine the reliability of different system configurations. Further investigations have

been done with a scalable simulation environment.

The main advantage of combining different repair techniques in one hierarchical strategy

is that a local fine grained repair is possible as well as a repair at system level. A system

stays functional even if critical components of a core are faulty. Due to the hierarchical

approach the amount of critical components, which causes a total breakdown of a multi-

core system, is further reduced.
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Abstract: Manycore platforms with tens and even up to hundreds of processing cores
per chip are becoming a commercial reality and are subject of intensified research.
This concept paper describes work in progress on the applicability of HW supported
communication and processing virtualization on regular structured, tiled manycore ar-
chitectures for the benefit of improved fault tolerance against transient and permanent
perturbations. Temporarily unused, naturally redundant tiles are dynamically occu-
pied during run time via transparent task relocation. This means, the execution of a
task can pro-actively and transparently for the application be switched by distributed
system management and virtualization services from a tile, which is considered un-
reliable, to a more reliable tile. In order to support different requirements regarding
safety, timing integrity and minimized overhead for the relocation services, several
established strategies can be enacted by the system management. The migration pro-
tocol for signaling during run configuration and actual relocation allows migration
with minimal downtime and no communication loss. The actual migration is triggered
by a configurable threshold on critical system parameters on a per task basis.

1 Introduction

The growing transistor integration densities following Moore’s Law enabled manycore

platforms with tens and even up to hundreds of processing cores per chip. So-called tiled

architectures, where compute, IO and memory resources are structured in individual tiles

interconnected by a packet-based Network-on-Chip (NoC), are a particularly promising

set-up for scalable manycores (see Fig. 1 for a generic example of a tiled multicore). Ex-

isting implementations include Intel’s “Single-Chip Cloud Computer” (SCC) [GHKR11]

or the TILEPro100 platform by Tilera [Aga07], containing 24 and 100 tiles, respectively.

However, technological progress is not the only driver towards manycore architectures.

The trend is to consolidate multiple applications, each consisting of several tasks with indi-

vidual safety, security and real-time requirements onto a single shared processing platform.
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Figure 1: Generic tiled manycore architecture

Examples are sensor or media processing applications, augmented reality and robotic con-

trol or other recognition, mining and synthesis (RMS) applications [Dub05], all running

on the same multi-/manycore processing platform. Those applications have in common

that they require high performance and parallel execution.

The aforementioned platforms are subject to dependability issues as they favor latest tech-

nology implementation and 3D integration with increased potential error rates, either tran-

sient or permanent [B+04]. One example is stress by thermal hotspots resulting in in-

termittent errors in signal integrity or run time behavior (short term effects) as well as in

physical damages in form of transistor aging or even electromigration [NX06]. To guaran-

tee the operativeness of the applications, counter measures must be taken at all abstraction

levels of integrated circuit and system design.

In this concept paper, we propose to enhance regular structured manycore architectures

with HW supported processing and communication virtualization techniques in order to

increase the fault tolerance of the applications. This is centered around the dynamic re-use

of temporarily unused or weakly loaded tiles by transparent task relocation. The execution

of a task is switched over from a tile marked as unreliable to a more reliable tile as a

service by the underlying distributed system management. In order to support different

requirements regarding safety, timing integrity and minimal relocation overhead, several

established strategies can be enacted by the system management. tiles by

The remainder of the paper is structured as follows: In chapter 2 the platform with its

basic building blocks and supporting extensions for virtualization is described. Chapter 3

explains the different error and failure concepts on this platform and the protocols to signal

migration, triggered by task specific thresholds violations. The paper concludes with a

summary in chapter 4.

2 Tiled Manycore Platform

2.1 Basic Building Blocks

Fig. 2 depicts a common tiled manycore platform constructed from a limited set of building

blocks.
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Figure 2: Tiled manycore architecture in detail

Processing is performed in compute tiles, consisting in general of one or few small RISC

cores and local memory connected via a shared bus. Due to resource constraints and the

overall design decisions compute tiles only have small feature set. To avoid complex cache

coherence algorithms and synchronization, the basic runtime environment usually spans

only individual compute tiles. It provides SW tasks running on top of it with limited

services.

A NoC with router nodes and links acts as a generic communication infrastructure to con-

nect individual tiles. Every tile has at least one network adapter (NA) providing access to

the NoC. All interaction and data exchange between tiles is done via explicit communica-

tion, i.e. message passing, over the NoC. In order to prevent message loss or blockage in

case of broken NoC routers or links, the NoC has to flexibly provision alternative routes.

IO, e.g. network interfaces or high-speed links, is encapsulated in own tiles and can is

shared via the NoC by a large number of compute tiles. Memory resources are either on-

chip, dedicated SRAM based memory tiles, or for larger memory ranges, off-chip DDR

SDRAM modules accessible through memory controllers. Local memories within the

compute tiles, on-chip SRAM tiles and off-chip memory form the memory hierarchy of

the manycore.

The regular structure of such an architecture and the high number of available homoge-
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neous (compute) tiles enables approaches to enhance the reliability by using (temporarily)

unused tiles as fallback alternatives in case of failures and errors within the designated

tiles. In general, limiting factor is the static configuration/deployment of the architecture

and (up to now) missing methods and strategies to migrate tasks in a transparent way, i.e.

without modifications and side-effects for the tasks and their runtime environment.

2.2 Extensions for Virtualization

As tiled manycore architecture provide a consolidating environment for hundreds or even

thousands of tasks, those can have different requirements towards their running environ-

ments in terms of real-time, required operating system and performance/throughput. The

system needs to be provisioned, scheduled and partitioned for those concurrently running

tasks and environments.

Virtualization of the physical HW by a hypervisor or virtual machine monitor (VMM)

is an established concept for providing such a function ( [BDF+03], [Hei09]). Different

domains are running in separate virtual machines (VM). A domain can include a single

task with only a rudimentary operating system up to a complex general operating system

with several tasks. The underlying platform resources are shared and compartmentalized

by the hypervisor.

To avoid a single point of failure a hypervisor instance should be only controlling one or a

few cores ( [lin]) and communicate/coordinate with the the other hypervisor instances via

a distributed system management and their local slaves.

To reduce the overhead for processing virtualization and enhance compartmentalization

HW support for this is preferred. Similar approaches exist already for High Performance

Computing (HPC), e.g. VT-X on Intel CPUs [NSL+06] and can be scaled down for cores

in compute tiles. The explicit communication between compute, memory and IO tiles is

highly performance critical. Here, dedicated HW support is also required to eliminate

overhead otherwise occurring in software to provide virtualization for communication.

To avoid changes to the NoC and and enable re-use of existing implementation this HW

support should be added to the edges of it, i.e. within the network adapters in the tiles.

As NoC is is packet-based concepts from the HPC network and IO virtualization can be

adapted for this ([WSC+07]). IO tiles share the most resemblance to normal virtualized

network interfaces and therefore have an extensive virtual network interface controller

(VNIC). Virtual Network Adapter (VNA) for the compute tiles are a subset of the features

of VNIC as their have a only a limited number of connections to share and to service.

Fig. 3 highlights the differences between a common tiled manycore architecture and one

with virtualization extensions described above.

In order to achieve a performing and cost efficient realization for the VNIC/VNA entities,

NoC packet queues, caches for individual communication configurations and packet buffer

management should not be stored entirely in the respective entity. Although this would

be advantageous from throughout and real-time aspects it essentially duplicates memory

requirements. With the assumption that only a limited number of real-time and high-
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Figure 3: Tiled Manycore Architecture with virtualization extensions

priority connections are active at any point of time, it should be possible that a bounded

number of queues/caches/buffers can be shared between those connections in a dynamic

way [RWH10]. By managing those elements for real-time/high-priority tasks and for best-

effort tasks by scheduling and (de-)multiplexing the associated resources, different levels

of services can be provided (see Fig. 4.

Because of the incooperation of communication and processing virtualization it is now

possible have transparent task relocation. Furthermore, hypervisors with their small foot-

print provide a minimal trusted computing base and can be used to enhance overall relia-

bility even further via monitoring of runtime environments and their tasks [DKR08], via

check-pointing complete runtime environments or via loose-lock-stepping ([TSKM08],

[CLO+08]). This can be used to provide flexible (dual) modular redundancy for cores in

intra and inter tile scope but without requiring special or dedicated HW. Drawback is a

higher overhead due to handling it mostly in SW via hypervisor.

Results reported in the literature ([CCS10], [JRK10]) show only minimal downtimes dur-

ing live migration of complete operating systems in HPC environment. We expect that

for tightly integrated tiled manycores architecture with HW enablement for processing

and communication virtualization with only small runtime environments live migration

without communication data loss under real-time constraints should be possible.
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3 Error/Failure and Migration Handling

3.1 Classification

To decide if and when a task relocation is needed the components required for this task,

e.g. runtime system, compute tile, cores, NoC or IO, have to be categorized by their

operativeness. The following states are possible:

1. No Error, No Failure: The component is operating normally.

2. Some Errors, No Failure: The component is not operating error-free, but there is

no failure yet. Errors include parameters exceeding a defined threshold, e.g. a too

high temperature in a tile.

3. Significant Errors, No Failure: The component experiences errors over a defined

rate, but this still does not result in a failure.

4. Failure: There is a failure and the component’s behavior is corrupted.

The first three states can be handled by task relocation without information loss. The

last state requires additional mechanisms to return to a valid state. According to varying
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safety criticality and timeliness requirements, task relocation can be divided into different

strategies based on existing protection methods [VPD04].

• Cold Task Relocation: No alternative set-up has been configured. The system

management has to create this alternative from scratch. This involves reserving

compute tile resources and NoC routes and activating them. This approach does not

bind additional resources beforehand, but requires the most actions straight before

and during the relocation. See Fig. 5a) for an example involving tasks on a compute

tile processing IO data coming from an IO tile and and storing data on a memory

tile.

• Warm Task Relocation (1:1, N:1): An alternative set-up has been pre-configured.

The basic system and task are existing, but not running. The state of the task has be

transferred and the communication routes have to be activated. Overcommitting the

alternative compute tile for different tasks is possible. This strategy should provide

a good trade-off between increased reliability and utilized resources. See Fig. 5b)

for an example.

• Hot Task Relocation (1+1): An alternative location has been pre-configured and

is running. All communication is already up both for the original and alternative

location. In case of a relocation only the active setting is switched over. In this

variant the task itself can be allowed to trigger its relocation and inform the system

management afterwards to eliminate it from the critical decision path. Here, low

latency, minimal downtime and high fault tolerance is achieved with high resource

utilization. See Fig. 5c) for an example.

According to the criticality for an individual task, a particular strategy for task relocation is

pre-defined during design time and potentially pre-configured by the system management

during run time. This strategy is triggered when the task is under a dependability threat.

Sensors within the tiled manycore architecture monitor the components and report failures

and errors to the system management. This uses the aggregated information to generate

a model of the system. See chapter 3.2 for the triggering and chapter 3.3 for the used

protocol.

For cold and warm task relocation a chain of strategies can exist as to prior relocation of

other tasks the first fallback is already impossible. Set-ups must be constructed and chosen

carefully to prevent overload in the system in case of a migration.

A special case is task migration within a tile. This is only possible if this tile contains

two or more cores. Such a migration is preferred due to the limited configuration effort

in opposition to inter tile migration. No changes or reconfiguration other than within

the tile have to be performed and no complex migration protocol is required (see below).

Nevertheless, inter tile task migration is needed if the reason for the compute tile becoming

unreliable are errors or failures in required components, e.g. the shared bus. Another

reason is too strained resources in this tile to support a consolidation of all tasks on a

reduced number of cores. Furthermore, task migration to another tile can be required

because of errors and failures in the vicinity of the tile, e.g. existence of a thermal hotspot

or problems with routers or network adapters nearby.
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Figure 5: Task migration with different strategies a) cold task relocation, b) warm task relocation, c)
hot task relocation involving two tasks on a compute tile processing IO data coming from an IO tile
and and storing data on a memory tile
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3.2 Threshold-based Migration

In the system management a pre-set matrix for each task exists with its sensitivity to error

and failure states in a definable time slot and per individual components. Some tasks have

a high sensitivity to errors and failures in certain components because this will almost cer-

tainly lead to a failure of the task, e.g. a wrong timer value for a real-time task. Other tasks

are maybe more relaxed regarding errors or failures, for example small data corruption in

video input data for a object recognition task can be ignored due to the noise robustness.

This matrix is weighted with factors decided during design time and used in the decision

to relocate based on configurable threshold for this specific task. The criticality of the task

is accounted for in the weighting, i.e. highly critical tasks have high weighting factors.

The threshold is defined by the migration cost for this task. The relocation consists of

two factors: The cost for the actual migration operation (the amount of to be transferred

task data for this relocation between tiles in form of a memory snapshot, reconfiguration

overhead ) and the load increase of the system after migration in the new set-up (e.g. traffic

over more NoC links). If the actual value generated by errors and failures for the weighted

matrix is over the threshold the task relocation is triggered as configured by the respective

system management slave. This concept is visualized in Fig. 6. This approach goes beyond

Polze et. al [PTS11] which ignores the cost for migration and only triggers migration on a

failure prediction.

;+)1 3+/.

31+))&1

�/.'+)41 ",&

3*1&2*/,%
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Figure 6: Visualized migration trigger calculation with configurable threshold

3.3 Protocol for Migration Management

As migration management has to act in a timely fashion we propose to integrate the criti-

cal steps of it as dedicated HW blocks and queues into the VNA and VNIC modules. The

communication for the migration protocol has a higher priority and/or reserved commu-

nication resources in the NoC compared to the normal data communication. The system

management can pre-configure alternative (i.e. shadow) set-ups. Such a set-up consists of

a bundle of communication and processing configurations which have to exist for a task

deployment. By deactivating the old set-up and activating a new set-up a task migration is
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performed.

Each set-up has a global unique ID. This is used to locate the set-up (local memory in

a tile or in a memory tile, for example by a VNIC). Linked to a set-up is a list of all

involved tiles. Each tile has its own configuration linked to this set-up (e.g. the run time

and hypervisor parameters and memory address ranges).

If triggered by a task threshold violation the responsible system management slave (SMS)

initiates switching to the designated alternative set-up. The first step is writing the ID of the

old set-up to be purged and the ID of the new set-up replacing it to a special configuration

interface of the tile’s VNA. Receiving this write the VNA locks itself against other task

migration requests. It then transmits a request to VNAs and VNICs listed in the new set-up

informing about the activation initiation of the new set-up.

VNAs receiving this request are locking themselves, are acknowledging it by replying with

a response and are informing their respective SMS via notification. The SMS then starts

reconfiguring its tile resources for this new set-up. After successful reconfiguration it then

informs its VNA about it. The VNA sends then a second acknowledgment response to the

triggering VNA.

VNICs receiving this request are locking themselves and are acknowledging it by replying

with a response.

If all addressed VNAs and VNICs respond in a configurable time frame with all acknowl-

edgment responses the migration protocol continue with the deactivation initiation of the

old set-up by sending a request to the VNAs and VNICs listed in the old set-up. The VNAs

and VNICs receiving this request are acknowledging it by replying with a response and

locking themselves.

If all addressed VNAs and VNICs respond in a configurable time frame with the acknowl-

edgment the switching is performed (including a downtime for the task). In this stage also

running state information is exchanged in case of warm standby relocation.

The triggering VNA sends out a request for invalidating the old set-up. The addressed

VNAs reply with an acknowledge response and inform their SMS about it which will

then purge all related resources to the old set-up. For VNA which are both involved in

the new and old set-up incoming messages are buffered for the time being. Otherwise

communication is dropped.

VNICs involved reply with an acknowledgment response and if both active in the new and

old set-up buffer communication during this downtime and drop them otherwise.

By adding an individual timer value per VNA/VNIC allows a tasteful shutdown of com-

munication so that no communication will be dropped.

When receiving all the acknowledgment responses the triggering VNA sends out the ac-

tivation for the new set-up. All VNAs and VNICs are using directly the new set-up. If

communication is already incoming for a not yet activated set-up on a VNA or VNIC it is

buffered until activated.

Sending out the deactivation of the old set-up and activation of the new set-up can be be

done together if packet loss during the migration phase is acceptable.
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Further requests for a different task migration are denied with a negative response mes-

sage. Then the locking of the VNA/VNIC resource is acknowledged and also the system

management part for this VNA is informed. It performs the needed resource requirements

for task migration. If there is any time out or problem during the stages of the migration

protocol, e.g. a VNA is already blocked for different and still running migration the pro-

cess is stopped for now, the triggering VNA is informing all participant which roll back

possible configuration changes.

A sequence of set-ups is possible to prevent deadlocks due to resource constraints, e.g.

first a set-up is enacted to free up resources then the set-up for the actual task migration is

done. Parallel task relocations are possible as long they do not share tiles with VNAs and

VNIC to be reconfigured.

4 Summary

In this paper we have described how the regular structure of tiled manycore architectures

can be utilized to enhance dependability of applications running on it. With HW supported

communication and processing virtualization it is possible to migrate tasks transparent

within such a platform under real-time and performance constraints. Different task migra-

tion strategies can be used based on the required reliability level of its application. For

triggering the actual migration a threshold-based configuration on individual task basis is

proposed. This concept would allow to run dependable applications on a platform with

generally undependable components by preventing single points of failure, live substitu-

tion of failed components and virtual redundancy.
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Abstract: The Two-Way-Compiler is an approach to show the equivalence

between implemented source code and the generated binary program for safety-

related software. A compiler which translates a source code into a binary program

and restores the original source code out of the generated binary program exactly,

like a decompiler, is described. Data that are required to build the original source

code back again are especially examined in this paper. Some data are contained in

the binary itself and other data lost during compilation. The lost data have to be

collected and stored in the binary. With these additional data the decompiler can

restore the binary program to the original source code.

1 Introduction

An implemented source code has to be translated by a compiler into a binary to get an

executable program for safety-related systems. Frequently, the compiler is classified as

not trustable. Therefore, intensive tests of the binary program against the requirements

and the source code have to be performed. These tests are helpful to verify that the

compiler does exactly what it should do. IEC 61508-3 mentions this in the development

life cycle for software verification [IEC10]. A special test, which proves that the binary

program corresponds exactly to the implemented source code, is not explicitly shown in

this standard. But for the verification of safety-related software such a test is very

important.

To verify safety-related software, it would be helpful to be able to translate the binary

program back to its original representation. A simple comparison between the original

source code and the decompiled source code will be possible.
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A program that creates source code out of a binary program is called a decompiler. The

first decompiler that translates binary programs from second generation computers to

third generation computers was developed in the 1960s [Ha62]. In the following years,

the techniques of decompiling were further developed and used to porting programs

from one machine to another machine, to make documentation of assembler code, to

rescue lost source code and to modify binary programs [Ci94]. Today, many decompilers

are based on the phases of compilers and use identical techniques to analyze the input

[Em07]. They analyze the binary program by graph theory, translate it into an

intermediate representation and generate the source code. Control flow analysis and data

flow analysis are very important [Ci94]. Human readability also plays a fundamental

role [Ch10].

In some approaches the decompilers use assembler code [Sa66] or binary programs with

debug informations as input. These inputs contain additional data that simplify the

generation of the source code. There are symbolic informations about data segments,

types, subroutine names, entry points and exit statements [Ci94]. Other decompilers are

working on byte code like the java byte code [HD09]. Byte codes are executed by a

virtual machine and contain more informations than binary programs. There are

informations about data segments, types, method names, member names, entry points

and exit statements [Vi03].

But all known decompilers are only able to generate code into one direction: From the

binary program to the source code. They are working on the instructions of the binary

program. Only a functional equivalence between the binary program and the decompiled

source code can be achieved. In [PW93] such a decompiler is used to verify the

equivalence between a binary program and the implemented source code of safety-

related software. The decompiler translates the binary program and shows the functional

equivalence by formal methods. But to compare the original source code and the

decompiled source code they have to be translating both source codes into a formal

representation.

One of the main problems is that many data are lost during compiling. But these data are

required to restore the source code exactly. Therefore, this approach examines not only

the decompiler phases, but also the compiler phases to gather the data that are normally

lost.

Section 2 shows the symmetry between compilers and decompilers, while Section 3

gives an overview on this approach and describes the data that are required to restore the

original source code. Section 4 concludes this paper.
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2 Symmetry between a compiler and a decompiler

Modern compiler translates the source code in a binary program by a sequence of phases

[Ah06]. The lexical analysis read the source code and split it into meaningful sequences

called lexemes. For each lexeme it creates a token that contains the lexeme itself and an

identifier of the token type. The sequence of tokens is handled by the syntax analysis. If

it is possible to generate a syntax tree, the source code will be syntactical correct. The

semantic analysis does verifications about types and language specific characteristics

which cannot specify by a context free grammar. At the end of these frontend phases the

source code is presented as an intermediate representation. All required symbolic

informations are collected in the symbol table, which can access in every phase of the

compiler. Optimizations will be performed on the intermediate representation and on the

target code instructions before the binary program is generated.

Parser

Analysis

Code generation

Binary program

Source code

IR

IR

Compiler Decompiler

Code generation

Analysis

Decoder

Binary program

Source code

IR

IR

Figure 1: Symmetry between a compiler and a decompiler [Em07]

A decompiler generates the source code in a sequence of phases, too [Em07]. The

decoder reads the binary program and splits the instructions from the data. It analyzes

the control flow and the data flow and creates an intermediate representation of the

binary program. Machine specific constructs will be replaced by corresponding

constructs of higher programming languages and type informations are reconstructed.

Programming language specific constructs will be recovered from the intermediate

representation and the source code is generated.

Emmerik describes the symmetry between a compiler and a decompiler and consisders

the similar techniques in the phases [Em07]. Figure 1 gives a short overview of the

symmetry between a compiler and a decompiler. It shows that the decompiler is an

inverse of a compiler.
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3 Approach

In this approach the compiling and decompiling are considered together. Each phase of

compilation has to be covered by a phase of decompilation. The symmetry between a

compiler and a decompiler is the starting point of this approach. In contrast to a

conventional compiler, the details of structure and format of the source code are not

allowed to get lost during compile time. They have to be collected and stored in the

binary program itself. Using this additional data, the original source code is

reproducible.

Source code

Parser

Analysis

Code generation

Binary program

Decoder

Analysis

Code generation

Source code

Verification

Output

Figure 2: V-Model of the Two-Way-Compiler

3.1 Compiler phases

The compiler phases are used to transform a given source code to an executable binary

program, which can be restored to the original source code back again. Figure 3 shows a

simplified scheme of the compiler phases.

The lexical analysis reads the source code and generates a sequence of tokens. Normally,

whitespaces and comments are ignored at this point of compilation. This approach uses

an ignore list in addition to the symbol table. The ignore list collects all the ignored

lexemes and their beginning positions. The syntax analysis works on a context free

grammar and parses the token sequence into an abstract syntax tree. Special tokens that

are lost during this phase are collected in the ignore list, too. The semantic analysis does

type checking and fill the symbol table. It collects symbol informations like variable

names and function names. Each entry holds the token informations and a data type at

the end of this phase.

After the front end has collected the required data, the abstract syntax tree is transformed

into a SSA form. This intermediate representation is used by many compilers [Cy89] and

is qualified for decompilers, too [Em07]. The mapping between nodes in the abstract

syntax tree and the SSA statements has to be reversible. Currently, there are not

considered optimizations in this approach.
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The back end generates the binary program out of the SSA form. In this approach the

selection of target code instructions is very important, because the sequence of

instructions has to identify the SSA form during the decompilation. Addresses for

variables in the data sections are calculated and added to the corresponding symbol in

the symbol table. The addresses of function entry points in the code sections are added to

the symbol table, too. At least the binary is build and gets two additional sections. The

first one contains the data from the ignore list and the second one holds the data from the

symbol table.

The result of the compiler phases is an executable binary program that contains

additional informations to restore the original source code back again. These

informations are explicit collected data and informations contained in the structure of the

binary program.

c = a + 3;

t1 := a + 3

c := t1

move.l 0x0 d1

addi.l #3, d1

move.l d1, 0x20

2239 0000 0000

0681 0000 0003

23c1 0000 0020

=

c +

3a

Source code

Abstract syntax tree

Intermediate representation

Target code instructions

Binary

42:
44: ; Ignore table

a: int: 0x0
c: int: 0x20 Symbol table

Figure 3: Simplified compiling scheme

3.2 Informations in binary programs

There are informations that can be gained from the binary program itself. These data can

be evaluated by control flow and data flow analysis and this is also done by many

decompilers [Vi03]. Control flow analysis [Al70] and data flow analysis [Ki73] are well

known techniques and used for optimizations in a compiler, normally. Control structures,

functions, function calls, operators and variables can be identified by using these

techniques. The special selection of the target code instructions, the knowing of the

programming language grammar and the knowledge of the mapping between the

different representations make it possible to identify these informations and restore the

corresponding lexemes in this approach.
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To restore the exact source code, it is important that the compiler does not perform any

optimizations in any phase. Optimizations would change the control flow and the data

flow [SS08]. After optimizations the sequences of target instructions are modified. Thus,

the decompiled control structures of the source code would not be the same as in the

original source code. The reliability is more important than highly optimized programs

in safety-related software. So, this restriction can be accepted for the compiler in this

approach.

3.3 Lost data

Normally, many data are lost during the compiling process. In this approach these data

are collected in every single phase of the compiling. The compiler saves whitespaces,

formatting and comments of the source code in their ignore list during the lexical

analysis. The names of functions and variables are lost, too. These data are collected in

the symbol table of the compiler. In addition to the identifiers, the symbol table collects

the memory addresses and the data types of the variables and functions. Typically,

tokens like brackets are lost in the syntax analysis. These tokens are not in the abstract

syntax tree and have to be stored in the ignore list, too. For example, this is necessary to

restore arithmetical expressions that contain brackets exactly.

All collected data have to be included in two separate sections at the end of the binary

program. The data from the symbol table and the informations of the ignore list are

stored in these sections. Both sections are enclosed by special section markers to identify

these sections during decompilation. To reduce storage space, the additional data

sections are compressed and protected by a checksum.

3.4 Decompiler phases

The decompiler phases are used to restore the original source code out of the generated

binary program exactly. Only binary programs can be handled that are generated from

the compiler in this approach. Figure 4 shows a simplified scheme of the decompiler

phases.

The decoding phase of the decompiler reads the binary program and separate instructions

from the data. It identifies the symbol table section and the ignore table section. After

decompressing these sections, the ignore list and the symbol table are filled with the

existing data. The data from the restored symbol table and the restored ignore list are

required in the following phases.
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Because the decompiler has the same informations of the programming language

grammar and the target code specification as the compiler, it knows the sequences of

instructions and their parameters. Each identified sequence is transformed into the SSA

form. The variable names and function names are obtained by the memory addresses and

the data from the symbol table which were restored from the binary program. The

symbol table contains the data types for variables, function parameters and function

return values. It contains the names for variables and functions, too. After the

transformation from the binary program to the intermediate representation, the control

structures of higher programming languages are restored. The knowing of the

programming language grammar and the knowledge of the mapping between the

different representations makes it possible. A check for the syntax of the control

structures are performed by transforming the SSA form into an abstract syntax tree. The

syntax is correct, if the abstract syntax tree can be generated.

c = a + 3;

t1 := a + 3

c := t1

=

c +

3a

Source code

Abstract syntax tree

Intermediate representation

Target code instructions

Binary

42:
44: ; Ignore table

a: int: 0x0
c: int: 0x20 Symbol table

2239 0000 0000

0681 0000 0003

23c1 0000 0020

move.l 0x0 d1

addi.l #3, d1

move.l d1, 0x20

Figure 4: Simplified decompiling scheme

In the last phase the informations from the ignore list are used to restore the formatting

and comments. The decompiler iterates the control structures and compares the positions

in the ignore list. If the position is valid, it appends the ignored data to the decompiled

source code. Inconsistent positions indicate an error during the decompilation. The

decompiler uses the informations in the knowing programming language grammar to

restore the identifiers for operators and control statements.

The result of the decompiler phases is the source code for the binary program that is the

same as the original source code. It can be used to compare the decompiled source code

with the original source code and shows the equivalence between the binary program

and the source code.
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4 Conclusion

This approach makes it possible to translate a source code into a binary program and

back again. Through the simultaneous consideration of the compiler and the decompiler,

as well as appending additional data to the binary program, it is possible to produce the

original source code out of the binary program exactly.

One limitation of this approach is that no optimizations are done during compile time.

This can be accepted, because the focus lies on safety-related software. A further

disadvantage is the increased storage space of the generated binary program, which is

created by the additional data.

However, the main advantage is that the verification between source code and binary

program can be performed by a simple comparison between the original source code and

the decompiled source code.
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Abstract: Die wirtschaftliche Bedeutung der Wiederverwendung von Komponen-

ten ist evident: Je öfter eine bereits fertig gestellte Komponente in verschiedenen

Systemen (wieder) verwendet wird, desto mehr wird an Herstellungskosten ge-

spart. Bei aller Wirtschaftlichkeit darf jedoch nicht vergessen werden, dass die

Verlässlichkeit einer Komponente vielfach von dem Verwendungszweck und dem

Kontext abhängt, in dem diese Komponente (wieder) eingesetzt wird. Dieser Bei-

trag gibt einen Überblick über Normungsvorhaben bzgl. Anforderungen und Tests

zur Sicherung der Verlässlichkeit bei Wiederverwendung bereits benutzter Hard-

ware- und Software-Komponenten. Das Ziel ist, eine breite Diskussion zu initiie-

ren und damit eine höhere Sensibilität für diesen Bereich zu schaffen.

1 Einleitung und Motivation

Bei physikalisch verschleißbaren Komponenten, z.B. in der Elektro-Industrie, ist die

Wiederverwendung gebrauchter Komponenten in neuen Produkten noch immer ein

heikles Thema, was leicht verständlich ist: Wenn Ihnen jemand ein neues Gerät „unter

Verwendung von neuwertigen Teilen“ als neu verkaufen möchte, würden Sie es kaufen?

Sie zögern? Tatsächlich gelangen jedoch immer mehr Geräte samt ihren neuwertigen

Komponenten in den Abfallstrom, die noch weitere „Leben“ haben könnten. Zum Glück

wurde das immens große Nutzungspotential der Wiederverwendung zur Schonung unse-

rer Umwelt bereits erkannt und wird auch, allerdings im Augenblick noch von nur eini-

gen wenigen Anbietern, genutzt, beispielsweise von Herstellern der Kopier- und Medi-

zingeräten. Jüngere Industrie- und Rechtsnormen auf nationaler und europäischer Ebene

haben zum Ziel, dieses Potential im großen Stil besser auszunutzen, unter Beachtung

legaler, ökologischer und Verlässlichkeit-Aspekte.

Software kann dagegen nicht verschleißen, daher ist ihre Wiederverwendung unproble-

matischer und wird auch in der Software-Industrie gern und oft praktiziert. Die Aspekte

der Verlässlichkeit und Ökologie wurden jedoch bisher nicht explizit manifestiert.
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Sowohl bei Komponenten der Hardware als auch der Software ist zu berücksichtigen,

dass die Qualität einer Komponente vielfach von dem Verwendungszweck und dem

Kontext (Neu-Deutsch auch „Domain“ genannt) abhängt, in dem sie (wieder) verwendet

wird. Mit anderen Worten, eine für einen bestimmten Einsatz bereits „qualitätsgesi-

cherte“ Komponente kann bei einem erneuten, anders gearteten Einsatz eine Minder-

Qualität haben, was u.U. zum Versagen des Systems führt. Daher ist eine adäquate Qua-

litätssicherung unter Berücksichtigung unterschiedlicher Verwendungszwecke und Ein-

satz-Konfigurationen eine unabdingbare Voraussetzung für die Wiederverwendung

vorbenutzter Komponenten.

Diese Tatsache wurde von der Industrie zuerst für den Bereich elektrischer und elektro-

nischer Bauteile (was hier als „elektr(on)isch“ abgekürzt wird) erkannt; ein Normungs-

vorhaben zur Sicherung der Verlässlichkeit durch geeignete Maßnahmen initiiert und mit

Erfolg abgeschlossen; dies ist die internationale Norm IEC 62309 (Dependability of

products containing reused parts – Requirements for functionality and tests), bekannt

auch unter der Bezeichnung DIN EN 62309 (VDE 0050) (Zuverlässigkeit von Produkten

mit wieder verwendeten Teilen – Anforderungen an Funktionalität und Prüfungen).

Augenblicklich beschäftigt sich die Arbeitsgruppe K 134 (Gebrauchsfähigkeit und Qua-

lität bei erneut verwendeten Teilen und Geräten der Elektrotechnik) der DKE (Deutsche

Kommission Elektrotechnik - Elektronik - Informationstechnik im DIN und VDE, als

Deutsches Mitglied in IEC und CE) mit einem Parallelwerk zu IEC 62309 unter der Be-

zeichnung Dependability of Software Products containing reusable components – Requi-

rements for functionality and tests (IEC NP56-1332).

Der vorliegende Beitrag gibt einen Überblick über die Norm IEC 62309 sowie den Ent-

wurf IEC NP56-1332 und erläutert ihre Struktur und Verwendung.

IEC 62309 umfasst nicht nur technische und wirtschaftliche Aspekte, sondern wirft auch

gesellschaftliche und rechtliche Fragestellungen auf. Diese Aspekte und Fragestellungen

werden im nächsten Abschnitt erörtert. Der Entwurf IEC NP56-1332 konzentriert sich

eher auf technische Inhalte.

Abschnitt 3 umfasst die deutschen Normungsaktivitäten im Bereich Software-

Wiederverwendung, während Abschnitt 4 Aspekte der Verlässlichkeit diskutiert. Ab-

schnitt 5 fasst diesen Beitrag zusammen und schließt ihn mit einigen perspektivischen

Bemerkungen ab.

2 Wiederverwendung von elektr(on)ischen Komponenten

Schonung unserer Ressourcen kommt an der Wiederverwendung von Bauteilen in neuen

Produkten nicht vorbei. Nach bisherigen Erfahrungen eignen sich etwa 25 % der

elektr(on)ischen Bauteile für die Wiederverwendung, was eine Kostensenkung in

Milliardenhöhe bedeuten kann.

Die Wiederverwendung wurde inzwischen auch gesetzlich als die wünschenswerteste

Form der Abfallbehandlung eingestuft. Die Förderung der Wiederverwendung erfolgt

auf verschiedenen Ebenen und es ist damit zu rechnen, dass sie ihre Bedeutung weiter
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zunehmen wird, wie auch aus der neuen Abfallrahmenrichtlinie zu ersehen ist. Daher

wird jeder Entscheidungsträger für technische Produkte zukünftig mit der Frage des

Einsatzes gebrauchter Teile in neuen Produkten und allen Nebenaspekten konfrontiert

werden.

Die Akzeptanz der Wiederverwendung hängt zum einen vom Vertrauen des Kunden in

die Qualität der wieder verwendeten Komponenten ab. Zum anderen muss für den Her-

steller der Aufwand überschaubar bleiben, um dieses Vertrauen zu gewährleisten.

Schließlich ist es notwendig, jegliches Risiko der Wiederverwendung für die Umwelt

auszuschließen. Das verursacht Kosten.

Abbildung 1: Struktur der Norm IEC 62309

Zum Aufzeigen gangbarer Lösungswege für die Probleme der Wiederverwendung

elektr(on)ischer Produkte und deren Komponenten wurde die internationale Norm IEC

62309 von einem Team weltweit anerkannter Experten ausgearbeitet. In dieser Norm

werden die Begriffe „neues Produkt“„ neuwertig“, „Gesamt-Lebensdauer“ u.v.a. aus

dem Blickwinkel der Wiederverwendung überdacht und neu definiert. Auch die Schritte

vom Ausbau der Komponente aus einem gebrauchten Produkt bis hin zum Vertrieb des

neuen Produktes werden erläutert. Weitere Hilfestellung für die Praxis geben die Werke
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[BBQ10] und [BQ12], welche den technischen, wirtschaftlichen und rechtlichen Frage-

stellungen eigene Kapitel widmen.

Abbildung 1 stellt die Struktur der Norm IEC 62309 dar; Abschnitt 4.1 geht auf die Ver-

lässlichkeitsaspekte näher ein.

3 Wiederverwendung von Software-Komponenten

Die bisherigen Ausführungen legen bereits dar, dass der Qualitätsaspekt, insbes. Testen

bei Wiederverwendung, einen Kostenfaktor darstellt. Dieser Aspekt wird augenblicklich

kontrovers diskutiert.

Abbildung 2:Spannungsfelder im Bereich Software-Wiederverwendung

Kontrovers diskutiert wird vor allem die Weitergabe der Ersparnisse durch den Herstel-

ler: Der aufgeklärte Kunde, nicht zuletzt institutioneller Kostenträger eines Software-

Systems, z.B. ein Autohersteller, ist heutzutage durchaus in der Lage zu erkennen, dass

das erstellte System Komponenten erhält, die Bestandteile eines bereits existierenden

Systems sind, wenn auch in leicht veränderter, angepasster Form, z.B. Software zur

Realisierung von Wegfahrsperren bei Autos. Daher wird es ihm (als Hersteller von

PKWs) nicht gefallen, die Kosten solcher Komponenten für jedes Modell seiner

Produktpalette mehrfach und in gleicher Höhe in Rechnung gestellt zu bekommen.

Bei herkömmlichen technischen Systemen ist der Vorteil der Wiederverwendung für

Endverbraucher eine Selbstverständlichkeit: Keinem Kunden werden beispielsweise die

Konstruktionskosten einer M6-Schraube in Rechnung gestellt, wenn er ein Gerät kauft,

in dem eine solche Schraube verwendet wird. Er bezahlt lediglich den Preis dieser

Schraube als Ergebnis einer Massenfertigung, die entsprechend einer Norm genau spezi-

fizierte Bauteile produziert. Bei Software-Erstellung handelt es sich um Erstellung eines

Unikates, das in beliebiger Anzahl zu vernachlässigbaren Kosten kopiert werden kann.

Bereits die obige, kurze Diskussion erklärt die Brisanz der Wiederverwendung und das

Konfliktpotential in dem Dreieck Kostensenkung durch Wiederverwendung – Qualität -

Verteilung der Ersparnisse (Abbildung 2). Während der Software-Ersteller durch Wie-

derverwendung Ersparnisse erwirtschaftet, möchte der Kunde als Kostenträger an diesen

Ersparnissen teilhaben. Sein „verlängerter Arm“, die Qualitätssicherung, wird dagegen

durch spezifische, zusätzliche Prüfungen (als „Kostenverursacher“) diese Ersparnisse

schmälern.
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Lösungswege für diese Probleme möchte der Entwurf IEC NP56-1332 als Richtlinie

geben, welche augenblicklich den Gegenstand der Arbeiten der bereits im ersten Ab-

schnitt erwähnten Arbeitsgruppe DKE/K 134 bildet. Die vorläufige Struktur dieser

Richtlinie wird im Abbildung 3 wiedergegeben. Dieser Entwurf, auf deren Verlässlich-

keitsaspekte Abschnitt 4.2 eingeht, möge den Weg einer baldigen Norm ebnen.

Abbildung 3: Struktur des Entwurfs IEC NP56-1332 bzgl. Verlässlichkeitsaspekte bei Wiederver-

wendung von Software-Komponenten
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4 Wiederverwendung und Verlässlichkeit

4.1 Wiederverwendung von elektr(on)ischen Komponenten

Die Norm IEC 62309 regelt den qualitativen Rahmen bezüglich des Umgangs neuer

Produkte mit gebrauchten Teilen. Sie stellt ein Konzept zur Überprüfung der

Zuverlässigkeit und Funktionalität von wieder verwendeten Teilen und ihren Einsatz in

neuen Produkten vor. Gleichzeitig werden Kriterien benannt, welchen Prüfungen die

Produkte unterzogen werden müssen, die wieder verwendete Teile enthalten. Bezogen

auf eine vorgesehene Nutzungsdauer des Produktes können sie nach Erfüllung der Krite-

rien als „qualifiziert als neuwertig“ bezeichnet werden, was als begriffliches Herzstück

dieser Norm angesehen werden kann: „Quagan“: „Qualified as good as new“. Zweck der

Norm IEC 62309 ist es deshalb durch Prüfungen sicherzustellen, dass die Zuverlässig-

keit und Funktionalität eines neuen Produktes mit wieder verwendeten Teilen vergleich-

bar sind mit einem Produkt, das nur neue Teile enthält. Dem Hersteller wird durch die

Anwendung der Norm ermöglicht, dem Kunden für das Produkt mit „qualifiziert als

neuwertigen“ Teilen die volle Garantie wie für Neuware zu gewähren.

Abbildung 4: Zuverlässigkeit elektronischer Bauteile mit oder ohne Burn-in

Einen wesentlichen Punkt in der Norm stellt die folgende Aufforderung dar: „Wieder

verwendete, „qualifiziert als neuwertige“ Teile im Herstellprozess sollten die gleiche

Funktionalität wie neue Teile haben und ihre erwartete Gebrauchsdauer muss mindestens

der Auslegungslebensdauer eines neuen Produktes entsprechen“. Damit wird klar, dass

Teile mit einer Rest-Gebrauchsdauer, die sich nicht mehr für ein ganzes Produktleben

eignen, nicht mehr im Blickfeld dieser Norm sind.

In Abbildung 4 stellt die Kurve die Ausfallrate gegen die Zeit dar, wie sie für elektroni-

sche Komponenten mit oder ohne Burn-in wiedergegeben wird. Sofern diese Kurve

nachweislich gilt (dies wird immer wieder für manche Komponenten bestritten), sind

auch elektronische Komponenten in dem Konzept zu berücksichtigen.
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Abbildung 5 stellt die wiederholten Lebenszyklen von gebrauchten Quagan-Teilen nach

IEC 62309 dar. Dabei darf die Restgebrauchsdauer wieder verwendeter Teile as-new

Auslegungsdauer (ALLL) des Produktes nicht verkürzen (siehe Abbildung 5). Dies

sollte verifiziert werden, entweder durch Analysen unter Nutzung von Informationen

über die Ausfallverteilung neuer Teile und der verbleibenden Gebrauchsdauer der wieder

verwendeten Teile, oder mit Stichproben aus dem Los der Teile, die als „qualifiziert als

neuwertig“ ausgewiesen sind. Solche Prüfungen führen zur Schätzung der Lebensdauer-

verteilung. Um Prüfungen/Analysen bei Einzelherstellung (keine Massenproduktion oder

Herstellung mehrerer Teile) zu ermöglichen, sollten historische Daten von ähnlichen

Teilen verwendet werden.

Kennlinien ermöglichen Angaben über die Restgebrauchsdauer der Teile, die dem Ver-

schleiß unterliegen (siehe Abbildung 5). Dieses Modell kann für verschiedene

Zuverlässigkeitskenngrößen angewendet werden. Entsprechende Kenngrößen sollten

abhängig von den Anforderungen an das Produkt oder an die Teile ausgewählt werden.

Abbildung 5: Wiederholte Lebenszyklen von gebrauchten, aber Quagan-Teilen nach IEC 62309

4.2 Wiederverwendung von Software-Komponenten

Software-Wiederverwendung bezeichnet den Prozess der Entwicklung von Software-

Systemen unter Einsatz vorhandener Software, statt Neu-Entwicklung. Dieser Gedanke

ist so alt wie der Begriff “Software“ und wurde bereits 1968 im legendären NATO-
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Workshop in Garmisch manifestiert, genau in dem Jahr also, als “Software Engineering“

als eine technisch-wissenschaftliche Disziplin konstituiert wurde.

Zahlreiche Berichte aus der IT-Branche bestätigen den stolzen wirtschaftlichen Erfolg

der Software-Wiederverwendung: Fast alle größere Firmen loben diesen Gedanken, wie

z.B. Nippon Electronic Company, GTE Corporation, Raytheon, DEC, HP, NASA, u.v.a.

Konträr zu den wirtschaftlichen Erfolgen warnen allerdings die Katastrophenberichte vor

der Unterschätzung der Gefahren des sorglosen Umgangs mit Software-Wiederverwen-

dung. Das Unglück des Röntgensystems Therac-25 wurde eindeutig durch die unge-

prüfte Wiederverwendung der alten Software-Version im neuen System verursacht,

wobei mehrere Menschen buchstäblich durch Verbrennung getötet wurden. Seit diesem

Unglück ist bei den Herstellern von Medizingeräten die Software-Wiederverwendung

ein Tabu-Thema, wie auch DKE K 134 bei den Verhandlungen mit den Vertretern eines

deutschen Konzerns erfahren musste.

Ein weiteres Beispiel ist durch den Satelliten Ariane gegeben, dessen Absturz mehrere

hundert Millionen Dollars kostete. Auch dieses Unglück wurde durch unsachgemäße

Software-Wiederverwendung verursacht.

Für Software-Wiederverwendung ist aus den o.g. Gründen der Nachweis von funda-

mentaler Bedeutung, dass die Funktionsfähigkeit und die Verlässlichkeit eines Software-

Systems mit vorbenutzten Komponenten voll und ganz denjenigen des Software-Sys-

tems entsprechen, das vom Grund aus neu entwickelt werden würde. Daher ist bei ge-

planter Wiederverwendung die Komponente durch deren Hersteller zu testen; dieser ist

auch verpflichtet, die vorgesehenen Einsatzgebiete, so weit wie möglich, zu spezifizie-

ren, und/oder komplementär die Gebiete zu kennzeichnen, in denen ein Einsatz ausge-

schlossen wird.

Diese „Nachprüfung“ des Komponentenherstellers befreit keineswegs den Hersteller des

Gesamtproduktes von der Pflicht der „Vorprüfung“ vor der Benutzung einer Kompo-

nente und der Prüfung des zusammengesetzten Systems. Die Prüfung entspricht einem

Regressionstest, der sorgfältig ausgeführt werden muss.

Ein weiterer, wichtiger Aspekt der Wiederverwendung bildet die Sicherung der Energie-

Effizienz und Öko-Freundlichkeit der wieder verwendeten Software, welche die Hard-

ware steuert, in die sie eingebettet wird. Auch hier gilt, was für die Verlässlichkeit wahr

ist: Eine Komponente minderer Qualität, die wieder verwendet wird, wird bei jedem

Einsatz ihre „Un-Qualität“ wiederholen.

Insgesamt zielt der Entwurf IEC NP56-1332, die Norm IEC 62309 bzgl. Funktionalität,

Test und Verlässlichkeit zu komplettieren, in der Software-Wiederverwendung aus-

drücklich ausgeschlossen wurde.
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5 Zusammenfassung und Ausblick

Dieser Beitrag fasste die Probleme und Chancen der Normung für die Sicherung der

Verlässlichkeit bei Wiederverwendung vorbenutzter elektr(on)ischer und Software-

Komponenten zusammen.

Obwohl im Bereich Software die Wiederverwendung schon sehr lange und gewinnbrin-

gend praktiziert wird, ist hier ein relativ großer Widerstand gegen eine Norm zu fühlen.

Dagegen konnte im Bereich Hardware bereits 2004 eine internationale Norm erstellt

werden, währen die Bemühungen im Bereich Software offensichtlich noch lange andau-

ern werden.

Es bleibt zu hoffen, dass die Ausarbeitung des Entwurfs IEC NP56-1332 unter Einbezie-

hung weiterer Beteiligter und der Berücksichtigung ihrer Argumente die Normungs-

arbeiten im Bereich Software weiterbringen und somit IEC 62309 erfolgreich ergänzen

wird.
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Abstract. Run-time reconfiguration of FPGAs has been around in aca-

demia for more than two decades but it is still applied very seldom in

industrial applications. This has two main reasons: a lack of killer applica-

tions that substantially benefit from run-time reconfiguration and design

tools that permit to quickly implement corresponding reconfigurable sys-

tems. This tutorial gives a survey on state-of-the-art trends on reconfig-

urable architectures and devices, application specific requirements, and

design techniques and tools that are essential for implementing partial

run-time reconfiguration on FPGAs. This is followed by a demonstra-

tion of the floorplanning and constraint generation tool GoAhead. Fur-

thermore, the tutorial will reveal several applications that benefit from

partial reconfiguration, including network data processing, digital signal

processing, cognitive radio, and systems on a reconfigurable chip. For

these applications, the individual challenges and implementation issues

are presented together with the achieved results. This tutorial demon-

strates that partial FPGA reconfiguration is beneficial and applicable in

industrial systems.

1 Introduction

In the early days of field programmable gate arrays (FPGAs), the available logic
capacity was very limited and using run-time reconfiguration had been suggested
to raise resource utilization. For example, the dynamic instruction set computer
(DISC) [27] is capable to change its instruction set at run-time according to a
running program. Consequently, only the currently used instructions are loaded
on the FPGA which takes fewer resources than having a configuration provid-
ing all instructions at the same time. However, for decades implementing such
systems required deep knowledge about the used FPGA architecture and has to
follow an error prune difficult design flow. Furthermore, long configuration time
was another crucial issue that detained the use of run-time reconfiguration (RC)
in industrial applications.

With the progress in silicon process technology, logic capacity raised steadily
while getting cheaper (and often more power efficient) at the same time. This
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removed the pressure on the FPGA vendors to add better support for partial
reconfiguration (PR) in their tools and devices. However, by heading towards
huge 1M LUT devices (million look-up table FPGAs), things are changing dra-
matically at the moment. Note that we focus on SRAM-based FPGAs in this
tutorial.

Here, the configuration time required to write tens of megabytes of initial
configuration data is too long for many applications. For example, the PCIe
host interface standard requires a device connected to the bus to answer within
100 ms after reset. This requires either a costly multi FPGA solution, changes
in the software, or bootstrapping. In the latter option, only the time critical
parts of the system (e.g., a PCIe interface core) will be configured at system
start while leaving the configuration of the rest of the system to a second partial
configuration step. Together with the advantages of resource saving (monetary
cost and power consumption) FPGA vendors are now forced to enhance the
support for run-time reconfiguration. In other words, partial reconfiguration will
be available in the majority of future FPGA devices and corresponding tools.

This tutorial is devoted to: 1) PR design tools and 2) applications that sub-
stantially benefit from run-time reconfiguration. The first topic is presented in
Section 2 that will introduce the special requirements on the physical implemen-
tation and that will give an overview on PR tools and implementation techniques.
This is assisted by the case study of a reconfigurable CPU in Section 3. After
this, it will be shown how run-time reconfiguration can improve resource utiliza-
tion as well as system flexibility for different applications. Section 4 reveals a
self-adaptive video processing platform that is capable of sharing reconfigurable
regions by various modules arbitrary at run-time. Next, Section 5 presents a re-
configurable SQL database accelerator. After this, Section 6 and Section 7 give
examples of how to reduce implementation cost while enhancing adaptability in
SDR applications with the help of PR.

The here presented applications give only a short insight into the active re-
search on implementing run-time reconfigurable systems and there are many
more examples that demonstrate that the use cases of partial configuration are
virtually unbound. For example, [14,3] demonstrate partial FPGA reconfigura-
tion for image processing, [25,4] propose self-adaptive control systems, and [5,20]
investigate to exploit partial reconfiguration for high performance computing
(HPC).

2 Design Tools and Techniques for Partially
Reconfigurable Systems

Partial run-time reconfiguration has to be supported by the FPGA and by the
corresponding design tools. While for example all recent FPGAs from the vendor
Xilinx support partial reconfiguration, this feature is only available for the Virtex
series devices within the vendor tools. Moreover, this feature is not available by
default and has to activated as a separate feature.
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2.1 Terms and Definitions

A reconfigurable system is partitioned into two parts. 1) The part of the system
that is always present (e.g., a memory controller or a soft CPU) is commonly
called static region while 2) the part containing run-time reconfigurable mod-
ules is called partial region. If the static part of the system includes the logic
to re-configure the device, this is called self-reconfiguration. All recent FPGAs
from the vendor Xilinx provide an internal configuration access port (ICAP)
for self-reconfiguration and no external pins are required to access the FPGA
configuration. The same is announced for the new Stratix-V Series from Altera.

As shown in Figure 1, the partial region can be arranged in different con-
figuration styles. In the easiest case, the partial region follows the island style
approach that is capable of hosting one reconfigurable module exclusively per
island. A system might provide multiple islands and if a set of modules can only
run in one specific island this is called single island style. If modules can be
relocated to different islands this is called multi island style

While the island style is ideal for systems where only a few modules are
swapped, it might suffer internal fragmentation. This is a waste of logic resources
that arises if modules with different resource requirements share the same island
exclusively. This means, if a large module cannot be replaced by multiple smaller
ones (to be hosted at the same time) the utilization of the reconfigurable region is
getting weak. Internal fragmentation is improved by tiling reconfigurable regions
using the one-dimensional slot-style or the two-dimensional grid-style approach.
In this technique, a module occupies a number of tiles according to its resource
requirements and multiple modules can be hosted simultaneously in a reconfig-
urable region. This is illustrated in Figure 1b) and Figure 1c)

Tiling the reconfigurable region is considerable more complex as the sys-
tem has to provide communication to and from the reconfigurable modules and
to determine the placement for a module. The latter one has to consider that
FPGA resources are in general heterogeneous (i.e. there are different primitives
like logic, memory, or arithmetic primitives on the fabric). Moreover, depending
on the present module layout, a tiled reconfigurable region might not provide
all free tiles as one continuous area. If this results in unused tiles, this over-
head is called external fragmentation. External fragmentation can be removed
by defragmenting the module layout which is called compaction. Note that some
modules cannot be interrupted for compaction because a module would loose its
internal state or it would not meet its throughput.

Fig. 1. Reconfiguration style.
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2.2 FPGA Support for Partial Run-time Reconfiguration

Partial reconfiguration requires from the FPGA architecture that parts of the
fabric can be overwritten without affecting other parts of system. Note that we
imply that the static part of the system is active at any time (independent of a
configuration process).

Different FPGA architectures show different behavior during the reconfigu-
ration process. For example, older Xilinx FPGA families, including Virtex-II or
Spartan-3 FPGAs, could only be reconfigured full column-wise, meaning that a
full column of resources (logic, or routing) was affected when writing new con-
figuration data to the device. This can cause side effects to the static system
or other reconfigurable modules if they use resources in a column that can be
reconfigured at run-time. On recent Xilinx FPGA architectures, the height of
the columns had been reduced to the height of a clock region. This represents
four block RAMs, four multiplier primitives, or 16-20 configurable logic blocks
(CLBs), depending on the FPGA family. Note that the fabric of Xilinx FPGAs
consists of a regular mesh of CLBs that each provide 8 look-up tables and an
attached switch matrix to carry out the routing with surrounding CLBs. In some
columns, the LUTs have been replaced with dedicated blocks such as memories
while maintaining regularity of the mesh. There are several wires leaving each
switch matrix that are named by their routing distance (e.g., single wires route
one CLB further, double two CLBs, and so forth). By restricting reconfigurable
tiles to span the height of full clock regions, side effects due to partial reconfig-
uration can be avoided on recent Xilinx FPGAs.

Altera announced to use mask mechanisms to control which part of the FPGA
will be changed by reconfiguration. This technique should allow arbitrary recon-
figuration without side effects to other active parts of a system [17].

2.3 Place&Route Constraints for Island Style Reconfiguration

For implementing a run-time reconfigurable system, we have to ensure that 1) a
partial module uses only resources (logic & routing) that are not used by other
parts of the system (another partial module or the static system) and 2) that
identical wires of the FPGA fabric are used to connect partial modules over all
physical implementation steps. This means that we have to constrain the routing
to use a specific wire for crossing the module border for each signal bit of the
module entity. The begin and end ports of these wires can be compared with
plug-socket pairs on a printed circuit board. As additional constraints, we have
to 3) activate all clock trees that are used by partial modules and 4) constrain
the timing. This is mostly everything to consider and there is nothing mystic
behind applying partial reconfiguration. The real difficulty stems from a lack in
the design tools that, for example, provide no constraints to bind a signal to
specific wires on the fabric. For instance, there is no constraint to bind a signal
in a top level design that is responsible for the communication with a partial
module to a specific wire that crosses the partial-to-static border.

To overcome this, macros called bus macros have been used in earlier partial
design flows by the vendor Xilinx [15,28]. As shown in Figure 2.3 a), the signal
to wire binding has been achieved by instantiating a macro consisting of a LUT
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Fig. 2. Different approaches for constraining the signal to wire binding. In all three

examples, a partial NAND module is exchanged by an OR module.

in the static part and a corresponding LUT in the reconfigurable region. By
placing bus macros at a defined position on the partial module border, signals
are bound to the internal macro wires.

The bus macro approach costs two LUTs per signal wire and additional
latency. This was improved in the recent Xilinx vendor tools using an incremental
partial design flow [29]. As shown in Figure 2.3 b), anchor LUTs in route-through
mode (called proxy logic) are placed in the partial region for each signal crossing
the partial module border. During the implementation of the static system,
the partial interface signals are routed to the anchors. The partial modules are
implemented incrementally from this static system without modifying any static
routing. Consequently, the partial module interface wires are constrained by
preserving the initial static routing.

The proxy logic approach costs one LUT per signal wire. Its main drawback
is that the routing is different for each reconfigurable island. This prevents mod-
ule relocation even if the islands provide an identical logic or memory layout.
Moreover, changes in the static system will in general result in a different routing
to the proxy logic. Consequently, all permutations of module type and placement
position have to be rerouted on each modification in the static system. Hence,
this approach is only suitable for systems of low complexity.

As a third approach, it is possible to prohibit selectively the use of wires by
occupying them with the help of blocker macros [12]. Blocker macros instantiate
within a defined region all logic primitives and use all available wires (or a
selected set of wires) within this region. By selectively not blocking wires, tunnels
can be drilled through a blocker such that only one possible routing path exists
to route across the border to and from a reconfigurable module. By this, we force
the router to bind a signal to the wires of the tunnel. By defining a tunnel in the
partial region during the implementation of the static system and by defining
a tunnel in the static region during the partial module implementation, each
module interface signal is bound to a corresponding interface wire, called PR link.
As shown in Figure 2.3 c), this allows module integration without logic overhead
while permitting module relocation and an independent implementation of the
static system or any partial module. The important difference between the proxy
logic and the PR link approach is that the latter one constraints a signal to a
specific wire rather than allowing the router to decide the signal to wire binding
during the static system implementation.

For defining the placement of logic primitives and for specifying the timing
requirements, the Xilinx vendor tools provide sophisticated constraints. Note
that the definition of reconfigurable regions and module bounding boxes does
not have to be rectangular. And because routing will not be interfered by recon-
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figuration if the routing is overwritten with exact the same configuration data,
it is possible to relax strict bounding box constraints for the routing. This can
substantially improve performance and routability [13].

The clock signals are routed via dedicated clock networks. By connecting the
clock to the blocker primitives located in the partial region during the static
system implementation with the clock network, all clock network drivers are
activated such that the reconfigurable modules can access one ore more clocks
when loaded into the reconfigurable islands.

2.4 Communication Architectures for Slot and Grid Style

Reconfiguration

When moving from an island style scenario to a slot or grid style reconfiguration
scheme, extra precaution is needed to provide communication from and to the
different partial modules loaded together into a reconfigurable region. In order to
permit module relocation, we have to implement a homogeneous communication
architecture that possesses an identical logic and routing footprint within each
tile and at the tile borders. The base idea of such an architecture is shown in Fig-
ure 3 and related approaches have been presented as research work, e.g., [16,8,10].
The last work [10], is designed for high performance, flexible module placement
and low implementation cost; and a system with 60 individual reconfigurable
modules using grid style reconfiguration has been demonstrated in [11]. By ar-
ranging the logic and routing identical in each tile of a reconfigurable region and
inside the modules, glitches on running bus transactions or data streams can be
avoided during reconfiguration, regardless to the placement position. This is pos-
sible because the internal routing and logic of the communication architecture
will never be changed at runtime.

2.5 PR Design Tools

The bus macro approach for Xilinx FPGAs has dominated the FPGA run-time
reconfiguration community for more than a decade. However, Xilinx moved com-
pletely over to their new 4th generation PR flow based on proxy logic while

Fig. 3. Basic approach for a homogeneous communication architecture.
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removing the support for bus macros. For this flow, Xilinx included some extra
features in their flooplanning and constraint generation program PlanAhead.
This includes resource budgeting, defining reconfigurable islands, and an auto-
matic placement of proxy logic. While especially the last feature has substan-
tially simplified the design flow, a lack of routing constraints prevents this flow
to implement multi-island or slot and grid style reconfiguration as described in
Section 2.3.

In addition to Xilinx, Altera (as another major FPGA vendor) has announced
to support partial reconfiguration in their devices and design tools. According
to [17], designing partial systems will be based on an incremental design flow very
similar to the recent flow proposed by Xilinx. Consequently, these systems will
include the same limitations (no module relocation, no static system to partial
module decoupling during the implementation).

While a couple of research projects build tools on top of the Xilinx vendor
PR tools, only little research was undertaken on developing independent alterna-
tives. One alternative is the project ReCoBus-Builder [10]. This tool can generate
constraints similar to PlanAhead, but it can also generate homogeneous com-
munication architectures, as described in Section 2.4. In addition, the ReCoBus-
Builder can constrain the routing by generating blocker macros as described in
Section 2.3. The applications in Section 4, 5, and 6 have been implemented using
the ReCoBus-Builder. As a further example, the tool OpenPR [24] reintroduces
bus macros (see also Figure 2.3b)) into latest PlanAhead versions.

Next Generation PR Tools The preliminary purpose of PR design tools
is to generate implementation constraints for the physical implementation of
a system. Consequently, PR design tools have to generate constraints that are
compatible with other tools following the constraints (e.g., place& route tools).
Unfortunately, devices and design tools of the vendor Xilinx have changed that
much that the concepts of the ReCoBus-Builder could not be easily shifted to
recent devices and the support of that tool is limited to Spartan-3 and Virtex-
II/II Pro FPGAs. Similarly, OpenPR is bound to Virtex-4 and Virtex-5 FPGAs.

For implementing run-time reconfigurable systems on recent FPGAs using
latest vendor tools, a completely redesign of the ReCoBus-Builder is currently
under development under the name GoAhead. This tutorial will announce its
features and the tool will be available on the COSRECOS project website [2].
GoAhead provides a GUI (Fig. 4) and command script interface for floorplan-
ning and macro placement that is similar to PlanAhead from Xilinx. The tool
is shipped with a macro library containing various macros for different Xilinx
FPGA families (Virtex-5/6/7 Spartan-6), including different bus macros and
connection macros. A connection macro is basically a connection primitive (e.g.,
a look-up table) used to force the router to generate a routing path to or from
this macro. GoAhead supports any reconfiguration style (Fig. 1) and the in-
tegration of modules using bus macros, PR-links (Fig. 2.3), or homogeneous
communication architectures (Fig. 3). It can generate VHDL templates, UCF
constraints (user constraints to be used with the Xilinx vendor tools), and rout-
ing constraints by generating blocker macros. The next section gives an example
of how a reconfigurable system can be implemented using GoAhead.
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Fig. 4. GoAhead GUI showing a Spartan-6 LX16 FPGA.

3 Reconfigurable Instruction Set Extensions

Changing the instruction set architecture (ISA) of a softcore CPU at run-time
can substantially enhance performance and area at the same time. This has been
demonstrated several times before (e.g., [27]) and even small instructions can
gain high speed-ups. For example, if we consider a dedicated custom instruction
for permuting all bits in a 32 bit operand, this would easily take a hundred
cycles on a conventional CPU but would be only wiring, if implemented as
a dedicated instruction. Implementing such instructions reconfigurable allows
more instructions on less area. This involves some reconfiguration overhead that
might be hidden by configuration prefetching in some systems. However, the real
difficulty in implementing reconfigurable custom instructions is that a relatively
large number of signals have to be connected to small modules. For example,
a 32-bit instruction with two operands and one result requires a connection of
roughly 100 signal bits (=wires); and assuming two LUTs per result bit, the
instruction can be implemented in just eight CLBs on a Xilinx FPGA.

Figure 5 a) shows a simplified architecture of a CPU extended by four slots
to host reconfigurable instructions. We will now reveal how a corresponding
system can be implemented with the tool GoAhead. As sketched in Figure 5 b)
for Xilinx Spartan-6 or Virtex-6 FPGAs, different wire resources have been used
to connect two operands (with single and double lines) and the individual results
(quad lines) for four adjacent slots. The wires have been chosen such that the
operands and results can be connected at exactly the same relative position in
each slot in order to permit module relocation. Modules may take more than
one slot by using only one of the result vectors. Note that the input operands
get swapped after each slot. This might require design alternatives, if operations
are not commutative.
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Fig. 5. Reconfigurable instruction set extension. a) RTL b) FPGA implementation.

The implementation uses neatly single, double and quad lines that route one, two, and

respectively four switch matrices (CLBs) further on Xilinx Virtex-6/Spartan-6 FPGAs.

On Xilinx Spartan-6 or Virtex-6 FPGAs we can connect four bits per two
operands and one result per CLB. Figure 5 b) follows this mapping when assum-
ing that each shown connection represents a bundle of four wires connected to a
slice acting as the connection macro. Then a 32-bit instruction can be mapped
in a slot as small as eight CLBs. The following GoAhead script places the con-
nection macros, releases the ports used to route operands and results, generates
a blocker, and writes instantiation code and user constraints for the Xilinx ISE
tools. As can be seen, all constraints can be generated with only a few different
commands. The X/Y coordinates are CLB tile coordinates, WW4, EE2, and ER1

are names used by Xilinx for quad lines towards west, double lines towards east,
and single lines towards east. The connection primitive Connect4 S6 CI is pro-
vided by GoAhead.

1: AddSingleMacro MacroName=Connect4_S6_CI InstanceName=Slot0Inst0 Slice=SLICE_X19Y12;

2: AddSingleMacro ... # add 8 macros in each of the four slots

33: AddToSelectionXY X1=31 Y1=50 X2=34 Y2=57; # select Slot0 and Slot1

34: DoNotBlockPort PortNameRegexp=WW4B; # release west quadline begin ports (result vectors)

35: DoNotBlockPort PortNameRegexp=EE2; # release east double line begin/end ports (operands)

36: DoNotBlockPort PortNameRegexp=ER1; # release east single line begin/end ports (operands)

37: AddToSelectionXY X1=35 Y1=50 X2=36 Y2=57; # select Slot2

38: DoNotBlockPort ... # release used ports for slot2 and also slot3 according to Figure 5b)

50: PrintVHDLMacroInstantiation PortMapping=Sin:OPA,Din:OPB,Res:Res0,CLK:clk Filter=Slot0;

51: PrintVHDLMacroInstantiation ... # generate VHDL instantiation code for all four slots

54: AddToSelectionXY X1=31 Y1=49 X2=38 Y2=57; # select all four slots

55: BlockSelection OutFile=StaticBlocker.xdl # block all remaining wire resources

56: PrintLocationConstraintsForPlacedMacros FileName=static.ucf; # for ISE project

57: PrintPlacementProhibitConstraints FileName=static.ucf; # prevent the Xilinx tools to

# use any further primitive inside the current selection (i.e. the reconfig. area)

By placing the macros in a bottom-up order, we cause a connection of the
operand and result vector signals also in a bottom-up order. This reduces conges-
tion in modules using carry chain logic that propagates in the same bottom-up
direction. By connecting four signals per CLB row, we incorporate that a carry
chain processes also four bits per CLB row on Xilinx FPGAs. In order to generate
the configuration bitstream for the static system, we run synthesis, technology
mapping and placement in the Xilinx Vendor tools. After this, a batch script in-
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Fig. 6. FPGA Editor screen shot of a MIPS CPU providing four slots for reconfigurable

custom instructions on a Xilinx Spartan-6 FPGA.

cludes the blocker into the design and runs the vendor router. Finally, we delete
the blocker and generate the configuration bitstream. An FPGA Editor screen
shot of the final system is shown in Figure 6.

The partial modules (i.e. the reconfigurable instructions) are implemented
very similar to the static system, except that the connection macros are now
placed left and right beside the used slots as a placeholder for the static system.
We use blockers with released ports that result in an interface compatible to
the static system. For the timing verification, GoAhead can compose netlists
of the static system and any possible combination of placed modules. Finally,
GoAhead generate partial bitstreams for a user defined region that can be
directly written to any configuration port of the device.

As sketched in this section, GoAhead can be used for implementing very
sophisticated reconfigurable systems. However, this requires still a considerable
knowledge about the used FPGA architecture. The final version of the tool will
provide wizards that hide most of the low level details of the fabric.

4 A Self-adaptive Reconfigurable
Video Processing System

In this section, we present a system architecture for building partially reconfig-
urable System-on-Chips (SoCs), described in details in [21]. This architecture
is exemplary applied for a smart camera system. FPGA-based embedded sys-
tems are of increasing importance especially in the signal and image processing
domain. For instance, intelligent embedded systems for image processing, such
as smart cameras, rely on FPGA-based architectures [23]. With the advantage
of reconfigurability, we can envisage new designs with new and improved possi-
bilities and properties, like an adaptive design which can adapt itself to a new
operation environment. The static part of the system provides a CPU, the SoC
infrastructure and the interfaces for the video input of the camera system. Most
of the image processing algorithms, e.g., filtering, color transformation and de-
tection, or visualization modules (called marker modules) are implemented as
partially reconfigurable modules which can be dynamically loaded and unloaded
at run-time.
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Fig. 7. System overview of the heterogeneous FPGA-based smart camera SoC platform

consisting of CPU sub-system and reconfigurable area. Reconfigurable modules can

vary in size and be freely placed, allowing a very good exploitation of the FPGA space.

4.1 Architecture

The system is implemented on the Xilinx Virtex-II Pro XUP board and consists
of an embedded CPU sub-system including the external DDR-memory and the
reconfigurable part (see Figure 7). In the following, these components and the
communication interfaces between them are presented.

Embedded CPU Sub-system The main purpose of the software part on
the embedded CPU is to control and manage the overall system. It contains
high-performance peripherals, interfaces, and other IP cores. These are, e.g., a
memory controller to provide access to an external RAM, a serial port interface
for user commands, and a module for accessing the integrated reconfiguration
interface of the FPGA. All components of the embedded CPU sub-system are
connected by the main on-chip system bus, the processor local bus (PLB).

Reconfigurable Area The FPGA area is divided into a static and a dynamic
part (see Fig. 7). The two marked areas on the right top and bottom compose the
dynamic part of the system. Reconfiguration is only possible in the dynamic part
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which contains a reconfigurable on-chip bus (ReCoBus) and I/O bar commu-
nication primitives to provide a communication infrastructure for dynamically
loaded hardware modules. Both communication primitives part of the ReCoBus-
Builder framework [10]. In the smart camera platform, the I/O bar is used to
stream video data between the various reconfigurable processing modules. The
modules can read and modify the video stream or generate additional output
signals. To allow communication between the embedded CPU sub-system and
the reconfigurable part, a PLB/RCB bridge translates the ReCoBus (RCB) pro-
tocol to the PLB protocol and vice versa. Using the ReCoBus and the bridge,
the modules can be accessed from the CPU, e.g., to configure the module with
memory-mapped registers. Furthermore, the modules have also direct access to
the external memory (DMA). To allow high-speed data transfers between hard-
ware masters and the memory controller, the bridge uses the native port interface
(NPI) of the memory controller (provided by Xilinx).

4.2 Reconfigurable Modules

We implement several reconfigurable modules to tackle a wide spectrum of ap-
plications for our smart camera platform. In this section, we present some of
these modules.

The skin color detection is implemented as a hardware slave module that
reads the color values from the I/O bar and marks them as skin or non-skin by
comparing them with a color template. We have implemented modules for RGB
and YCbCr color spaces. The classification is written as an additional signal
(skin color bit) onto the I/O bar together with the unmodified video stream.

The filter module is a sliding-window image processing filter. The current
implementation supports a 3x3 filter matrix. To access different image lines, the
module stores two lines in a BRAM-FIFO. The coefficients are stored in CPU
accessible registers. Therefore, a module can be configured for different filter
functions, for example, with the coefficients of a Sobel filter which can be used
for edge detection.

The framebuffer hardware master module is implemented to store the cur-
rent input image. This is done by double buffering the images in the on-chip
memory via the ReCoBus using the NPI interface. We use 32 Bit for storing one
pixel, with 24 Bit for the input RGB values and the remaining 8 Bit free for
classification results, e.g., the skin color bit.

The particle filtering framework is partitioned into a software and hardware
part. The software part performs the sampling and applies the motion model.
The hardware part is used as a co-processor to perform the evaluation steps.

The motion detection module compares the pixel values of two subsequent
images to detection motion. Like the skin color detection module, the result
(motion/no motion) is written as an additional signal onto the I/O bar.

The pixel marker module colors classified pixel or regions with a specified
color. The classification of the pixel is signaled to the marker module with ad-
ditional I/O bar signals. The color can be configured by a register interface.

An embedded design for tracking human motion is implemented as an ex-
ample application to show the flexibility of the proposed platform. The idea is
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(a) The particle filter track-

ing three objects.

(b) The object tracker used

to play a pong game.

Fig. 8. The smart camera tracks three image regions (a person’s head and hands). The

tracked hand positions are directly used to control the paddles of the video game.

to detect and track skin-colored image regions, which is done by applying parti-
cle filtering. The current implementation makes it possible to track up to three
image regions. One marker module is used per region tracker. A simple tennis
game is implemented on top of this application, which can be directly controlled
by the hands of a person, using the results of the tracker (see Fig. 8).

5 Partial Reconfiguration for SQL Query Processing

This section describes how dynamic partial reconfiguration can be used for
SQL query processing for large databases. There exist already static FPGA ap-
proaches, e.g., Glacier, a query-to-hardware compiler [18], and Netezza’s FAST-
engines [7]. Both approaches have a lack of flexibility: Glacier has to run a full
synthesis for every new incoming query and Netezza’s FAST-engines have a fixed
pipeline with no possibility to reorder operations.

We cover restrictions (WHERE-clauses) and allow different data types for
table attributes as well as different operations on these data types. Restrictions
are Boolean expressions which are used to filter out tuples from a table. Tuples
remain in the result table if they are evaluated to true regarding the restriction,
otherwise they are omitted. Figure 9 shows an overview of the proposed SQL
accelerator technique.

We offer a module library with different operators, which can be used to
assemble a pipeline at run-time by using partial reconfiguration, to form different
restrictions. We support integer types up to 32 bit and fixed-length strings.
Furthermore, we offer arithmetic-logical operators (+, −, ∗, AND, OR, NOT ,
XOR, NAND, NOR) and comparisons (<, ≤, =, �=, ≥, >). The latter ones can
be used on integer attributes as well as string attributes. The pipeline processes
tuples one after another and computes the restriction result for each tuple. The
supported operators only rely on tuple data itself, thus we can evaluate the
restriction for each tuple itself independent from other tuples.

We use I/O bars to pass data from module to module. Furthermore, we use
them to configure modules which are plugged onto the bars. Usually, tuples are
wider than the data bus width of the I/O bars, which is 32 bit in our sys-
tem, therefore tuples are divided into several chunks and tuples are processed
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SELECT * FROM product WHERE price < 1000 AND quantity > 0
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Fig. 9. FPGA configured with partial modules to perform a restriction (WHERE-

clause). The partial modules are assembled to a pipeline for high-throughput.

chunk-by-chunk in a fully pipelined manner. Modules are configured with the
information about tuple sizes and the chunk indices of their operands. Further-
more, they are told where to put their results in the tuple stream. The modules
are capable of doing attribute-attribute operations as well as attribute-constant
operations, i.e., either both operands are part of the tuple or one operand is a
constant value which is configured during configuration of the module. Figure 10
shows an example of an arithmetic-logical module which performs an addition.

We append spare chunks to the tuples, thus the modules can place their
results inside the tuple stream. By looking up the result of the last module in
the pipeline, which is either true or false, we can decide whether we keep a tuple
in the result table or not.

With the use of dynamic partial reconfiguration and a presynthesized module
library, we are able to switch the functionality during run-time, thus we can
execute queries with different restrictions one after another without any further
synthesis, which was the drawback of Glacier. Furthermore, it would be possible
to implement further modules to support more operations, e.g., projections, or
more data types like floating point. Thus, we could switch the operation order of
such SQL operations, which is not possible with Netezza’s FAST-engines because
their pipeline is fixed. We used the XUP Virtex-II Pro Evaluation Board for
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Fig. 10. Data path of an arithmetic-logical module for additions. The data slice module

is responsible for truncating or padding attributes to the size of a 32-bit chunk.

prototyping. Our system runs with 100 MHz, thus we reach a total throughput
of 400MB

s
due to our pipelined design.

6 Parameter Controlled Software Defined Radio Platform

Software Defined Radio (SDR) is promoted by the the Wireless Innovation Fo-
rum which describes it as ”[. . . ] a collection of hardware and software tech-
nologies where some or all of the radio’s operating functions (also referred to
as physical layer processing) are implemented through modifiable software or
firmware operating on programmable processing technologies.” [26]. The idea
behind SDR is to extend the range of flexibility in radio development and to
provide the ability to adapt to future wireless standards, to add new features
and capabilities to existing infrastructure or to fix corrupt designs which causes
system misbehaviors. Such a system has been developed to enhance the flexibility
of the hardware design of a wireless tracking technology by utilizing the benefits
of the ReCoBus technology and partial reconfiguration of FPGAs. The system
offers generic digital signal processing modules for mixing, filtering and correla-
tion tasks. The modules can be placed as pleased and the necessary parameters
like filter coefficients are configured by a SoC infrastructure.

6.1 Architecture

The system is implemented on custom hardware platform which features a Xilinx
XC2VP70 FPGA. Furthermore, the hardware provides an optical datalink to a
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Fig. 11. SDR platform consisting of a controll CPU sub-system and two reconfigureable

areas. The example shows the configuration used to track individual radio transmitters.

RF frontend and a 64 Bit PCI-X interface which is used to retrieve the processing
results for further usage on the host system (see Figure 11).

One of the embedded PowerPCs of the Virtex-II Pro FPGA is used to create
a configuration master which duty it is to communicate with configured modules
via the ReCoBus macro to set module specific parameters.

The design features two large reconfigureable areas which can be used to
freely place the designed modules. The areas are crossed by two I/O Bars with
each providing a 32 Bit interface to offer a reasonable amount of signal bits.
Above the I/O Bars, an on-chip bus structure has been place to configure and
steer the modules (the ReCoBus macro). Furthermore, the reconfigureable areas
feature two clock signals driven by low skew clock nets which can be utilized by
modules independently of their placement.

6.2 Reconfigureable Modules

We implemented several reconfigurable modules for SDR applications. One prop-
erty that applies to all modules is that the signal bit width is limited due to the
finite size of the I/O Bars. As a consequence, all modules include an adjustable
bit slicer to meet the specifications.
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The digital down converter module divides the incoming baseband signal
into subchannels and down samples the signal to the absolute necessary rate.
As a new approach and as an extension to the existing ReCoBus design flow,
this module is designed by structural description in Xilinx System Generator
(XSG), which is a blockset add-on for the Matlab Simulink environment. This
procedure enables the user to rapidly design complex modules.

The mixer module comprises a Direct Digital Synthesizer (DDS) to generate
the sine and cosine waveforms and a complex multiplier to shift the signal from
one frequency to another. The ReConFIR named module is designed to offer
the user a generic 8-tap FIR filter. Necessary parameters, including the filter
coefficients and the expected sampling rate of the FIR filter, are configured by
the SoC. As a special feature, this module can be cascaded with other ReCon-
FIR module instances to create an ReConfigureable n-tap FIR filter of variable
length n. The correlation filter module is designed to meet the use case specific
requirements regarding the type and amount of coefficients. Nevertheless, these
can be configured via the PowerPC platform to change the tracked signals. The
peak detection module searches for peaks in the correlation results and indicates
its results by setting a signal.

6.3 Summary

The system benefits significantly from the discussed technologies by adding the
ability of reusing design elements, changing key characteristics such as the used
frequency band or the tracked signal sequences without the need to design and
configure a completely new design. A big variety of use cases are imaginable be-
sides the one presented. The static platform can not only be used for receiver but
also for transmitter designs by making use of the already build generic modules
and additional system specific modules. Especially pulse-based transmission sys-
tems (like the mentioned tracking technology) offer a great margin for run-time
reconfiguration because of the idle time between two bursts.

7 An SNR-Adaptive Cognitive Software-Defined Radio
using Partial Reconfiguration

In mobile reception scenarios, the signal-to-noise ratio (SNR) of a receive signal
can strongly vary over time. In situations where the signal is weak it might be
necessary to spend more computational effort in decoding the signal to get a
better performance. On the other hand, when the receive signal is strong with
respect to the noise, it might be beneficial to reduce the decoding complexity
as the reception quality is sufficient for the target application. Bearing this in
mind, the use of PR of FPGA resources enables to change the complexity of one
component inside the SDR chain according to the perceived SNR while keeping
the other components active. Thus, a PR-based design may give a benefit over
a static design, due to the hardware reusability in the reconfigurable area.

In the following sections we will introduce a PR use case for broadcast re-
ceivers, where the algorithms of an FM radio receiver chain will be adopted
according to the estimated signal-to-noise ratio. The reconfigurable FM receiver
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Fig. 12. The reconfigurable broadcast FM receiver demo system.

prototype was developed at the Technical University Munich as a simple case
study to demonstrate the concept for SNR-adaptive cognitive radios and to serve
as a template for further investigations of more complex applications.

7.1 Demonstration Platform

Our SNR-adaptive demo system implements a reconfigurable FM-RDS stereo
broadcast receiver together with an SNR estimation stage, where the FM multi-
plex decoder can be reconfigured according to the estimated SNR [19]. The SNR
is defined as carrier-to-noise ratio, reflecting the FM carrier signal power divided
by the noise power.

The demonstration platform is shown in Figure 12 and consists of a PC, a Xil-
inx Spartan-3 FPGA and a reconfigurable Xilinx Virtex-5 FPGA (XC5VSX50T).
The PC generates two complex baseband signals, each at a sample frequency of
500 kHz and transmits the data to the Spartan-3 FPGA via USB. The reconfig-
urable Virtex-5 device reads the data from a 16 bit parallel GPIO interface and
processes it internally. The PC generates modulated FM stereo broadcast signals
including Radio Data System (RDS) services and the SNR of these signals can
be varied by adding white Gaussian noise to the respective stream.

On the reconfigurable Virtex-5 FPGA two FM baseband signals are received,
decoded and the SNR is estimated. According to the estimated SNR at the
receiver, the FM multiplex (MPX) decoding routines are adopted. For example,
in case the SNR is very low, the receiver can either increase the computational
effort and return a stereo audio signal which is more acceptable in quality or
decrease the computational effort by switching to monaural decoding. In case
the SNR is very high and the signal is very strong, the receiver can use low
complexity demodulation algorithms while still getting a sufficient audio quality.

In the following sections, the receiver flow graph and the partitioning of the
receiver chain on the FPGA are discussed.

7.2 FM Receiver Signal Flow and MPX Decoding

The flow graph of the FM receiver chain is shown in Figure 13. The receiver
chain can be subpartitioned into three main parts, i.e. the mono decoding audio
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part, the additional logic for stereo decoding and the RDS decoder. The mono
signal combines the sum of the left and right audio signals. The stereo signal
consists of the difference of the left and right audio signals. It is located at a fre-
quency of 38 kHz using amplitude modulation with suppressed carrier. In order
to coherently demodulate the stereo signal, the carrier has to be reconstructed.
This is done by using the 19 kHz pilot tone which is extracted by a PLL in the
stereo decoder part.

Fig. 13. FM receiver signal flow and partitioning. The grey background highlights the

three different PR modules for MPX decoding.

In the next section, the partitioning of the decoder modules of the FM receiver
chain for the implementation on the FPGA is presented. The module-based PR
flow was used for the design of the reconfigurable partitions (c.f. [29]). The
bitstreams for the different configurations are stored on a fast external on-board
DDR2-Memory (max. 6.4 GB/s) and loaded on demand by the configuration
control block.

7.3 Virtex-5 FPGA Partitioning

The FPGA configuration comprises one static and two reconfigurable partitions
(reconfigurable islands). The static partition includes a Microblaze microcon-
troller, a multiplexed Costas loop for FM demodulation and two SNR estimation
stages. The reconfigurable partitions are used for the demodulation of the re-
spective MPX signal. Each partition can hold one of the following demodulator
types: Stereo audio demodulator, Mono audio demodulator and an RDS demod-
ulator. The number of logic elements of the partition was chosen with respect to
the most complex design, i.e. the stereo demodulator. All configuration permu-
tations are possible, e.g. the receiver can have two stereo demodulators, or one
mono and one RDS demodulator, two RDS demodulators etc. The partitioning
and signal flow of the demo platform is depicted in Figure 14.

In the figure, the reconfigurable partitions are denoted as Partition A and
Partition B. Each partition can be reconfigured individually without interrupting
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Fig. 14. Signal flow graph of FM demonstrator system. The Virtex-5 FPGA is used

for FM demodulation and RDS decoding and comprises two reconfigurable partitions.

the other. Modules cannot be relocated and have been implemented separately
for each partition (single island reconfiguration style). The microcontroller evalu-
ates the estimated SNR values and is able to trigger a reconfiguration of partition
A or B if the SNR reaches a certain threshold. The reconfiguration is done by
reading the partial bitstreams from the external memory and writing them to
the HWICAP module over the PLB. While the FM-MPX decoding chain is re-
configured via PR, the SNR estimation and the FM signal demodulation are
constantly active in the static part of the device.

Either one of the three presented MPX decoder modules or an empty bit-
stream can be written to the reconfigurable FPGA partitions A and B. All con-
figurations strongly differ in the number of slices, BRAMs and DSP multipliers
as depicted in Table 1.

MPX Decoder Slices DSP48 BRAMs

Stereo audio decoder 804 9 3

Mono audio decoder 458 2 2

RDS data stream decoder 503 6 5

Empty (no decoding) 0 0 0

Table 1. MPX decoder resource overview.

The stereo decoder is the most complex decoding branch, followed by the
RDS decoder and the monaural audio decoder. In case one of the received signals
is too noisy to demodulate, the respective partition can be replaced. If the noise
power increases above a level where decoding is not feasible anymore, the MPX
decoder in question is replaced by an empty bitstream.

The trigger for the reconfiguration is given by the Microblaze CPU. The
reconfiguration conditions are presented in the following paragraphs.

7.4 Reconfiguration Conditions

For mono broadcasts our experiments have revealed that the audio distortion at
SNRs below 4 dB is so strong that it is unbearable for the listener. In this case,
the mono decoder will be removed from the active partition after the received
signal has fallen below this threshold.
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For stereo broadcasts the SNR must be approximately 21 dB above the
mono threshold [22]. This is due to the fact that in FM the power spectral
density of the demodulated MPX signal increases quadratically as the frequency
increases [9]. Since the stereo difference signal is located at an intermediate fre-
quency of 38 kHz it is more prone to noise than the monaural sum signal at
DC. Thus, in case of stereo broadcasts it is feasible for the receiver to switch
from stereo to mono if the SNR drops below 25 dB. Similarly, with our decoder
implementation the SNR threshold for decoding RDS with a bit error rate be-
low 10−3 is reached at an SNR of approximately 25 dB. Below that threshold,
the RDS decoder is replaced with an empty bitstream in order to reduce the
dynamic power consumption.

Hence, if the SNR estimator signals that the SNR has fallen below a certain
threshold, the Microblaze CPU initiates a PR of the FM multiplex decoder to be-
come more or less complex. The SNR-thresholds for the different reconfigurable
partitions are summarized in Table 2.

MPX Decoder SNR Region

Stereo audio decoder γ ≥ 25 dB

Mono audio decoder 4 dB ≤ γ < 25 dB

RDS data stream decoder γ ≥ 25 dB

Empty audio (no decoding) γ < 4 dB

Empty RDS (no decoding) γ < 25 dB

Table 2. SNR regions for PR partitions. γ denotes the carrier-to-noise ratio in dB.

With the presented configuration conditions, the resources inside the recon-
figurable region can be traded with respect to the actual requirements. An im-
portant fact is that by using PR and by regulating the amount of dynamic
logic on the device, the dynamic power consumption of the receiver can also be
regulated according to the user constraints.

7.5 Summary

The SNR in mobile reception scenarios is a function of time and vicinity. With
PR of FPGAs the logic occupation of a mobile SDR receiver can be adopted
to the actual requirements. The MPX decoders of the twin-tuner FM receiver
presented in the analysis can be modified independently during the runtime.
Thus, PR enables more degrees of freedom for cognitive SDRs on FPGAs.

Nowadays the reconfigurable region must be chosen with respect to the
largest configuration, which might cause fragmentation of reconfigurable areas.
In the future, the fragmentation could be reduced by sub-partitioning the re-
configurable partitions as proposed in [6]. However, although supported by the
FPGA fabric, at the moment PR sub-partitions and module relocation are not
supported by the Xilinx software suite, for this reason, we will investigate alter-
natives, such as GoAhead.
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8 Conclusion

In this paper, we demonstrated promising use cases for partial reconfiguration
on FPGAs as well as corresponding design tools. This started from tiny recon-
figurable modifications of a CPU, over complex video processing and database
acceleration up to two software defined radio applications. Common for all these
applications is that they benefit from being able to relocate modules to different
positions and to pack multiple modules together into a shared reconfigurable
region. While this is not well supported by the tools from the major FPGA
vendors, we showed upcoming alternatives developed in academia.
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Abstract: Memory management is one of the key challenges in the design of embed-
ded systems where memory is a scarce resource. The problem scales disproportionally
as new embedded systems incorporate many-core architectures where the cores have to
struggle accessing an even more limited amount of resources. In this paper we present
a way of creating custom memory allocators for many-core accelerators. We evalu-
ated our approach in the P2012 platform, a many-core accelerator from ST. It is shown
that a custom memory allocator created by our framework could save on average 62%
of the total cycles spent on memory resource management when compared with the
platform’s current memory allocator without increasing the allocator’s overhead.

1 Introduction

The current design trend in System-on-Chips (SoCs) utilizes heavily multiple processors

and is therefore shifted towards the Multi-Processor SoC (MPSoC) design paradigm. As

technology allows the integration of an aggressively increasing number of transistors, the

concept of many-core computing steadily emerges, suggesting tens of processor cores

integrated in one chip as a computing fabric [Bor07]. Without any question, memory

management on such architectures could contribute notably in improving performance

and mitigating the scalability bottleneck, as the processors struggle constantly to access

data from shared memory locations. This bottleneck could have an even greater impact on

many-core architectures designed for the embedded system context due to the small size

of memories used in such hardware.

Applications developed for such systems are slowly adapting to this model while trying

to exploit every possible resource by using data- and task-level parallelism. This leads

to applications with highly dynamic behaviour and parallel execution of their tasks. This

increased dynamism leads to unexpected memory footprint and fragmentation variations,

which are difficult to be identified adequately at the design time. Developing dynamic

multi-threaded applications using worst-case estimates for managing memory in a static

∗This work is partially supported by the E.C funded FP7-ICT-2009-4-248716 2PARMA Project. Official

Website: http://www.2parma.eu.
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manner would impose severe overheads in memory footprint and power consumption. In

order to avoid such type of costly over-estimations, developers are motivated to efficiently

utilize dynamic memory [WJNB95].

The dynamic memory manager (DMM) handles memory requests that happen during the

application’s execution. Dynamic memory managers are responsible for organizing the

dynamically allocated data in memory and also servicing the applications memory re-

quests (allocation/de-allocation) at run-time [WJNB95, BMBW00]. In case of a memory

request for allocation of a new object, the dynamic memory manager returns a pointer to

the application, which points to the memory position of the allocated object. In C / C++

programming language, dynamic memory allocation is performed through malloc() /

new() function calls. In case of a memory request for de-allocation of an already dynam-

ically allocated object, the DMM returns to the application either a true or a false value in

respect to success of the de-allocation process.

In this paper we study memory allocations on a many-core accelerator, namely Platform

2012, and propose a custom based memory management system to improve the perfor-

mance of these operations.

The rest of the paper is organized as follows. In Section 2 we present previous work

for memory management. Section 3 explains the P2012 hardware architecture, as well

as the available programming models and execution patterns. Section 4.1 is dedicated to

designing memory allocators for this platform and gives a brief overview of the current

memory allocator. Experimental results are shown in Section 5. Finally, the conclusions

and suggestions for future work are made in Section 6.

2 Related Work

Extensive research has been conducted for general-purpose dynamic memory manage-

ment targeting both the single processor and the multi-processor domain. In [Kri99] a

brief overview of the heap management is given and [WJNB95] discusses what policies

and search algorithms are optimal for general-purpose use in single-processor systems. In

[Iye93] authors are experimenting with maintaining multiple lists, a method which is more

suited on multi-processor systems. In [VH99] a simple parallel allocator is implemented,

which promises good scalability due to its simplicity, while [Mic04] proposes a way to re-

duce the synchronization overhead of dynamic memory allocation by using lock-free data

structures. Authors in [LK99] benchmark various general-purposed memory allocators on

typical server application workloads. Finally, the Hoard multi-threading memory allocator

is presented in [BMBW00] aiming for low average fragmentation and little scaling over-

head. Essentially, the inherent generality of existing DMMs eliminates the potential for

hardware- and application-specific optimizations.

On the other hand, there is plenty of research work regarding memory allocation for spe-

cific hardware platforms, which can not be easily applied in other systems. A memory

allocator which favours cache locality on specific SMP systems is proposed in [SAN06].

Authors in [BS10] study heap management in the Cell processor, a relevant hardware ar-
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chitecture, but they do not handle shared memory; instead of this, the processing units have

to handle their own, dedicated memory and they communicate with the system through ex-

plicit DMA calls, a limitation posed by the individual hardware platform.

Customized (i.e. application-specific) DMMs have also been proposed as an effective way

either to improve performance [BZM01] or to reduce memory footprint [Ati06]. How-

ever, DMM customization has been studied only for single-threaded applications running

on single-processor platforms. Recently, a systematic exploration strategy was proposed

[XBA+10], which is performed at design-time in order to customize DMM services to the

specific needs of a multi-threaded application. However, the evaluation was performed on

a general-purpose machine using a general-purpose POSIX-compliant operating system,

which provided the necessary synchronization primitives. In contrast, in this work we are

targeting memory management on many-core accelerators with low-level synchronization

primitives.

Overall, memory management specialized for minimal memory footprint on a massive

number of processing elements is not fully explored in the current bibliography.

3 Architecture Case: ST Platform 2012

Platform 2012 (P2012) is a many-core accelerator developed by ST Microelectronics and

CEA. The ultimate goal of P2012 is to fill the area and power efficiency gap between

general-purpose embedded CPUs and fully hardwired application accelerators [SC11].

This goal makes this platform fully compliant with the scope of many-core accelerators in

which we want to study the memory resource management.

Figure 1: P2012 Cluster as depicted in [SC11]

329

329



Processing elements in P2012 are organized into clusters. The organization of a cluster is

shown in Figure 1: Clusters are composed by several general-purpose processing elements

of the STxP70-v4 architecture, called ENCore processors. There is an option to include

specialized hardware IP cores, but this hardware feature, as well as others shown in the

Figure 1, are out of the context of memory resource management. Each cluster is managed

by a processor unit similar to the ENCore processors in terms of architecture, called cluster

controller, and the whole accelerator (also called computing fabric) is managed by another

similar processing element, called fabric controller. A first implementation of the platform

contains 4 clusters with 16 processing elements, but it is expected to be even more scalable.

Regarding the memory hierarchy, P2012 adopted a multi-level one: There are three levels

of memory, namely Level-1, 2 and 3. All the ENCore processors use the same memory

map and can access every level. L1 is shared by all the processing elements of each cluster.

It is a very fast, yet small (256 kB) memory. It is designed to be accessed in a uniform way,

meaning that it is guaranteed to be accessed by ENCore processors in a fixed, low number

of cycles regardless of the traffic. L2 is the memory which is shared among clusters in a

NUMA way. It is unclear how many cycles it will take for a processing element to access

it, as this depends on the traffic of the Network-on-Chip (NoC) which connects the clusters.

The size of L2 is currently set to 1 MB, but there are configurations where L2 is completely

omitted. Lastly, a portion of the host’s memory is accessible as L3 memory with typical

size of 256 MB. The penalty in execution is certainly big whenever a processing element

tries to access this memory, so memory accesses from the fabric side to L3 should always

be kept minimal.

3.1 P2012 Software Stack

Applications

Programming models

Operating System and

Accelerator device

drivers

Host system

Accelerator run-rime

environment

Accelerator device

Figure 2: P2012 Software Stack

P2012 acts as an accelerator, so the existence of a host system is necessary. Figure 2 shows
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the software stack required for deploying an application to an accelerator from a host. The

application description and the programming models are the same between the host and

accelerator. However, each one of them has a different run-time environment. From the

host side is the Operating System (in P2012 Linux or Android are supported) and the

accelerator device drivers, and from the accelerator side is the run-time environment of

the accelerator. P2012 Software Development Kit (SDK) contains all the required tools of

developing applications for P2012, as well as the source code of platform services up to

some extent. A user community actively supports the SDK in [Min11].

The application execution is organized as follows: A Linux driver manages the commu-

nication between the host and the fabric, i.e. loading the application code from the host

to the fabric and managing the P2012 resources from the host side. Runtime services are

available by every cluster controller. They are responsible for the application deployment

in each ENCore processor and they provide additionally the scheduling and the whole re-

source management of the cluster in terms of processor and memory resource allocation

and de-allocation, as well as of power management. Runtime code is resident to P2012

cluster controllers and its API is used in order to develop programming models.

Applications may be developed currently in two programming models which are available

and supported in P2012: Open Compute Language (OpenCL) and Native Programming

Model (NPM). The first one is quickly adopted as industry’s standard, as most of the giant

hardware companies are active members to Khronos Compute Working Group which is

responsible for the development of the official OpenCL specification. NPM is a more

device-specific approach to program the platform. It handles concurrency as an Actor

model. Other programming models can be implemented on top of NPM; P2012’s OpenCL

runtime on the P2012 platform is also built on top of it [SC11].

Figure 3: Executing an application on P2012

Both programming models utilize P2012 runtime in order to access resources and the low-

level task scheduler. In fact, they both use the execution model as shown in Figure 3.
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First, the host initializes the fabric and sends the necessary code to be executed. Resource

allocation, such as task mapping to specific ENCore processors and memory allocations

for processor stacks and data buffers, is the next step in the execution scheme. In fact,

resource allocation should be completely finished before the task execution phase begins.

During task execution there is no new memory allocation: even the new task instances use

the memory space which was previously allocated to the initial identical task. After the

end of every task on the ENCore processors, resource de-allocation takes place and P2012

is set off.

4 Creating a custom memory allocator for P2012

4.1 dmmlib Framework

dmmlib is a highly portable dynamic memory management library written in C. It allows

developers to generate custom memory allocators by choosing the desired features and

policies.

The framework provides custom implementations for dynamic memory allocation, re-

allocation and de-allocation which could replace classic system calls, i.e. malloc(),

realloc() and free(). The generated functions could be completely standalone if

the developer knows a priori the total memory to be managed, or they could use OS calls

to access more memory space such as sbrk() or mmap(). Multi-thread dynamic mem-

ory management can be supported by using POSIX mutexes or platform-specific synchro-

nization primitives. The memory can be organized in a multiple number of heaps, each of

which may contain or not lists of fixed-sized free blocks. There are several implementa-

tions of block organizations (singly, doubly linked lists etc.) and a broad variety of search

block algorithms is supported (exact-, first-, best-, next-, good-fit etc.) Additionally, there

is support for coalescing and splitting of memory blocks to prevent excessive fragmenta-

tion. Respective thresholds are provided at design time or runtime for both of the previous

mechanisms. Finally, the library supports a rich set of statistics, such as the number of

memory accesses and requested allocation sizes, which are fully available at run-time at

the expense of some overhead on the metadata structures.

Some of the aforementioned features can only change on design time, so the developer

will have to select them before generating the library’s binary code. In a similar manner,

other features can be changed during runtime without any need to recompile the library.

Most of them are highly parameterizable either statically in design time, or dynamically

through knobs at runtime. The perspective of tuning those knobs at runtime in order to

create more adaptive allocators is explored more thoroughly in [XSBS11]. In any way, it

should be noted that there is a clear trade-off between code size and customizability as the

developer chooses to implement features and policies statically or not.

In the context of this work the dmmlib framework was integrated in P2012. The P2012

runtime is targeted, as this is considered the lowest level for resource management inside

a P2012 cluster. As a result of the deep integration inside the runtime, every custom
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memory allocator generated by dmmlib, supports both NPM and OpenCL. Another benefit

of this integration that the usage of the optimized allocator is transparent to the application

developers, i.e. not requiring any modifications in the application code.

4.2 Original memory allocator

The memory allocator used on P2012 is a variation of Doug Lea’s family of dynamic

memory allocators (dlmalloc) [Dou00]. The Lea allocator is considered one of the best

overall memory allocators competing even with custom allocators [BZM02].

For every allocation call a memory block is given to the application, containing the re-

quested space bounded by the block’s size information. This helps separating each block

and improves operations on the data layout such as coalescing blocks.

Free memory blocks are maintained on circular doubly linked lists: each free block con-

tains pointers to its previous and next in the list block inside the space destined for appli-

cation data. There are 128 of free lists containing blocks according to their size, e.g. there

are lists for blocks of 16, 32 bytes and so on. The maximum number of the blocks which

can be included in these lists is getting lowered logarithmically as the size of blocks is

being raised.

Blocks are sorted and searched through as in LRU or FIFO allocation with support to

coalesce and split blocks.

4.3 Choosing options for a dmmlib memory allocator on P2012

dlmalloc is a very efficient general-purpose memory allocator, but it is not optimized for

the current application execution scheme on P2012. In order to investigate further the

integration of dmmlib in P2012, a custom memory allocator was generated with features

and options we considered optimal for this platform.

The main reasoning for most of the choices was to achieve simplicity as the target platform

is an embedded one. More specifically, we have chosen block structure identical to the

dlmalloc’s one in order to prevent metadata overhead on this low-memory environment.

We have tried to achieve simplicity in the lists structure. Thus, we are using circular singly

linked lists instead of using circular doubly linked lists, achieving a reduction in memory

footprint compared to the original allocator. Furthermore, instead of using a great number

of lists for free blocks, we choose to use only one such list. This simplifies a lot the

procedure of finding an appropriate free memory block big enough to accommodate the

allocation request. Finally, we have disabled coalescing and splitting, further simplifying

the malloc() and free() calls, thus resulting in performance gains.

The resulted memory allocator is an extremely simple one, which fits in the current exe-

cution flow of P2012. It would cause fragmentation issues on applications which require

executing various tasks on different times, but the current implementations of program-
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ming models do not create such tasks or handle the resources this way.

5 Experimental Results

5.1 Experimental Setup

In order to compare the proposed custom memory allocator with the current one, it is

necessary to run cycle-accurate simulations for multiple applications running on P2012.

RTL simulation was chosen since NoC traffic and memory access timings are the most

accurate ones in this type of simulation.

RTL simulation is one of the most accurate ones, but it is also one of the slowest. All of the

tested applications use one cluster, so simulating just one cluster is adequate for the bench-

marking needs. Even then, simulating one cluster in RTL requires a tremendous amount

of time even when running simple applications. In order to improve the simulation time,

the applications were simplified: Since all of the memory allocations and de-allocations

take place in the cluster controller, we do not need to enable the ENCore processors. The

memory allocation and de-allocation traces of applications were extracted and simple test-

benches were created, where only these types of operations were used.

We will show results from the following applications, all of which are available through

the official P2012 SDK [Min11]:

Integral Calculates the integral of an input matrix.

Gaussian Applies a Gaussian blur effect on an input picture.

FAST Features from Accelerated Segment Test, a corner detection algorithm implemen-

tation used on computer vision.

Matrix Performs matrix multiplication of an input matrix with a constant matrix.

5.2 Allocators’ Evaluation

In terms of code size the simplicity of the generated allocator makes a big difference

compared to Doug Lea’s: 60 kB versus 88 kB, a 32% improvement on the code size.

Metadata (i.e. internal heap organization and usage information and statistics) is essen-

tially the same as the block structure is kept intact: the block size information appears in

the memory twice, before and after the space for application data. This is equivalent to 64

bits per block, as the size information in dmmlib takes up the size of a word and P2012’s

ENCore processors use 32-bit words.

The speed-up of using the custom memory allocator over Doug Lea’s is also substantial.

Figure 4 shows an average improvement of 60% percent in cycles for executing all the

334

334



Figure 4: Comparison of the performance of the two memory allocators in various applications

Figure 5: Comparison of the performance of the two memory allocators in various applications with
de-allocation included

memory allocations required by each application. In Figure 5 the memory de-allocations

have been included in the total time, but they have very little affect on the final outcome.

Tables 1 and 2 present a clear view on the average and the max time each allocator spends

for one event and the respective differences.

The trend we could extract from these timings is that applications which use many small

blocks (e.g. the Matrix application) are more benefited by the customized memory alloca-

tor of dmmlib.
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Table 1: Average and Maximum values of Allocation Times

App. Allocator Avg. Cycles Avg. Diff. Max. Cycles Max. Diff.

Integral
initial 1224

-62.54%
2278

-66.11%
custom 329 772

Gaussian
initial 886

-62.86%
2293

-66.33%
custom 466 772

FAST
initial 737

-55.5%
1205

-49.88%
custom 328 604

Matrix
initial 1462

-67.85%
2334

-67.65%
custom 470 755

Table 2: Average and Maximum values of De-allocation Times

App. De-allocation Avg. Cycles Avg. Diff. Max. Cycles Max. Diff.

Integral
initial 412

-52.91%
603

-38.97%
custom 194 368

Gaussian
initial 409

-52.57%
603

-66.33%
custom 194 368

FAST
initial 367

-38.69%
550

-12.55%
custom 225 481

Matrix
initial 416

-51.92%
636

-41.04%
custom 200 375

5.3 Estimating memory allocations on more dynamic task execution cases

It is quite certain that it will be possible to have more complex task execution flows as

P2012 matures. Resources would then have to be de-allocated and re-allocated in a more

fine-grained way, i.e. between task executions and not just after the last task execution of

the application. In respect with this, we need to test the memory allocators in use cases

where data is allocated and de-allocated in a more dynamic way.

There are still not any available applications matching this behavior. What we propose in

order to estimate the performance of memory allocators in such cases is to use the traces of

the previous applications and to randomize the spots of data de-allocations. The allocation

dependencies will still be respected (e.g. we can not de-allocate memory which is not

allocated before) and the memory requests will be realistic enough.

For this part we have used the FAST and Matrix applications since the tasks of these

applications is more near to real application kernels. In Figure 6 there is an overview of

the total cycles spent on memory management operations. The custom memory allocator

still outperforms the original one, but the gap is getting much more narrow. Table 3 and

4 show the average and worst cases of timings for allocating and de-allocating data. It

should be noted that the number of allocations for the FAST application are less than

the number of allocations for the Matrix, as the FAST application performs fine-grained

memory allocations inside the kernel. As a result, the customized memory allocator seems
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Figure 6: Comparison of the performance of the two memory allocators in dynamic cases

Table 3: Average and Maximum values of Allocation Times for more dynamic cases

App. Allocation Avg. Cycles Avg. Diff. Max. cycles Max. Diff.

FAST
initial 549

-29.14%
1153

-32.35%
custom 389 780

Matrix
initial 583

-6%
1184

-9.62%
custom 548 1310

to perform better in the case of the FAST application over the Matrix one.

6 Conclusions and Future Work

Our approach generating customizable memory allocators allows us to speed up the explo-

ration process of finding an efficient memory allocator for many-core architectures such as

P2012. The custom memory allocator we proposed for P2012 achieves a speedup of 2.6x

in cycles without compromising the metadata overhead introduced by the original memory

allocator of P2012 runtime.

As the P2012 evolves and other many-core accelerators are introduced, we can expect

multiple use-case scenarios and increased interaction between these systems and their sur-

rounding environment. With regards to that, new features for memory management could

be introduced, such as runtime, adaptive control of features like coalescing and splitting,

support to allocate and de-allocate memory regions by the worker processors as well, and

ability to perform fine-grained memory management on dedicated memory regions.

Table 4: Average and Maximum values of De-allocation Times for more dynamic cases

App. De-allocation Avg. Cycles Avg. Diff. Max. Cycles Max. Diff.

FAST
initial 347

-38.69%
565

-12.55%
custom 225 481

Matrix
initial 353

-34.28%
617

-21.07%
custom 232 487
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Abstract: In this paper, we present an acceleration method for texture-based ray cast-
ing on the compute unified device architecture (CUDA) compatible graphics process-
ing unit (GPU). Since ray casting is a memory-intensive application, our method in-
creases the hit rate of the texture cache during rendering. To achieve this, our method
dynamically selects the width and height of thread blocks (TBs) such that each warp,
which is a series of 32 threads simultaneously processed on the GPU, can achieve high
data locality for specific viewpoints. The objective of this selection is to allow every
warp rather than every thread to access data with a small stride, because the GPU ex-
ecutes multiple threads at the same time. In experiments using a GeForce GTX 480
card (i.e., the latest Fermi architecture), we find that the speedup of our method ranges
from a factor of 1.0 to that of 4.0, depending on viewpoints. We think that optimizing
the shape of TBs is important to achieve more cache hits in the highly-threaded CUDA
hardware.

1 Introduction

Ray casting [Lev88] is a visualization technique for intuitive understanding of three-

dimensional (3-D) objects. For example, this technique is useful to analyze not only

computed tomography (CT) images in medical area [TIH03] but also simulation results

in computational fluid dynamics [NIH08]. In ray casting, the voxel values of the volume

are accumulated into pixel values on the screen. To do this, a ray is generated from the

viewpoint to each pixel, and then values of penetrated voxels are sampled at regular in-

tervals along the ray for accumulation. Thus, the accumulation is accomplished from 3-D

space to 2-D space. During this accumulation procedure, voxel values can be reused only

within neighboring region. Therefore, ray casting is a memory-intensive application rather

than a compute-intensive application.

To deal with this large amount of memory access, many renderers [NIH08, KW03, RV06]

were implemented using the graphics processing unit (GPU) [MM05], which is an ac-

∗This work was partly supported by JSPS Grant-in-Aid for Scientific Research (B)(23300007) and Young

Researchers (B)(23700057)
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celerator for graphics applications. The memory bandwidth of the GPU is an order of

magnitude higher than that of the CPU. Furthermore, this architecture is capable of run-

ning thousands of lightweight threads in parallel, which are useful to hide memory latency

with data-independent computation. Using this accelerator, the accumulation procedure

can be easily parallelized because there is no data dependence between different rays (i.e.,

different pixels). The volume data is typically loaded as a 3-D texture to interpolate voxel

values using texture mapping hardware of the GPU. This hardware has a cache mecha-

nism to reduce the latency of data access for acceleration. Consequently, the rendering

performance can be increased by maximizing the locality of references.

In this paper, we present a view-dependent method for increasing the hit rate of the tex-

ture cache, aiming at accelerating texture-based ray casting [HS89]. To achieve this, our

method maximizes the data locality by dynamically selecting the width and height of TBs

according to the geometrical relationship between the viewpoint and the volume axes. The

shape of TBs is selected such that a group of threads called warp [NVI10] can access data

with a small stride. Since threads in the same warp are simultaneously processed on the

GPU, such parallel threads have to maximize the locality of references. Our method cur-

rently works with the compute unified device architecture (CUDA) [NVI10], which is a

programming framework for the NVIDIA GPU.

2 GPU-based Volume Rendering

2.1 Compute Unified Device Architecture (CUDA)

The CUDA-compatible hardware [NVI10] consists of hundreds of CUDA cores structured

in a hierarchy. The hardware has tens of streaming multiprocessors (SMs), each containing

8 or 32 CUDA cores depending on the generation. Using these cores, thousands of threads

are executed in a single-instruction, multiple-thread (SIMT) fashion [NVI10]. This highly-

threaded architecture is designed to overlap memory latency with computation.

To achieve efficient overlap, threads are classified into data independent groups, namely

thread blocks (TBs). Therefore, more TBs should be resided and processed together on the

SM. Since there is no data dependence between TBs, such concurrent TBs contribute to

have more flexibility for efficient scheduling of threads. Each resident TB is further broken

into groups of 32 consecutive threads called warps. A warp is the minimum scheduling

unit managed by the SM.

Threads can be identified using a 2-D index, forming a 2-D TB. The TB shape w × h,

where w and h be the width and the height of TBs, respectively, can be specified by an

argument to the kernel function, which runs on the GPU. On the other hand, the warp

shape p× q cannot be directly specified by the program, where p and q represent the width

and the height of warps, respectively. Since threads in a warp have consecutive indexes,

the warp shape is automatically determined by the TB shape. The execution order of

warps is dynamically determined by the warp scheduler, which cannot be controlled by

the program.
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Figure 1: Geometry of ray casting. Pixel values are computed by accumulating color and opacity
values of voxels penetrated by a ray from the viewpoint.

2.2 Ray Casting

Figure 1 illustrates the geometry used for ray casting [Lev88]. Let V be the volume to be

rendered from the viewpoint O. We consider a cubic volume of N ×N ×N voxels, where

N represents the volume size. We assume that each voxel has a scalar data associated with

color and opacity values. Let x, y, and z be elements of the voxel coordinates.

The ray casting technique casts a ray R from the viewpoint O to every pixel (u, v) on the

screen S, where 1 ≤ u ≤ W and 1 ≤ v ≤ H . W and H here represent the width and the

height of the screen S. Ray R penetrates voxels in the volume, so that the value S(u, v) of

pixel (u, v) is computed by accumulating color and opacity values of penetrated voxels in

front-to-back order. This accumulation is done at regular intervals along ray R as follows:

S(u, v) =
n�

i=1



α(ei)c(ei)
i−1�

j=0

(1 − α(ej))



 , (1)

where ei represents the i-th voxel penetrated by ray R, n represents the number of pene-

trated voxels, c(ei) and α(ei) represent the color and the opacity of voxel ei, respectively,

and α(e0) = 0.

2.3 Texture-based Rendering with CUDA

Eq. (1) indicates that different pixel values can be computed in parallel because there is

no data dependence between them. Consequently, the computation of a pixel is assigned

to a thread in typical renderers. A screen of W × H pixels can then be rendered by WH

threads, which compose ⌈W/w⌉ × ⌈H/h⌉ TBs. Using this parallel scheme, voxels are

accessed in front-to-back order.

Since rays do not always penetrate the center of voxels, voxel values must be interpo-

341

341



Figure 2: Organization of a 3-D texture in CUDA. A 3-D texture consists of a bunch of 2-D slices
optimized for 2-D spatial locality via a z-order curve [Mor66]. A series of red arrows represents the
sequence of physical memory address in a 2-D slice. The physical address is shown in each texel’s
upper left corner.

lated before accumulation. To accelerate this interpolation, many implementations em-

ploy texture-based rendering [HS89], which performs interpolation using texture mapping

hardware of the GPU. Thus, the volume is accessed via a 3-D texture to take advantage of

hardware accelerated interpolation.

3 Texture Memory Organization

Figure 2 shows how the GPU maps a logical address space onto a physical memory space

in a 3-D texture [MM05, PF05]. As shown in this figure, a 3-D texture consists of a bunch

of 2-D slices. Each slice is further optimized for 2-D spatial locality via a z-order curve

[Mor66], as illustrated in a sequence of red arrows in Fig. 2. The z-order curve has a

recursive hierarchy, so that a z-ordered block at the l-th level of hierarchy contains a 2-D

slice of 2l × 2l texels, where 1 ≤ l ≤ ⌈log N⌉ (see Fig. 3). For simplicity, we assume N

being a power of two (i.e., N = 2l) in the following discussion.

Although the z-order curve is optimized for 2-D spatial locality, the physical stride be-

tween two adjacent voxels is not uniform in this data structure. To investigate this issue in

more detail, let us consider accessing two adjacent voxels ei and ei+1. The stride between

these voxels can then be classified into two groups depending on their coordinates:

1. The adjacent voxels have different z. In this case, voxels ei and ei+1 exist on two

adjacent slices. These voxels can be accessed with a stride of N2, because they have

the same x and y.

2. The adjacent voxels have different y or x. In these cases, voxels ei and ei+1 exist
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Figure 3: Hierarchical structure of a z-order curve. A block at the l-th level contains four internal
blocks of the (l − 1)-th level. The maximum stride appears between these internal blocks: between
texels a and b along the horizontal axis, and between texels c and d along the vertical axis. The
physical index of texels b and d are 4l−1 and 2 · 4l−1, respectively. The physical index of texels a

and c are
�

l−2

k=0
4k and 2 ·

�
l−2

k=0
4k, respectively.

on the same slice. The stride between them varies according to their location on

the slice. For example, the strides along the x-axis range from 1 to 11 in Fig. 2.

However, the maximum stride at the l-th level of hierarchy appears between adjacent

blocks of the (l − 1)-th level, as shown in Fig. 3. The maximum stride along the

x-axis can be given by (2 · 4l−1 + 1)/6 while that along the y-axis can be given

by (2 · 4l−1 + 1)/3. Since N = 2l, voxels along the x-axis and the y-axis can be

accessed with a stride of (N2 + 2)/6 and that of (N2 + 2)/3, respectively.

In summary, the x-axis, y-axis, and z-axis have a different stride between adjacent voxels,

and their ratio can be approximated by 1 : 2 : 6. Therefore, it is better to access voxels

along the x-axis in order to achieve more cache hits.

4 Proposed Method

In this section, we describe our acceleration method that selects the TB shape w×h during

rendering. We first explain our acceleration strategy, and then present how our method

selects the TB shape according to the strategy.

4.1 Acceleration Strategy

As we mentioned in Section 1, our method maximizes the locality of references. To

achieve this, we focus on four points as follows:

1. The SM processes threads in the same warp at the same time.

2. Each volume axis has a different stride between adjacent voxels.

343

343



3. The TB shape w × h determines the warp shape p × q. For details, see [NVI10].

4. The number of resident TBs should be maximized to take advantage of the highly-

threaded GPU architecture.

The first point motivates us to optimize the memory access pattern of a warp rather than

that of a thread. This point is a unique feature owing to the highly-threaded GPU architec-

ture. On earlier acceleration systems such as cluster systems [TIH03, MIH04], optimiza-

tion is successfully done for a single process (i.e., a single ray). In contrast, we emphasize

optimization of a warp (i.e., a ray frustum) as a key acceleration strategy for the GPU.

Thus, we must investigate the memory access pattern that can be caused by a warp. Since

voxels are sampled at regular intervals from the viewpoint, a warp accesses voxels on the

surface of a sphere. For simplicity, we assume that this spherical surface can be approxi-

mated with a plane. Under this approximation, a warp accesses voxels on a plane that are

parallel to the screen.

With respect to the second point, voxels should be always accessed along the x-axis, which

has the smallest stride among the volume axes. However, this is not a practical solution

because the volume can be rendered from an arbitrary viewpoint. For example, the x-axis

can be rendered as a vertical line on the screen, but it can appear as a horizontal line with

a different viewpoint. Thus, the volume axes have different appearance on the screen,

depending on the location of the viewpoint (see Fig. 4). Therefore, we have determined to

give priority to the volume axes: voxels should be accessed in the order of x, y, and z to

have smaller strides. Clearly, this priority should be implemented as per-warp order instead

of per-thread order. Therefore, we optimize the warp shape to realize the prioritization.

The third point plays the key role in realizing the prioritized access mentioned above. As

we mentioned in Section 2.1, the warp shape p × q is determined by the TB shape w × h.

Table 1 shows their relationship when using the TB size wh of 128. This table indicates

that horizontal warps (i.e., p > q) are generated if w ≥ 8. Otherwise, vertical warps (i.e.,

p < q) are generated. The warp size p× q must be selected such that each warp can access

voxels in the order of x, y, and z. For example, vertical warps are better than horizontal

warps if the x-axis appears as a vertical line on the screen. In this case, vertical warps are

allowed to access voxels with smaller strides than horizontal warps.

The last point determines the size wh of TBs. As we mentioned in Section 2.1, the number

of resident TBs should be maximized to efficiently hide memory latency with computation.

Due to the limitation of available resources, up to 8 TBs can be processed on the SM at

a time [NVI10]. Similarly, up to 1536 threads can be resident on the SM. Therefore, the

TB size wh must be wh ≤ 192 to maximize resident TBs on the SM. In addition, the TB

size wh must be a multiple of the warp size (i.e., 32) to avoid cores from being idle during

SIMT execution. Since the number of resident TB depends on the amount of resource

consumption, we compiled our rendering kernel with wh = 192, 160, and so on. We then

found that wh = 128 is the maximum TB size that can run 8 TBs on the SM. Thus, our

kernel runs with wh = 128.
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Table 1: Relationship between TB shape w × h and warp shape p × q. Values are presented for the
TB size wh of 128. Horizontal warps (i.e., p > q) are generated if w ≥ 8. Otherwise, vertical warps
are generated.

TB shape w × h Warp shape p × q Aspect ratio of warp

1 × 128 1 × 32 1 : 32

2 × 64 2 × 16 1 : 8

4 × 32 4 × 8 1 : 2

8 × 16 8 × 4 2 : 1

16 × 8 16 × 2 8 : 1

32 × 4 32 × 1 32 : 1

64 × 2 32 × 1 32 : 1

128 × 1 32 × 1 32 : 1

(a) (b) (c) (d) (e) (f)

Figure 4: Geometrical relationship between the viewpoint and the volume axes. Each of subfigures
(a)–(f) corresponds to one of six representative viewpoints. In these viewpoints, the x-axis can be
parallel to one of the horizontal, the vertical, and the depth directions. The x-axis and the z-axis
have the smallest stride and the largest stride among the volume axes, respectively.

4.2 Selection of Thread Block Shape

Our method selects the TB shape w×h according to the geometrical relationship between

the viewpoint and the volume axes. For simplicity, we consider here six representative

viewpoints, which make two of the volume axes parallel to the screen axes. Figure 4

shows six images rendered with the representative viewpoints. Given the viewpoint O, the

TB shape is selected in the following three steps:

1. Plane detection. Our method detects the plane most parallel to the screen. For

example, the xy-plane is such a parallel plane in Figs. 4(a) and 4(e). According

to our approximation, voxels on a parallel plane are simultaneously accessed by a

warp.

2. Primary axis detection. The primary axis with a smaller stride is selected from two

axes that create the parallel plane. For example, the yz-plane is the parallel plane in

Figs. 4(c) and 4(f), so that the y-axis is selected as the primary axis.

3. TB shape selection. The TB shape is selected according to the direction of the

primary axis rendered on the screen. Vertical and horizontal warps are selected if
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the primary axis is rendered in a vertical line and in a horizontal line on the screen,

respectively. Our method currently uses the TB shape of w × h = 32 × 4 for

horizontal warps and that of 1 × 128 for vertical warps. For example, the TB shape

of 32×4 is selected for viewpoints in Figs. 4(a), 4(b), and 4(c), because the primary

axis is rendered in a horizontal line from these viewpoints.

5 Experimental Results

To evaluate our method in terms of the rendering performance, we measured the frame

rate and the hit rate of the texture cache. For experiments, we used a desktop PC equipped

with a GeForce 480 GTX card. Our machine runs with Windows 7, CUDA 3.2 [NVI10],

and graphics driver 260.61. The cache hit rate was measured by CUDA Visual Profiler.

As a rendering implementation, we used a sample code distributed with CUDA SDK.

This code originally uses a texture to refer a color map table, which associates color and

opacity values with each voxel. Since references to this table results in perturbation of

cache behavior, we modified the code such that it stores the table in shared memory. Thus,

the modified code uses textures only for the volume data. We used N = W = H = 1024
for performance evaluation. The volume consists of 8-bit data.

The volume data was rendered using six viewpoints (a)–(f) presented in Fig. 4. Note that

these viewpoints are in symmetric positions. We used symmetric viewpoints, because

threads are allowed to have the same workload despite the difference of viewpoints. That

is, the same number of voxels is accessed for each viewpoint, but with a different order.

This is necessary to avoid misunderstandings caused by asymmetric viewpoints, which

assign different workloads to threads. Due to the same reason, optimization techniques

such as early ray termination and empty space skipping [Lev90] are not used during ex-

periments.

Figure 5 shows the frame rates of our dynamic method and a static method. The static

method uses a fixed shape w×h = 16×16 (i.e., p× q = 16×2) for arbitrary viewpoints.

For viewpoints (b), (d), (e), and (f), our method achieves higher frame rates than the static

method. The speedup over the static method reaches 1.1, 4.0, 1.3, and 1.5 for viewpoints

(b), (d), (e), and (f), respectively. In particular, the frame rate for viewpoint (d) increases

from 11.6 to 46.6 fps, with increasing the cache hit rate from 51.2% to 73.9%. On the

contrary, there is no significant difference for viewpoints (a) and (c). This is due to the

warp shape used in the static method. For these viewpoints, the static method generates

horizontal warps, as our method does. Therefore, our method cannot increase the cache

hit rate for these viewpoints.

Figure 6 explains how the cache hit rate determines the frame rate. We measured both

rates using eight different TB shapes, ranging from w × h = 1 × 128 to 128 × 1. Each

frame rate is the average of ten trials. As shown in Fig. 6, higher frame rates are obtained

when higher cache hit rates are achieved. For instance, the highest frame rate of 50.8 fps

is observed when the cache hit rate reaches 73.8%. In contrast, the lowest frame rate of

5.2 fps results in a cache hit rate of 4.2%. Thus, the frame rate is mainly determined by

346

346



0

10

20

30

40

50

60

(a) (b) (c) (d) (e) (f)

F
r
a
m
e
r
a
te
(f
p
s)

Viewpoint

Static method

Our dynamic method

Figure 5: Comparison of frame rates between our dynamic method and the static method. The former
uses the TB shape w × h = 32 × 4 for viewpoints (a)–(c) and w × h = 1 × 128 for viewpoints
(d)–(f). The latter uses the default shape w × h = 16 × 16 for arbitrary viewpoints.

the cache hit rate.

Another important behavior in Fig. 6 is that all of the eight TB shapes have a wide range

of cache hit rates ranging approximately from 5% to 80%. This behavior indicates that

a single shape of TBs is not sufficient to obtain higher cache hit rates for all viewpoints.

Therefore, it is better to change the TB shape according to the location of the viewpoint,

as we do in our method.

We next investigate the relationship between the TB shape and the frame rate. Figure 7

shows frame rates with different TB shapes, ranging from w×h = 1×128 to 128×1. The

results are classified into two groups: (1) viewpoints (a)–(c), which have smaller strides

for horizontal warps; and (2) viewpoints (d)–(f), which have smaller strides for vertical

warps. As we mentioned in Section 4.1, the warp size varies from p × q = 1 × 32 to

32 × 1, according to the TB shape w × h (see Table 1). Recall that horizontal warps are

generated if w ≥ 8.

Figure 7(a) indicates that horizontal warps rather than vertical warps yield high frame

rates. In contrast, Fig. 7(b) shows that vertical warps achieve higher frame rates than

horizontal warps. Actually, these figures are in a symmetric relation. A vertical symmetry

axis exists between w × h = 4 × 32 and 8 × 16 (i.e., between p × q = 4 × 8 and 8 × 4).

For example, viewpoints (b) and (d) have a cross point on the vertical symmetry axis, and

both have the xz-plane as a parallel plane. Therefore, it is better to change the TB shape

at the symmetry axis, which determines the warp shape to be vertical or horizontal. This

dynamic optimization is exactly what our method implements.

Although our method optimizes the TB shape, the frame rates for viewpoints (c) and (f)

result in lower values. When these viewpoints are used, the x-axis is parallel to the depth

direction, as shown in Figs. 4(c) and 4(f). Therefore, voxels are always accessed with a

large stride, which decreases the cache hit rate to at most 33.1%, as shown in Fig. 6. These

results also imply that the capacity of the texture cache is not large enough to deal with

N = 1024. Actually, the cache hit rate ranges from 33.2% to 69.2% if a smaller volume

of N = 512 is rendered with viewpoints (c) and (f).
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Figure 6: The frame rate and the cache hit rate with different TB shapes ranging from w × h =
1 × 128 to 128 × 1. Each subfigure contains results for six viewpoints shown in Fig. 4(a)–(f).

6 Related Work

Krüger et al. [KW03] presented the impact of optimization techniques such as early ray

termination and empty space skipping [Lev90] on the GPU. Using these techniques, the
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Figure 7: Frame rates with different shapes of TBs. (a) Results for three viewpoints (a)–(c), which
are efficient with horizontal warps. (b) Results for the remaining viewpoints (d)–(f), which are
efficient with vertical warps.

rendering performance is increased by a factor of 3. These techniques intend to reduce the

amount of data access while our optimization strategy reduces the latency of data access.

A similar technique is presented by Rijters et al. [RV06], who employ an octree data

structure on the GPU.

An optimization strategy is presented by Ryoo et al. [RRS+08] for CUDA applications.

Their strategy investigates the number of resident TBs to evaluate resource utilization. The

TB size wh is optimized using this metric but the TB shape w × h is not investigated for

further optimization.

Liu et al. [LZS09] presented an optimization framework capable of empirically searching

for the best optimizations for GPU applications. Using their framework, we can easily find

the best shape of TBs in terms of the performance. In contrast to this empirical approach,

our approach gives insight into the relationship between the data locality and the memory

access pattern. According to our insight, we can prune the search space in terms of the TB

shape, which contributes to reduce the overhead of run-time optimization.

7 Conclusion

In this paper, we presented an acceleration method for texture-based ray casting on the

CUDA-enabled GPU. Our method increases the hit rate of the texture cache by selecting

the shape of TBs during rendering. This selection focuses on the geometrical relationship

between the viewpoint and the volume axes. Our method determines the TB shape such

that threads in the same warp can have a small stride of memory access. Such a small stride

can be obtained if each warp accesses consecutive voxels along the x-axis. In experiments,

we investigated the cache hit rate and the frame rate using six viewpoints. We found

that our method increases the cache hit rate by approximately 20%. This higher locality

achieves a frame rate of 46.6 fps, which is four times higher than that of a naive method
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that uses TBs of a fixed shape. Future work includes further evaluation using other GPU

architectures that are compatible with OpenCL.
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Abstract: In the last years, complex applications from various domains are
implemented in embedded devices. These applications make extended use of the
dynamic memory to store dynamically allocated data structures. The implementation
of these data structures affects the performance and the memory usage of the
embedded system. A methodology for selecting the appropriate data structures at
design time is the Dynamic Data Type Refinement (DDTR) methodology. In this
paper we present an extension to this approach, by presenting a methodology for
adapting the dynamic data structure implementations to the requirements of the
embedded system at runtime. By implementing the proposed methodology to a set of
various applications from different domains, we achieve a dynamic memory size
reduction up to 32%.

1 Introduction and Motivation

In the emerging market of embedded systems, an increasing amount of applications (e.g.,
3D games, video-players) comes from the general-purpose domain and this software
needs to be mapped onto extremely compact and mobile devices, which struggles to
execute them. These complex applications hold very different restrictions regarding
memory usage features, and more concretely are not concerned with an efficient use of
the dynamic (heap) memory. Also, they receive input from and serve directly the end
user of the embedded system. This means that the actions of the user have significant
impact on the control flow of the algorithms in the applications, thus making the
execution dynamic and event-driven.

This has led to an increased reliance on specific data structures, which allow data to be
dynamically allocated and deallocated at run-time (releasing the memory they occupied
back to the Operating System, when it is no longer needed) and provide an easy way for
the designer to connect, access and process data. They can cope, in the most efficient
way, with the variations of run-time needs (e.g., network traffic, user interaction,
controller input) and the massive amounts of data processed and stored. The most
common examples of these dynamically allocated data structures are single and double
linked lists.

1 This work is partially supported by the E.C funded FP7-ICT-2009-4-248716 2PARMA Project. Official
Website: http://www.2parma.eu.
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The data structure implementations affect both the memory consumption and the
performance of the application, because each data structure has different characteristics
in terms of memory size which it occupies and memory accesses needed to access the
data (which affects the performance of the application and the energy consumption of
the whole system) [10]. However, the implementation choices made at design time do
not take into consideration runtime information that can change during the execution of
the application. This information can be derived from the system (e.g. available
memory) or from the application (e.g. the current memory size of the data structure).

We argue that the data structure implementations can change at runtime, according the
runtime information such as the available memory and the performance requirements of
the application. Thus, it is possible to achieve more efficient system resource utilization
at runtime. The approach in [10] is the Dynamic Data Type Refinement (DDTR)
methodology that provides one optimal data structure implementation for each metric
under consideration (i.e. performance and memory footprint). This is accomplished at
design time, by inserting the DDTR library interface in the application and then
executing the application using some input traces. However, the data structure selected
as optimal may not be actually the optimal under certain circumstances.

For example, consider the memory size of two data structure implementations: single
linked list (SLL) and dynamic array. The amount of memory that the data structure
occupies is obviously affected by the number of objects stored in each data structure and
the additional information that the data structure uses to store the objects (i.e. in the case
of SLL a pointer to the next object). As a motivation example, Dijkstra application [9]
contains a data structure that stores 258 objects of 12 bytes each one, which are accessed
by the algorithm. In order to optimize the application in terms of memory footprint, one
can use the DDTR approach. According to DDTR the optimal data structure
implementation is the SLL. Indeed, Figure 1 displays the comparison between the
memory size of SLL and dynamic vector up to 258 objects. However, when the data
structure holds between 193 and 256 objects, dynamic vector implementation requires
less amount of memory to store the same objects. In this case, we can achieve better
memory utilization by changing the data structure implementation from SLL to dynamic
array. Thus, in this paper, we examine whether by performing such data structure
adaptations, is possible to achieve better memory utilization.

The remainder of the paper is organized as follows. In Section 2, we describe some
related work. In Section 3, we analyze the design methodology. In Section 4 our
benchmarks are introduced and the experimental results are presented. Finally, in
Section 5 we draw our conclusions.

2 Related Work

The authors of [1] present a dynamic data type refinement methodology. Using this
methodology the designer can make tradeoffs between performance and energy
consumption by selecting different data structure combinations from a library of such
implementations.
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In [2] a set of metadata is presented that could be used to analyze the behavior of the
dynamically allocated data structures. The metadata targeted most the access pattern
characterization in sequential and random, as well as some other behaviors like the
frequency of constructions and copy-constructions.

The Dynamic Data Type Refinement methodology provides a set of Pareto points, at
design time, which the designer can use to make trade-offs between performance,
memory footprint and energy. Each Pareto point represents a data structure (or a
combination of data structures). These data structure implementations are set at design
time and remain the same during the execution of the application. In this paper we
present a new approach: We argue that by changing the dynamic data type
implementation at runtime, we can achieve better resource utilization. The reason that
our approach achieves better results that the DDTR, is the fact that it takes into account
runtime information that determine which dynamic data type (or combination) is optimal
at each point of the execution of the application.

Figure 1: Memory size evolution of single linked list and dynamic array

Several approaches have been proposed for runtime adaptation of applications. For
example [3] concentrates in the software adaptation using dynamic change in application
components. The authors introduce a framework that monitors changes in the execution
environment of applications and performs a dynamic recomposition of the application
components, when significant changes in the environment take place.

A few works focus on the dynamic configuration of parallel applications. For instance,
in [4] is described a runtime optimization approach that allows the automatic on-the-fly
reconfiguration of the parallel simulation code for increasing the performance of the
application. The dynamic adaptation is performed by collecting and combining runtime
information from the application with static parallel performance models.

There are several tools that focus on runtime software adaptation. For example, Pin [5] is
a dynamic binary instrumentation tool that performs in process-level and allows the
modification of application instructions prior to the instruction execution. Similar tools,
that operate in similar fashion, are Strata [6] and DELI [7].
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Runtime adaptation has also been proposed for task migration. For example in [8] is
described a mechanism for reducing task migration latency in multi-core architectures,
by performing trade-offs between latency and bandwidth. Runtime adaptivity is achieved
by using a latency/bandwidth trade-off parameter, which controls the trade-offs. All the
aforementioned approaches that refer to the runtime adaptation can be used along with
our approach.

3 Methodology Overview

The runtime information that our methodology takes into account is the number of
objects stored in each data structure. As mentioned before, the amount of data in the data
structure affects both the memory size and, in most cases, the number of accesses needed
to access each object. We take advantage of this fact, in order to achieve better memory
utilization at runtime.

3. 1 The modes

Since different implementation types for each data structure exists, we define each
different combination of data structure implementations of the application as a different
mode at which the application can run. For each mode the following information is
calculated at design time:

• The size of the data structures for each number of objects

• The memory size and the performance overhead of the transition to each other data
structure type implementation for each number of objects.

Table 1: Example of a mode

Data
Structure

Implem
entation

Number of
objects

Memor
y size Transition to

Performa
nce

overhead

Memory
size

overhead

DDT 1 SLL 150 128

DLL 300 200

Dynamic
Array 320 400

DDT 2 DLL 100 140 Dynamic
Array 320 450
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Using the aforementioned information, it is possible to compare the modes and keep
only the optimal ones, by discarding those for which better one already exist in terms of
memory size for a specific number of objects. Modes that violate the designer constraints
are also discarded. The modes are defined at design time and the runtime manager
handles the transition between the available ones at runtime.

Table 1 presents an example of a mode for an application that uses 2 data structures. The
first one is considered to be a single linked list that holds 150 objects and the second a
double linked list where 100 objects are stored. For the first data structure a possible
transition to double linked list and dynamic array is considered and the necessary
overhead information is presented. For the second one, only the transition to single
linked list is presented, since any other transformation is supposed to have intolerable
overhead. Another mode, for example, would be DDT1 implemented as a vector and
DDT2 as a SLL for a different number of objects. The conditions to consider a mode
available at runtime are the following:

• The memory size of the mode plus the overhead of the transition is less that the
memory size of the mode corresponding to the DDTR data structure combination.

• The performance and the memory footprint overhead of the transition to the specific
mode from some other mode, do not violate the constraints set by the designer.

To evaluate each mode, we use as a reference mode, the one corresponding to the DDTR
methodology. This is done, in order to prove in this paper that using this methodology
we can achieve better results in terms of memory utilization than using only the DDTR
methodology.

The condition to make a transition at runtime is the following: The memory footprint of
the target mode to be less that the memory footprint of the current mode.

3.2 Methodology Description

The methodology is composed of the following three steps and is presented in Figure 2:
1) DDTR exploration; 2) Insertion of the necessary data structure information to the
design time manager that automatically detects the available modes; and 3) Execution of
the application along with the runtime manager.

The DDTR exploration is exhaustively described at [10]. By implementing the DDTR
methodology, the designer obtains a set of optimal data structure implementations, in
terms of memory footprint and performance. From this set, the one provided to our tool
is the combination that is better in terms of memory footprint. The inputs of the design
time manager are the following:

• Input from the DDTR exploration. The optimal dynamic data type implementation
for each data structure of the application.
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• Object size of each data structure. This information is necessary to calculate the size
of each data structure and obtain the set of available modes.

• Maximum number of objects for each data structure. This information is obtained
during the DDTR exploration methodology. Although the application is dynamic,
and it is not possible to know the exact maximum number of objects in each data
structure, the traces used in the DDTR exploration phase, can provide an estimation
of the maximum number of objects each data structure holds.

Designer constraints. In the case of real time applications performance constraints may
exist. Thus, since the transition from one mode to another causes a delay, these
constraints determine whether a mode or a transition to a mode is available or not.

Figure 2: The proposed methodology

The designer inserts the aforementioned information to the design time manager tool.
The tool, using the aforementioned inputs, produces a set of candidate modes in which
the application can run. Each mode is a different set of dynamic data structure
implementations of the application. For all the available modes, which are propagated to
the runtime manager, the size of the data structure plus the overhead of the transition to
this mode is less that the size of the dynamic data structure selected as optimal by the
DDTR methodology. All the dynamic data structure combinations (i.e. modes), for
which the aforementioned condition is not valid, are discarded. Thus, from the pool of
all the candidate modes, only the optimal ones are provided to the runtime manager.

The input of the runtime manager is the set of the available modes selected by the design
time step and the current number of objects in each data structure of the application. The
application runs along with the runtime manager. The runtime manager handles the
transition between the modes created at the design time phase. Each time an operation
takes place in a data structure, the runtime manager checks if transition to another mode
is possible.
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3.3 The overhead of the methodology

In this subsection we examine the overhead of the presented methodology. The
overheads are the following:

• Design time exploration to obtain the available modes. This overhead is rather
trivial, since the whole process is based on mathematical calculations. The duration
depends on the number of data structures and the maximum number of objects that
each one holds. For example, for 5 data structures of 10,000 objects each one, the
exploration takes less that 1 minute.

• Increased code size (Memory size overhead). The code size of the application
increases, since the runtime manager is also compiled along with the application.
This overhead less than 1 KB of memory, so can be considered trivial, especially for
large applications.

• Performance overhead (runtime overhead): The fact that the runtime manager
checks whether a better mode or not exists each time a data structure operation takes
place, causes a delay in the execution of the application. However, as shown in the
experimental results section, this delay is rather trivial, since every calculation
needed is made at design time. Also, the routine that the runtime manager uses to
check the available modes is very simple.

• Overhead of mode changes (runtime overhead):

o Performance overhead: This overhead is affected by the number of objects
and the type of source and target data structures. (E.g. It is more time
consuming to transfer or remove data from a dynamic vector, than from a
single linked list, since the dynamic vector is resized). The performance
overhead is known at design time. If the overhead is tolerable, then the
corresponding mode is provided to the runtime manager. Otherwise, it is
discarded.

o Memory footprint overhead: During the transfer of data from one data
structure to another, there are 2 data structures (the source and the
destination) that coexist in the memory. Thus, there is a memory size
overhead, which is affected by the type of source and destination data
structures and the number of objects to be transferred. However, this
overhead is calculated at design time and only if it is tolerable, the
corresponding mode is forwarded as an input to the runtime manager.

Our tool precalculates the aforementioned overheads and ensures that a mode is
available only when the destination data structure characteristics and the overhead of the
transformation are better (in terms of memory footprint or performance) from the current
data structure.

3.4 The tool
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The tool which implements the described methodology is composed by two parts. The
first one is the design time manager which provides the available modes to the runtime
manager. The runtime manager handles the transitions between the different modes.

• Design time manager: To use the design time manager the designer provides the
necessary input to the tool in text mode. The manager is composed by a set of
routines which make the necessary calculations to generate all the possible modes.
Then, the manager automatically produces the set of the available modes.

• Runtime manager: To use the runtime manager, the designer sets the provided
interface to the data structures of the application. This is a straightforward process,
especially, if the application uses the STL data structures. The runtime manager
contains a set of dynamic data structures, along with a routine which decides when
to change the current mode, taken as input the current number of objects of each
data structure.

Table 2: Cumulative experimental results

4 Experimental Results

To validate our approach, we have chosen a wide range of applications from various
application domains. By implementing each step of the methodology, we calculated the
memory size gains, as well as the overhead added to each application by the tool. More
specifically, we calculate the maximum and the average memory size reduction during
the execution of the application, in comparison with the memory size of the data
structure implementations suggested by the DDTR. All memory size information
provided in the experimental results is the size of all data structures of each application.

App. name Maximum
memory
size
reduction

Average
memory
size
reduction

Maximum
Memory
footprint
overhead

Average
memory
footprint
overhead

Perf.
overhead

Code
size
increase

Dijkstra 25.1% 8.6% 50.9% 12.16% 22.4% 50%

2D Game 30.3% 16.4% 11.3% 7.1% 3.4% 27%

3D Engine 32% 5.23% 10.3% 6.58% 18.3% 14%

3D Game 25% 3.32% 65.4% 30.38% 22% 3%
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As far as the overhead is concerned, we calculated the memory footprint overhead
which exists when a mode change takes place at runtime. This overhead exists only
during the mode change process and is eliminated after the end of the transformation.
Performance overhead is compared with the performance of the original application.
Finally, the code size shows the increase in the size of the executable of the application
due to the tool. The cumulative results of our case studies are presented in Table 2.

4.1 Dijkstra application

The first test case is Dijkstra algorithm taken from the Mibench Suite [9], which stores
network nodes in a data structure. As mentioned earlier, the optimal data structure
implementation in terms of memory footprint according to the DDTR approach is the
single linked list. Implementing the DDTR solution (i.e. the mode that corresponds to the
DDTR solution), no mode changes take place. However, using the adaptive approach, a
number of data structure implementation transformations are being made during the
execution of the application, which results in a memory size reduction up to 25.1% in
comparison with the memory size occupied by the application using single linked list
during the whole execution, (which is the solution proposed by the DDTR approach).
This is achieved by implementing 63 mode changes during the execution. The memory
size overhead due to mode changes (shown in table 2) is not presented in figure 3. It is
considered tollerable, thus only the data structure memory footprint evolution is shown.
Figure 3 displays the memory size evolution of the application during the whole
execution. It can be seen that the memory size using the adaptive approach can be higher
that the memory size using the DDTR approach, at some points of the execution of the
application. This is because the transformation to the optimal data structure
implementation in terms of memory size has very low benefits or is intolerable,
according to the constraints set by the designer. Figure 4 shows the memory size
reduction achieved by using the adaptive approach. The maximum memory footprint
overhead that takes place during the transformation is 50.9%, which can be considered
relatively high. However, this overhead can be decreased by the designer, by setting the
appropriate constraints, with a corresponding decrease to the memory size reduction.

4.2 Comboling application

A 2D game named Comboling contains a grid of tiles, which are stored in a singly linked
list that is filled with tile elements (thus, the memory size is constantly increasing) and
accessed in a random pattern [11]. The optimal data structure implementation according
to the DDTR approach is the single linked list. Figure 5 displays the memory size
comparison between the solution proposed by the DDTR against our approach. Using
the adapting approach 8 transformations take place and 30.3% memory size reduction
during the execution of the application is achieved. For instance, when the size of the
data structure is between 786 and 1024 bytes the vector solution provides less memory
size than the single linked list. The memory size gains are presented in Figure 6. The
main overhead of our methodology in this application is the code size that seems
relatively high. However, the code size of Comboling is less than 1 KB, so the overhead
added by our tool can be considered trivial.
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4.3 Simblob application

Simblob is a 3D environment creation engine that utilizes vectors to hold its dynamic
data [12]. The optimal data structure in terms of memory footprint according to the
DDTR approach is the single linked list. Figure 7 shows the comparison between the
DDTR and our approach. Implementing the adaptive approach,4 transformations take
place and the maximum memory size reduction is 32%. Figure 8 displays the memory
size gains. It can be seen by Table 2 that the overheads of our methodology in this test
case are relatively low.
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Figure 8: Simblob application – reduction of
memory footprint

4.4 VDrift application

Vdrift is a 3D open source racing game with realistic physics [13]. The application uses
vectors to store its dynamic data for graphics, physics and collisions. The DDTR
approach suggests single linked lists as the optimal data structure implementations in
terms of memory footprint. Figure 9 displays the memory size comparison between the
DDTR approach and the adaptive one. During the adaptive approach 23 mode changes
take place and the maximum memory size reduction achieved is 25%. The memory gains
are presented in Figure 10.

The memory footprint overhead of the transformations is relatively high, as can be seen
in Table 2. However, as mentioned with the Dijkstra test case as well, the overhead can
be decreased by the designer, by setting the appropriate constraints. It should be taken
into account that in this case, the amount of memory reduction will be also decreased,
since some mode transformations will not take place.
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5 Conclusions

In this paper we presented a methodology for adapting the dynamic data structure
implementations of an application to the runtime environment at which the embedded
system executes the application. We proved that it is possible to achieve better dynamic
memory utilization by using a runtime manager that adapts the data structure
implementations by adding a tolerable overhead. Our future work addresses the
extension of the data structure implementation library of the runtime manager, as well as
the further reduction of the overheads of the proposed methodology.
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Abstract: Toady’s embedded computing electronic products are based on multi-core
platforms and they are capable to concurrently execute different applications. For these
products it is of paramount importance that a Run-time Resource Management (RRM)
system integrated in the Operating System (OS) arbiters about resource allocation to
the active applications. The RRM should take decisions at run-time to maximize plat-
form performance and minimizing non-functional costs such as power consumption
or memory requirements. However, embedded system design covers a broad range of
applications and the customer requirements are very different depending on the target
device. In general there is not an unique RRM that best fits in all possible embedded
scenarios.

This paper presents the EMME Evaluation Framework, an open source tool that
provides a methodology and the accompanying infrastructure to quickly explore the
effects of different RRM systems for a target use case scenario. The tool aims at
the analysis of different figures of merit of the system being designed such as the
applications’ response time, system throughput and power consumption.

Different RRM modules are released with the framework. These modules imple-
ment different RRM policies that define how to allocate computing resources to the
active applications while fitting in a power budget that is assumed assigned by other
layers of the OS.

1 Introduction

The availability of many processors (or computing elements) on a single chip brought new
challenges to system designers. In particular, efficient power management has become a
primary factor for product success. This is evident for portable devices but has subtle yet
important consequences on reliability and cooling costs for non-portable systems.

Traditional techniques for power management consider switching off or slowing down the
frequency of computational elements which are underutilized [BBM00, IBC+06]. If the
switching overhead is negligible and the performance is not saturated, it is possible to meet
performance requirements with fewer active resources and lower power consumption.

When considering multiprogrammed multi-core scenarios where multiple applications are
competing to access shared resources, traditional DVFS techniques [IBC+06, BHB+08]
are not enough. The proposed Efficient run-time resource Management for Multi-core
Embedded systems (EMME) framework shall also decide how to allocate available com-
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puting resources to the active applications. In these scenarios, solving the RRM problem
is a challenging task for the following reasons:

• Dynamism of the system: operating configurations providing high performance
are typically power hungry hence they should be avoided unless strictly necessary.
On the other hand, user behaviors are highly dynamic, unpredictable and unknown
at design time. It is not possible to statically identify a setting of the operating
parameters which maximizes system performance while fitting in a given power
budget. To solve the RRM problem the operating parameters should be tuned at
run-time once the system state and user requirements are known.

• Complex system behaviors: in a multiprogrammed multi-core scenario, the rela-
tionships between operating parameters and overall platform performance can be
very complex when considering the resource distribution as a run-time tunable pa-
rameter. As shown in [SRS+95, MPSZ11], optimal processor assignment is very
workload dependent (and is less than intuitive).

• Complexity of the decision problem: the problem of deciding which operating
configuration to set for each active application (and thus for the system as a whole)
belongs to the NP-hard class of problems [YCNCC06]. Hence, the problem is too
complex to be solved exactly and only an approximate solution can be found. It is
of crucial importance that heuristic algorithms implementing the run-time decision
making should be fast in order to minimize run-time overhead.

The RRM system can significantly impact on the system performance. In order to fully
exploit the potentialities of multi-core architectures, selecting the right RRM technique to
apply for the target platform is of outstanding importance. Unfortunately, there is not an
unique RRM system that best fits in all possible use case requirements in general.

In this paper we present the EMME Evaluation Framework (in short, EMMEframe-
work) [Mar11]. The goal of this framework aims at providing to embedded system de-
signers a tool for system level performance analysis of homogeneous multi-core systems.
Given a run-time scenario and a RRM policy, the framework provides a fast empirical anal-
ysis of the system behavior. This enables the designer to explore the effects of different
RRM policies and to validate the desired system properties at the earliest design phases.
The approach is targeted to soft real-time applications where the RRM is responsible for
maximizing the system performance while fitting in a power budget constraint.

The paper is organized as follows. Section 2 presents related work in the field of RRM
for multi-core embedded systems. Section 3 describes in details the EMMEframework.
Then, Section 4 reports some experimental results obtained from the analysis of different
RRM techniques for an example multiprogrammed multi-core embedded scenario. Fi-
nally, in Section 5 some concluding remarks are outlined.

2 Background

The RRM scenarios considered in the present work are multiprogrammed multi-core em-
bedded systems where different applications, each one composed of different parallel
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threads, are competing to access the system resources. In these scenarios the relation-
ships between run-time tunable parameters and overall platform behavior might be very
complex and sometime counter-intuitive [SRS+95].

In general, analytical models of system performance are not available when RRM takes
into account parameters such as resource distribution. For instance, performance values of
an application when parallelized on a certain number of processors are strictly application-
dependent. In fact, for some applications performance values might scale linearly with
the number of computing resources allocated to their execution while other applications
cannot exploit a huge number of processors.

Authors in [AW06] noted that for multiprocessor workloads, the Instruction Per Cycle
(IPC) is a poor performance index and identified cases where IPC increases do not reflect
any performance gain. For multiprogrammed multi-core scenario, system-level perfor-
mance metrics as throughput measured in terms of job/s or other user-oriented perfor-
mance metrics as the applications’ response time are more suitable [EE08].

The RRM approach we consider assumes that the target application set is known at design
time and application performance for different resource allocations can be measured by
exploiting off-the-shelf simulation models [YCAM+11, YCNCC11, SGB+09]. Given the
design-time analysis of application performance, the RRM should decide how to allocate
the computing resources available on the embedded platform.

In order to maximize system performance and improving battery lifetime in portable de-
vices, it is of outstanding importance to select the right RRM policy to deploy on the
system being designed. For these reason we propose an open source framework for
quickly analyzing the effects of different RRM systems targeting the optimization of an
user-oriented performance index such as the applications’ response time.

To avoid lengthy simulations, the performance evaluation considered in EMMEframe-
work is carried out at a very high level. First, the applications are independently charac-
terized in terms of their execution time. Then, to evaluate the performance of a specific
RRM policy for a given run-time scenario, the applications’ execution times are retrieved
from the previous characterization. Thus, different RRM policies can be evaluated without
the need to re-run a detailed simulation of each application. An example of power man-
agement system that considers functional and temporal independence between different
applications can be found in [NMG11]. Few work has been done on tools for modeling
and analyzing power management techniques for multi-core [BHB+08, TDM11]. How-
ever state of the art is manly dedicated to the modeling of DVFS and other orthogonal
power management approaches rather than on the resource allocation problem.

3 The EMME Evaluation Framework

In the EMMEframework, the user selected RRM system takes decisions on the basis of
the following information:

• The application characterization performed at design-time. The application char-
acterization reports for each application the set of operating configurations, i.e. per-
formance and power indices obtained when the application is executed using a cer-
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(a) app0’s operating configurations (b) app1’s operating configurations

Figure 1: Design-time application characterization reporting the operating configurations of two
applications in terms of: power consumption (x axis), performance (y axis) and resource requirement
(the π value).

tain number of cores (Figure 1). In our approach we assume that this characteriza-
tion can be obtained simulating each application independently.

• The user activity. We consider that the user activity (or the interaction with the
external environment) issues the processing of some data by the active applications.
From now on we will use the term job to refer to an unitary data chunk to be pro-
cessed, e.g. a single frame in a video application. In general the user activity is
unknown at design-time but we assume that it can be profiled during run-time. For
example the execution of a video application might require the processing of a cer-
tain number of frames per second (e.g. 25 frames per second). This computing
request can be profiled at run-time and the RRM can use the profiling data during
its decision making.

• The power budget, which is assumed to be set by the OS. This can be set according
to, among other things, the actual system state (e.g., the system is plugged into a
power supply or not).

3.1 The run-time methodology

The EMMEframework targets homogeneous multi-core computing platform. We con-
sider that at run-time different applications are executed and compete to access the avail-
able processing elements. The RRM introduces a run-time processor assignment policy to
maximize the user-perceived performance (in terms of applications’ response time) while
fitting in the power budget. We define as application response time the average time an
application job spend in the system from its arrival to its completion. The processor as-
signment depends on the user activity that dynamically issues the processing of different
applications’ jobs (e.g. the elaboration of different frames for a video application) and on
the design-time application characterization.

We consider code versioning [YCNM+06] as the main enabling technology in order to
change the task-level parallelization of an application. However, other mechanisms for
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Figure 2: Run-time behavior. The parallelization π changes only between the execution of two jobs.

manipulating the program representation to exploit available processors can be considered
with their additional overhead (e.g. stream program fusion [GTA06, GTK+02]).

We consider that application parallelization cannot be changed during the execution of a
single job but only between the execution of two different jobs. We also consider that some
jobs might be temporarily stored in memory while waiting to be processed. This might
happen for bursty applications where many jobs are issued during a short time interval.
Figure 2 shows an example behavior of the task-level parallelization chosen by a RRM for
a scenario with 3 applications running concurrently (job starting times are indicated with
’+’). When α1 starts, 8 cores are allocated to it. Then applications α2 and α3 enter the
system. The RRM allocates to these applications 4 and 2 cores respectively. When α1

exits the system, the parallelization of α3 is increased to 8 cores. The run-time decisions
are taken following the RRM policy and influence the overall system performance.

3.2 Evaluation of system performance

Following an application specific design approach we consider that the target application
set is known at design time. However, we consider that the mix of applications to be con-
currently executed is not known a priori and, at any moment, the user is free to launch the
execution of any application selected between the ones known at design time. We consider
that at run-time the user activity issues the elaboration of a sequence of applications’ jobs.
We assume that at run-time the user activity can be profiled in terms of number of jobs
issued for each application in a time unit (the applications’ arrival rates).

Using a traditional approach to evaluate the run-time performance of the target multipro-
grammed multi-core system one would have to simulate the concurrent execution of the
whole application mix with a detailed architectural model. To give a practical idea of the
computational cost of simulating a realistic scenario, the simulation of a single MPEG2
application processing 2 frames using the SESC simulator [RFT+05] might take few min-
utes. Extending this simulation to a significant number of frames and considering the
concurrent execution of other applications might lead to a simulation time of several hours
or even few days.

To reduce this computational cost and to produce results for complex scenarios in few
seconds, the EMMEframework takes some assumptions on the underlying computing
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platform and on the predictability of the jobs’ execution times. We assume that:

• At run-time, the set of computing resources is partitioned into disjoint subsets and
each subset is allocated to a different application.

• The execution time of a specific job depends only on the input dataset and on the
resources allocated to its elaboration. Thus, there are no interferences between dif-
ferent applications during the concurrent execution. It is worth to notice that this
assumption might require specific communication infrastructure in order to keep a
predictable communication time. In future works we envision to extend the frame-
work to consider a less conservative assumption on the job execution time.

• For a given application, before starting the execution of a new job, all previous jobs
should be completed. If a new job arrives while another job is under elaboration, the
new job is temporary stored in the on-chip memory and it waits to be scheduled.

• The switching time required to change the operating configuration for a given appli-
cation is negligible in reference to the execution time of a single job.

Under these assumptions, the evaluation of system performance can be obtained at a very
high level. Given an input trace, defined in terms of jobs’ arrival times, the EMME-
framework simulates the computing system by scheduling the input jobs considering the
resource distribution defined by the user selected RRM policy. The framework output
consists of an execution trace that completes job arrivals information with data about job
waiting and execution time (we consider the job response time as the overall time a job
spend in the system, i.e. waiting plus execution times).

(a) Example of input trace.

(b) Example of output execution trace.

Figure 3: Input trace and output execution trace for an example two application scenario. Events
related to different applications are highlighted with different colors.

An example is shown in Figure 3. As the first job of app0 arrives (Figure 3(a)), its exe-
cution starts and the elaboration is completed at 25Kcycles (Figure 3(b)). Then a job of
app1 arrives and its execution starts (at 40Kcycles). A second job of application 1 arrives
at 45Kcycles but its execution will start only at 60Kcycles. The second job of app1 is
subject to a waiting time since we assumed that, before starting the execution of a new
job, the application must terminate the elaboration of all previous jobs. A second job of
app0 arrives while app1 is elaborating. In this example we consider that the RRM did not
allocate all computing resources to the execution of app1 and thus the system can schedule
the concurrent execution of the new job of app0.
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Figure 4: The EMMEframework structure.

To generate the output execution trace from the input trace, the EMMEframework
does not simulate on the detailed architectural model the job execution. In fact, it uses the
assumption on the job execution time predictability to compute, given the starting time of
the job and the resources allocated to its execution, the completion time. Optionally, in
the input trace, together with the job arrival times, one can specify information on the
variability of each job execution time in reference to the average one. This variability is
considered due to the specific input dataset.

In the EMMEframework (Figure 4), the application states are kept updated during the
system simulation. As new jobs are arriving these are dispatched to the applications’
waiting queue and the simulation kernel cares of iteratively identifying the event to be
processed next (e.g. either a job arrival or completion or an RRM invocation). During the
EMMEframework execution, the simulation kernel keeps track of the system state in
terms of number of completed jobs, number of jobs currently in the system (either waiting
or executing), and power consumption resulting from the current resource allocation.

When executing the EMMEframework, the user can select a RRM policy among the
ones available (Section 3.3). During the simulation, the selected RRM will interact with
the simulation kernel to access the current system state and to assign the resource alloca-
tion (Figure 4).

Together with the output jobs’ starting and completion times, detailed information about
resource distribution and power consumption are reported in the output execution trace.

3.3 The run-time resource management policies

A RRM policy defines how the resources should be distributed between the active ap-
plications. Three RRM policies are released with the EMMEframework, named Pull
High Push Low (PHPL), maximization of the current Throughput (maxT) and Application-
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specific Run-Time managEment (ARTE). The RRM policies can be linked to the EMME-
framework at run-time. This linking mode enables to quickly evaluate different RRM
strategies without the need of recompiling the framework for each strategy.

3.3.1 Pull High Push Low

The PHPL policy is derived from the approach presented in [IBC+06]. This policy pe-
riodically verifies the power consumption of the different applications and modifies the
resource allocation to fit in the power budget (first) and to balance the power consumed by
the different applications (second).

Every time the PHPL is invoked, the RRM verifies if the power budget has been exceeded.
If this is the case, PHPL reduces the parallelism of the application consuming the most
power. Otherwise, the power budget not yet in use is allocated to the application consum-
ing the least power by increasing its parallelization.

3.3.2 Maximization of the current Throughput

The maxT policy is presented in [MPSZ09]. maxT is invoked every time an application
switches between the idle and the ready states. maxT exhaustively explores the possi-
ble allocations of computing resources to the set of applications currently running. The
resource allocation providing the maximum throughput sum (measured in Job/s) is se-
lected.

3.3.3 Application-specific Run-Time managEment

The ARTE policy is presented in [MPSZ11]. ARTE takes some additional assumptions on
the computing system to model it using queuing theory. In particular, it is assumed that
job inter-arrival times are exponentially distributed with a certain mean (derived from the
profiled data). Moreover, it is assumed that the job execution time for different datasets
is approximately constant. Given these assumptions, each application is modeled as a
M/D/1 (Markov arrival, deterministic execution, single server) queuing system and the job
response time is given analytically [Tri02].

ARTE is invoked periodically. Within a RRM period resources are reserved to the appli-
cations. Resource reservation allows to manage constraints on the individual application
throughput on a window-based, periodic basis. In ARTE, the run-time exploration tar-
gets the minimization of the expected average job response time which metric is derived
analytically at run-time on the basis of queuing theory.

4 A practical example

As example case study we analyze an embedded Chip Multi Processor (CMP) composed
of an host processor and a computing fabric consisting of 16 computing elements (Figure
5). The OS, including the RRM system, runs on the host processor. The computing fabric
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is used to process the input workload. The host processor takes decision about resource
assignment and, in this sense, it acts as fabric controller.

Figure 5: Overview of the target Chip Multi Processor.

We considered MIPS-like processors with a shared memory architecture. The inter-processor
communication is based on a high-bandwidth split transaction bus supporting a write-
invalidate snoop-based MESI coherence protocol acting directly between L2 caches.

In the considered case study the application mix populating the computing system is taken
from the SPLASH-2 parallel benchmark suite [WOT+95]. We focus our attention on the
following application kernels: Complex 1D FFT (fft) Integer Radix Sort (radix), Ocean
Simulation (ocean) and Blocked LU Decomposition (lu). In the following text we will
call these applications: {app0 ... app3}.

To generate the input application characterization (Figure 6(a)), we model the comput-
ing fabric using the SESC simulation tool [RFT+05], a fast MIPS instruction set simulator
for CMPs. To generate the input trace we considered exponentially distributed jobs’ inter-
arrival times (Poisson process). We also considered that the unpredictable user behavior
generates variations in the average job arrival rates (Figure 6(b)) and that some variability
in the job execution time is introduced due to the input datasets. In particular, we consid-
ered a job execution time uniformly distributed in the range of 10% around the average.
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Figure 6: Application characterization and average job arrival rates for the specific case study.

The operating frequency of the computing elements is 300MHz and the input trace is of
60 seconds length (i.e. 18Gcycles). For our analysis we consider a power budget of 8.6W ,
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that is 70% of the power consumed when all applications are concurrently executing on
the 16 cores composing the computing fabric.

Evaluating the system performance. To evaluate the efficiency of the different RRM
policies we simulate the system using the EMMEframework. A system simulation runs
in less than 1 second on our host machine (Intel CoreTM Duo T6570, 2.1Ghtz). The output
execution traces are then post-processed using the routines released with the same frame-
work. These routines return (among other data), a graphical comparison of the geometric
average of applications’ response time (Figure 7).
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Figure 7: Response time comparisons between the considered RRM policies.

For the specific case study, ARTE provides better performance. To select a RRM policy
for final deployment on the target system one might be interested in verifying that job
response time for a certain application never exceeds a certain value or verifying that the
storage requirements do not exceed the on-chip memory.

The EMMEframework produced detailed data on the system behavior that can be in-
spected. For example the post-processing routines return also the plot of the number of
jobs resident in the system that is directly correlated with the on chip memory requirements
(this happens because waiting jobs must be temporary stored in memory).

When using PHPL for our case study the number of jobs resident in the system reaches
160 instances (Figure 8). This might generate implementation problems in our design. The
described phenomena happens since, during the initial 5Gcycles, the arrival rate of app0
is very high. To adequately serve this computing request the most of computing resources
should be allocated to app0. PHPL equally distributes the computing resources between
the active applications, thus the resources allocated to app0 are not enough to serve such a
high arrival rate. Consequently during the initial period some arriving jobs of app0 should
be buffered increasing the storage requirements.
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Figure 8: Number of jobs resident in the system when considering different RRM policies
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5 Summary

In this paper we presented the EMMEframework that enables to quickly explore the
effects of different RRM policies for a target multiprogrammed multi-core scenario.

The framework takes as input the application characterization obtained from the simu-
lation of the target applications on a detailed architectural model. However, the concurrent
simulation of the different applications on the detailed architectural model is avoided. This
reduces significantly the computational costs related with the analysis of different RRM
policies for the target use case scenario.

Together with the application characterization the framework takes an input trace defin-
ing jobs’ arrival times. The execution trace output of the EMMEframework completes
the input trace with data related to jobs’ starting and completion time. Post-processing
routines released with the EMMEframework enables to compare the different RRM poli-
cies at a very high level of abstraction.
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Abstract: We propose novel multicore architecture in which dual processors

(positive-true processor element and negativetrue processor element: pPE and

nPE) can be combined and serve as a low-voltage/high-performance single PE.

The coupling processor occupies a double area, but it operates at a lower voltage or

faster than the original processor. The proposed scheme is suitable to voltage

scaling on multicores that have abundant PEs. To evaluate and demonstrate the

proposed architecture, we designed octa-core coupling DSP in a 65-nm CMOS

technology, on which we confirmed a 1-MHz operation at a single supply voltage
of 0.5 V.

1 INTRODUCTION

In multicore architecture, there are abundant processor elements (PEs). Several methods

using the multicores have been proposed. For example, IBM’s Cell processor increases

its yield from 20% to 40% by disabling one of eight synergistic processor elements [1-

2]. In another instance, a speed boosting technique, which called “Turbo Boost”, is

exploited in an Intel’s Core i7 processor [3] and others. To dynamically vary the

operating frequency, the Turbo Boost technology controls the number of active cores

because the core frequency is determined by core temperature.

In this paper, we propose a power reduction technique using the abundant PEs. For a

low-load task, not all PEs are needed; low power is desired rather than low processor

usage. Under that condition, we can exploit an extra hardware resource to save the

power. Aggressively reducing a minimum operating voltage (Vmin) with two PEs is

allowed, which is effective for low power.

Fig. 1 shows the proposed multicores; there are a set of dual processors in which a

positive-true PE (pPE) and negative-true PE (nPE) are adjacent. A normal task is carried

out either pPE or nPE at a nominal voltage. For a low-load task, it is assigned to a
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coupling processor (a pair of pPE and nPE) that can operate at a low voltage (voltage

scaling). We call this “processor coupling architecture”, which can also allocate a high-

load task to a coupling processor running at a high frequency (speed boosting).

Figure 1: Proposed multicores: pairs of pPE and nPE.

2 PROCESSOR COUPING ARCHITECTURE

Fig. 2 portrays the two types (voltage scaling and speed boosting) of formations in the

processor coupling architecture. Either of positive-true or negative-true path in logic

circuits is selected depending on a process variation. Both SRAMs in the PEs are,

however, used because their capacities are halved for the low-voltage (we will further

explain this in detail in Subsections 2.1) or high frequency operation. In voltage scaling,

coupling flip-flops ensure the low-voltage operation.

Figure 2: Processor coupling architecture: cases that a positive-true path is selected.
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2.1 Coupling SRAM

Fig. 3 depicts coupling SRAM bitcells with a single-port (7T/14T) and dual-port

(9T/18T) [4-5]. Two pMOSes are added to internal nodes in a pair of the conventional

6T and 8T bitcells. The coupling SRAM have two modes:

Normal mode (7T and 9T): The additional transistors are turned off (/CL = “H”).

The 7T bitcell acts as the conventional 6T cell.

Coupling mode (14T and 18T): the additional transistors are turned on (/CL = “L”).

Then, the internal nodes are shared by the memory cell pair. By doing so, a larger

static noise margin can be obtained when either of the wordlines is merely

activated, because a β ratio (a size ratio of a drive transistor to an access transistor)

is doubled. When the both wordlines (WL0 and WL1) are activated, a high-speed

operation is possible because a cell current is doubled (Fig. 4).

Figure 3: (a) 7T/14T and (b) 9T/18T coupling SRAM.

Figure 4: Worst-case cell current.

N7

P6P5

N5

N8

N6

WL0

(a)

N3

P2P1

N1

N4

N2

/CL

WL1

P3 P4

N7

P6P5

N5

N8

N6

WL0

N12
N11

(b)

N3

P2P1

N1

N4

N2
N10
N9

RWL

/CL

WL1

P3 P4

��%$ '(&��)) *��"%&#&!,

�
��


����

	 �	 
	 �	 �	 
		 
�	 

	


��� $&��

���� $&��

���� ��## �+((�%* �+��




�


�

�� �&(%�(

��� � 
���� ��$' �
��-

� & �&%*� ��(#& � 
				

377

377



2.2 Coupling flip-flop

Fig. 5 shows a schematic of a coupling flip-flop pair. An unbalanced FS
1
(nMOS = fast

and pMOS = slow) corner is the critical process corner in a low-voltage operation

because of latch’s data retention. This is similar to the worst retention condition in the

6T SRAM. As shown in Fig. 6, this coupling flip-flop can retain a datum at a voltage of

460 mV in the coupling mode. In the proposed flip-flops, the internal nodes are

connected using four nMOS transfer gates, at which the two flip-flops complement the

datum each other. The appended four gates are adaptively switched by a control signal

(CTRL) according to the operating mode; the two flip-flops can independently operate

by turning off the connecting gates in the normal mode.

CLK

Q

DATA

Q

DATA

CTRL

Node A Node B

Figure 5: Coupling flip-flops.
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Figure 6: Simulated waveforms in the coupling flip-flops (1 MHz, 460 mV, FS corner).

1 NMOS and pMOS out of the total variation in chip manufacturing VLSI, called process variation.
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We designed and fabricated a coupling flip-flop on a test chip in a 65-nm process

technology for measurement and verification. To evaluate behaviors at various process

corners, triple-well structure is used for body biasing. In other words, applying body

biases to pMOS and nMOS transistors give global Vt variations, which means that we

can estimate circuit reliability under the global Vt variations. To guarantee the Vt control

accuracy, we implemented a pMOS and nMOS test transistors on the chip for

characteristic measurements.

Table 1 presents the body bias settings, at which four process corners (FF, FS, SF, and

SS) are emulated, and measured Vmin’s in the coupling flip-flop. In the table, ΔVtn

(Δ|Vtp|) represents an nMOS (pMOS) transistor’s threshold voltage difference from the

fabricated CC transistor. Fig. 7 also portrays the measured Vmin when body biasing is

applied. From these results, the Vmin of the flip-flop are reduced in the coupling

formation at each process corner. This is because the coupling flip-flop improves the

data retention characteristic. The voltage scaling mode can be applied to extremely low-

power applications; for instance, biomedical sensing, sensor networking, and wearable

computing.

Table 1. Body bias settings and measured Vmin in the coupling flip-flops.
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(384mV)

CC (384mV)

FF

(430mV)

FS

(540mV)

SF

(434mV)
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(a) Normal mode (b) Coupling mode
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Figure 7: Measured Vmin in the coupling flip-flops at process corners.
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2.3 Dual logic circuits

Usually, we consider the SS, TT, and FF (slow, typical, and fast) corners for logic

synthesis. As described in the previous subsection, the worst process corner is, however,

the unbalanced (FS or FS) corner at the very low supply voltage because the storage

circuits like the flip-flop and SRAM are very sensitive to the unbalanced corner.

Fig. 8 illustrates the relationship between the process corner and eligible logic gate. For

example, a decoder circuit in Fig. 9 (a) has a long falling time around the SF corner (Fig.

10 (a)) because a 3-input NAND has three stacked nMOS. On the other hand, an NOR

logic has a long rising time around the opposite FS corner (Fig. 10 (b)). In our proposed

scheme, because all data paths are dual, a better one can be selected according to process

variation.

– 0 +

–

0

+

SS

nMOS Δ|Vtn| (V)

p
M
O
S
Δ
|V
tp
|
(V
)

FF

FS

SF
CC

NOR

NAND

Figure 8: Process corner and eligible logic gate.

(a) NAND logic decoder (b) NOR logic decoder

A1A1A2A2A3A3

Y1

Y2

Y3

A1A1A2A2A3A3

Y1

Y2

Y3

Figure 9: Decoder circuits (3-input NAND and NOR).
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Figure 10: Rising and falling time comparison.

3 APPLICATION EXAMPLES

As an application example of the proposed coupling architecture, we designed octa-core

digital signal processor (DSP) for a sound processing unit of microphone array networks.

3.1 Microphone array networks

Recent improvements in information processing technology have produced real-time

sound-processing systems using microphone arrays [6]. The microphone array processes

signal recordings and also performs noise reduction, sound source separation, speech

recognition, speaker identification, and other tasks. To implement a microphone array as

a realistic ubiquitous sound acquisition system with scalability, division of the huge

array into sub-arrays with a multi-hop network is effective; an intelligent microphone

array network was proposed in our previous work [7].

3.2 Coupling DSP multicores

Fig. 11 presents a block diagram of coupling DSP multicores for multi-channel signal

processing. To perform SIMD operation for 16-channel sound processing, the proposed

DSP consists of three units: instruction issuing unit (called master), sound processing

unit, and network processing unit used to control packet and sound data communication.
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Figure 11: Proposed octa-core DSP multicores.

The master unit has a program memory (24 bits × 2048 word) comprising of the 7T/14T
SRAM, decoder circuits, a program counter, and stack registers; it provides a same

instruction to eight DSP cores in the sound processing unit. The four coupling DSP cores

can be formed by the eight normal DSP cores. Each instruction is executed in six cycles

(Fig. 12). The interrupt management and state transition are handled by the master unit.
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Figure 12: Six-stage pipelined execution.

As shown in Fig. 13, a DSP core has two working memories (X and Y in Fig. 11: each

memory has 16 bit × 512 words) to process two-channel sound inputs. The shared-

memories (S in Fig. 11) can be accessed from all the DSP cores through arbitration

circuits for data exchanging. The X, Y, and shared memories can be accessed at the same

time; the MAC and other operations can be executed in one cycle. The X, Y, and shared
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memories consist of the 9T/18T dual-port coupling SRAMs to incorporate the dual-port

feature for simultaneous read and write.

The working registers (40 bits) are implemented as an accumulator, which is comprised

of the coupling flip-flops. As well, the other flip-flops in the DSP multicores consist of

the coupling flip-flop.
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Instruction Resister

Decoder

Master

X,Y

Memory
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Shared

Memory#0

Shared

Memory#1
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ALU

Figure 13: DSP core architecture.

3.3 VLSI implementation

We designed the octa-core coupling DSPs in the 65-nm CMOS process. Fig. 14 depicts

the chip micrograph and layout plot image. The core size is 1722 × 2841 um
2
. The power

in the coupling mode (0.5 V, 1 MHz) is 0.73 mW.
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Summary

We proposed the processor coupling architecture for voltage scaling and speed boosting.

The coupling SRAM achieves the low-voltage/high-speed operations by connecting two

bitcells. The coupling flip-flop can run below 0.5 V at any process corner, which

enlarges an operating voltage region in random logic circuits. The coupling logic circuits

adapt to process variation by selecting an eligible data path. To evaluate the proposed

coupling architecture, we designed octa-core coupling DSPs for sound signal processing

in the microphone array network application. We fabricated a test chip in a 65-nm triple-

well process, and confirmed that, in the coupling mode, the proposed architecture

achieves a Vmin of 0.5 V and a power of 0.73 mW at a 1-MHz operation.
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Abstract: Graphic Processing Units (GPU) are increasingly popular in the field of
high-performance computing for their ability to provide computational power for mas-
sively parallel problems at a reduced cost. However, the programming model exposed
by the GPGPU software development tools is often insufficient to achieve full per-
formance, and a major rethinking of algorithmic choices is needed. In this paper, we
showcase such an effect on a case study drawn from the cryptography application do-
main. The pervasive use of cryptographic primitives in modern embedded systems is
a growing trend. Small, efficient cryptosystems have been effectively employed to de-
sign and implement keyless password-based access control systems in various wireless
authentication applications. The security margin provided by these lightweight ciphers
should be accurately examined in light of the speed and area constraints imposed by
the target environment. We present a re-design of the ASIC-oriented KEELOQ imple-
mentation to perform efficient exhaustive key search attacks while fitting tightly the
parallel programming model exposed by modern GPUs. Indeed, the bitslicing tech-
nique allows the intrinsic parallelism offered by word-oriented SIMD computations to
be effectively exploited. Through proper adaptation of the algorithm implementation
to a platform radically different from the one it was designed for, we achieved a ×40

speedup in the computation time with respect to a single-core CPU bruteforce attack,
employing only consumer grade hardware. The outstanding speedup obtainable points
to a significant weakening of the cipher security margin, since it proves that anyone
with off-the-shelf hardware is able to circumvent the security measures in place.

1 Introduction

In the last years, Graphics Processing Units (GPUs) have raised wide interest as sources

of computational power for non-graphical applications, due to the availability of program-

ming models such as CUDA and OpenCL that are vastly more accessible to experts of

other domains than graphics rendering APIs (OpenGL and DirectX) [JDOP08]. A major

strength of GPGPU-based platform are their appealing cost-performance figures of merit.

In recent times even in the field of High Performance Computing there have been major

investments to build GPGPU-based supercomputers.

However, there are also factors that hinder the expansion of GPGPU computing, espe-

cially the difficulty of programming efficient applications using the available program-

ming models. Special attention must be placed to tailor the application and its algorithmic
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components to the specific needs of the parallel hardware, e.g. by minimizing control flow

divergence and exposing as much parallelism as possible while minimizing synchroniza-

tion overheads [JDOP08]. In this paper, we show how the use of specialized techniques

can lead to large speedups, thus allowing the GPU to contend on an equal or favorable

base (in terms of computation throughput per euro) with solutions based on CPUs or re-

configurable hardware.

The field of cryptography has been explored since the first GPGPU attempts using graph-

ics rendering APIs [HW07]. Especially, code breaking is attractive [BBAP09, ABSP10,

ABS+09], because it requires vast amounts of computational power. We use as a case

study the KEELOQ algorithm [Mic11], which is used in remote keyless entry systems

(e.g., vehicle doors or building entrances) or as authentication mechanism in wireless pro-

tocols.

Remote keyless entry systems are based on a password based access control mechanism

realized through the unidirectional transmission between a secure token (encoder) and a

receiver (decoder). Unauthorized accesses are possible when the encoded password (ac-

cess code) is fixed or it is derived from a relatively low number of possible combinations.

In order to prevent this kind of threat, KEELOQ is employed in the so-called rolling code

(also known as hopping code) mode of operation.

The basic idea is to have the access code change each time it is used through picking it

from a sequence of codewords that cannot be predicted even knowing a very large number

of previously used ones. The generation of such a sequence is based on the definition of

both a uni-directional command transfer protocol and an encryption engine to provide the

codewords to be transmitted.

From an operational point of view, the information transmitted by the encoder is composed

by two parts: the code-hopping part (which changes each time the encoder is activated)

and a second un-encrypted part, principally containing the encoder serial number, used

for identifying the transmitter at a receiving decoder. To this end, the receiver decrypts

the codeword, and compares the recovered counter value with its internal one, and the

recovered serial number with the one received along with the codeword. If both values

match, the token is granted access.

Algorithms such as KEELOQ are designed for dedicated hardware implementation, since

the target devices (remote controllers) are manufactured as very low cost ASICs. So, their

direct implementation in software has much lower performances – which, in principle,

makes it easier to carry out an attack using configurable hardware such as FPGAs. How-

ever, we show how the introduction of a level of parallelism not commonly seen in GPGPU

algorithm design, bit-level parallelism, can lead to a ×40 speedup over a CPU core.

The rest of this paper is organized as follows. Section 2 introduces the KEELOQ cipher,

while Section 3 reviews the characteristics of the NVIDIA GPU families target in this

study, as well as the programming model implemented by the CUDA development tools.

Section 4 describes the design of our solution and Section 5 provides the experimental

evaluation on the case study. Finally, Section 6 outlines the most closely related works,

while Section 7 draws some conclusions.
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(b) Decryption

Figure 1: KEELOQ Cipher

2 The KEELOQ Cipher

KEELOQ is the most scrutinized encryption engine used in remote keyless entry systems.

It is a proprietary hardware-dedicated block cipher designed as a pair of Feedback Shift

Registers (FSR) coupled with a Non Linear function (NL). Figure 1 shows the internal

structure of the KEELOQ cipher: the secret key is stored in the red register on the left

and is at most 64-bit wide. The key register is a FSR, and the key is mixed with the

output of the state one bit per clock cycle. The 32-bit long Non Linear Feedback Shift

Register (NLFSR) on the right hand side constitutes the nonlinear component of the cipher

providing its effective security margin. Five bits of the NLFSR are combined together by

means of a non linear function described by an equation over Z2 among five bits of the

status register. The non linear function outputs a single bit per clock cycle, which is added

to the aforementioned key bit and to b16 and b0, and employed as the feedback bit of the

NLFSR. To encrypt a 32-bit plaintext block, the NLFSR is initialized with the value of the

plaintext, and subsequently the entire system is clocked 528 times. After the 528 updates

of both registers, the content of the NLFSR is the final ciphertext.

The most common mode of operation for KEELOQ is the so-called hopping code, in a sce-

nario where a remote encoder transmits a codeword to the authorizing decoder (receiver).

This mode of operation involves encrypting a plaintext built out of a counter and a unique

identifier (ID) of the encoding device. Every time a new 32-bit codeword (i.e. a ciphertext

block) must be generated, the counter is incremented and the new plaintext is encrypted.

Then, the codeword is transmitted along with the encoding device ID. The secret 64-bit

key of any encoder is generated through the decoder engine as a pair of 32-bit codewords.

Such a procedure implies that the decoder is able to generate the secret keys for a number
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Figure 2: Overview of the NVIDIA GTX470 (Fermi) streaming processors architecture: each stream
multiprocessor (SM) contains 32 streaming processors (SP), plus four special function units (SFU).
A configurable L1 cache/shared memory is local to each stream multiprocessor, while L2 cache is
shared among the entire set of SM. Up to 16 SM can be present in a single unit.

of encoders starting from: (i) an embedded 64-bit master key (which is fixed by the manu-

facturer of the keyless entry system), (ii) the ID of the encoding device, (iii) and a random

seed composed by 32, 48 or 60 bits.

A potential attacker may retrieve the master key from the decoding device (receiver) and

eavesdrop the ID of an encoder when it is transmitted along with a codeword. Therefore,

the use of a secret random seed in the secret key generation phase avoid the leakage of the

secret key of the targeted encoder.

A brute-forcing attack aimed at recovering the secret key of the transmitting encoder (EK)

employs two consecutively transmitted codewords, each of which is bound to the encoder

ID. The attacker computes a candidate 64-bit value for EK through guessing on the bits of

the random seed, while the value of the remaining part of the secret key is easily derived

from the specification of the key generation protocol. Subsequently, she checks the ID

value resulting from the decryption of the first codeword, and whether a match is found,

the output derived from the decryption of the second codeword (employing the same EK)

is used as a confirmatory step.

3 General Purpose Computing with GPUs

The GPGPU devices targeted in this work are based on the NVIDIA GT200 and Fermi

architectures. Figure 2 shows a sketch of the NVIDIA GTX470 (Fermi) streaming pro-

cessor array. A streaming multiprocessor (SM) contains 32 streaming processors, four

special functional units and a multithreaded instruction issue unit (respectively indicated
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as SP, SFU and MT-Issue in Figure 2. This is a fourfold increase over the GT200 SMs. A

streaming multiprocessor concurrently executes two groups of 32 threads called warps, for

a total of 64 concurrent threads. Since each thread in a warp has its own control flow, their

execution paths may diverge due to the independent evaluation of conditional statements;

when this happens, the warp serially executes each path. Each multiprocessor executes

warps much like the Single Instruction Multiple Data (SIMD) paradigm, as every thread

is assigned to a different SP and every active thread executes the same instruction on dif-

ferent data. Finally, the Fermi architecture includes both L1 and L2 cache memories, with

the L1 configurable between cache and shared memory behavior and shared by the SPs in

a single SM, and the L2 shared among all SMs in the device. The earlier GT200 only has

a fast shared memory shared within each SM.

GPGPU computing requires the programmer to manage a heterogeneous system (CPU

host plus GPU device) as well as to handle the massive parallelism exposed by the GPU

hardware. The Compute Unified Device Architecture (CUDA) [NBGS08, NVI08], pro-

posed by NVIDIA for its graphics processors starting with the G80 series [ELM08], ex-

poses a programming model that integrates host and GPU code in the same C++ source

files. On the GPU device side, a Single Instruction, Multiple Threads (SIMT) program-

ming model is exposed, where a single kernel is executed by a user-specified number of

threads. Every CUDA kernel is explicitly invoked by host code and executed by the de-

vice, while the host-side code continues the execution asynchronously after instantiating

the kernel. On the host side, a specific synchronizing function call is provided to wait for

the completion of the active asynchronous kernel computation.

The CUDA programming model abstracts the actual parallelism implemented by the hard-

ware architecture, providing the concepts of block and thread to express concurrency in

algorithms. A block captures the notion of a group of concurrent threads. Blocks are

required to execute independently, so that it has to be possible to execute them in any

order (in parallel or in sequence). Therefore, the synchronization primitives semantically

act only among threads belonging to the same block. Intra-block communications among

threads use the logical shared memory associated with that block. Since the architecture

does not provide support for message-passing, threads belonging to different blocks must

communicate through global memory.

Note that while the OpenCL language and API [Khr11] are gaining momentum as the

industry standard in programming heterogeneous platforms composed of host CPUs and

programmable accelerators, including GPGPUs, the implementations provided are still

not mature enough to compete, on NVIDIA devices, with the vendor-specific software

development tools. However, the programming model provided in OpenCL is, as far as

GPGPU programming goes, essentially based on the same principles as the SIMT model

exposed in CUDA, so the techniques and results shown in this work can be easily extended

to OpenCL-driven devices.
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4 Adaptation to Parallel Architectures

Many-core architectures offer large amount of parallel computing power by supplying the

developer with hundreds of processing cores, each endowed with limited resources. In

GPGPU, key resource limitations include:

Control flow divergence as multiple divergent control flows can be handled safely from

the point of view of functionality, but with major performance losses as parallelism is

inhibited along the different control flows – essentially, divergent flows of control are

serialized, regardless of the data dependences among the divergent threads (which may

well be non-existent). This limitation is due to the hardware design of GPGPU, where the

processors in a multiprocessor unit are bound to the same program counter.

Local memory availability as a limited amount of very fast local memory must be shared

among numerous processing elements. While the sharing allows fast communication

among the processing elements, the local memory is much more useful when used in a

read-only way, or partitioned for local use by each processing element, since true shared

accesses still require costly synchronization operations, and are often difficult to code.

To exploit such parallel computing power, the critical issue is to be able to express a given

application or algorithm in a form amenable to parallel execution on the target device. The

literature reports three main sources of parallelism, which can be exploited with different

degrees of success on various types of parallel architectures:

Thread-level parallelism is obtained when two or more tasks (regions of code with in-

dependent control flow) can be executed in parallel with few or no data dependencies (in

the former case, synchronizations will be needed within each task, in the latter the syn-

chronization point will be the end of the tasks). Thread-level parallelism is exposed by

complex applications, where multiple independent tasks are performed, and is best ex-

ploited on symmetric multiprocessors, where each processor is endowed with sufficient

resources to executed its assigned task. It is not suited for GPGPUs, since control flow

divergence is a major factor for performance reduction in these architectures.

Loop-level parallelism is found in parallel loop constructs, where each iteration of the

loop is data-independent from the others (or has limited synchronization requirements).

Loop level parallelism is an excellent fit for vector processors, SIMD processors and GPG-

PUs, since control is fixed and identical for all iterations (barring nested conditionals,

which can often be transformed to predicated code).

Instruction-level parallelism is achieved at the finest of the three common granularities,

where independent instructions can be parallelized. It is commonly exploited by super-

scalar and Very Long Instruction Word architectures, but, like Thread-level parallelism,

it is unsuitable for GPGPU due to the need to executed different instructions in parallel,

rather than the same instruction of different data.

It would therefore seem that Loop-level parallelism is the only viable choice for GPGPUs,

but this model is not exposed by many types of codes. A typical example are encryp-

tion primitives designed for hardware implementation. In this case, parallelism is rarely

available, but this is not an issue, since the implementation is performed through dedi-

cated ASIC, and may be even considered a benefit, since software implementations are
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#define NLF 0x3A5C742E

#define bit(x,n) (((x)>>(n))&1)

#define g5(x,a,b,c,d,e) \

(bit(x,a)+bit(x,b)*2+bit(x,c)*4+bit(x,d)*8+bit(x,e)*16)

uint32_t KeeLoq_Decrypt (uint32_t data, uint64_t key){

uint32_t x=data, r;

for (r=0; r<528; r++)

x= (x<<1)^bit(x,31)^bit(x,15)^(u32)bit(key,(15-r)&63)

^bit(NLF,g5(x,0,8,19,25,30));

return x;

}

Figure 3: Plain C KEELOQ implementation [kee11].

often aimed at breaking the encryption through brute force attacks. The usage of GPGPUs

to perform brute force attacks is well-documented, but is often limited to mere juxta-

position of several encryption operations with different keys. However, it is possible to

push the parallelization further, by introducing an entirely different level of parallelism,

Bit-level parallelism. Here, the goal is to parallelize operations at the single bit level,

thereby obtaining remarkably uniform parallel operations. This technique is know as bit-

slicing [Bih97].

Bitslicing refers to a software technique of using a general purpose CPU to implement

Single Instruction Multiple Data (SIMD) operations. The strategy consists of packing the

bit values belonging to different operands within a single register and of using general-

purpose arithmetic/logic instructions as specialized virtual processing elements designed

for SIMD operations at bit level. Most of the symmetric cryptographic primitives are

designed to process input data at bit level. Therefore, the software implementations of

such algorithms on not-specialized architectures may greatly benefit from the application

of the bit-slicing strategy as long as the underlying hardware resources in terms of number

of registers are easily available.

Figure 3 reports a public domain, plain C implementation of KEELOQ from [kee11], while

Figure 4 reports our bitsliced CUDA implementation.

In the case of KEELOQ breaking, the bitslicing technique is employed through the decryp-

tion of the same 32-bit value using all possible keys. In the original code, operations on

individual bits of the input are performed by means of shift and mask operations. In the

optimized code, all operations work on full 32-bit words. To this end, the 32-bit input data

is expanded (on the CPU host side) to a 32-word array, bitsl_data_in, where the i-th

word in the array is 0xFFFFFFFF if the i-th bit of the original text is set, or 0x00000000

otherwise. Input data is identical for each thread, but the same is not true for the key and

decrypted output, which are stored separately for each of the nthreads × nblocks threads.

The bitsliced keys (each of 64 bits) are generated in blocks of 32 keys, starting from zero

and progressively increasing its value. Each 64-word array bitsl_key[bI][tI] generated

in this way has the five last words (corresponding to the lower bits of the original keys)

always equal to the encoding of the same 32 values, which are added to a “base” key value.

The base key value, in turn, increases in steps of 32. Thus, the number of parallel encryp-
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__device__ uint32_t bitsl_data_in[32];

__device__ uint32_t bitsl_data_out[NBLOCKS][NTHREADS][32];

__device__ uint32_t bitsl_key[NBLOCKS][NTHREADS][64];

__global__ void KeeLoq_Decrypt_Bitslice() {

int bI = blockIdx.x, tI = threadIdx.x;

uint32_t data[32];

#pragma unroll 32

for (int j=0;j<32;j++) data[j]=bitsl_data_in[j];

uint32_t key_r, nlf, rs_data;

for (int r=0; r<528; r++) {

key_r = bitsl_key[bI][tI][(15 - r) & 0x3F];

nlf = NonLinearFunction(data, 0, 8, 19, 25, 30);

rs_data = data[31] ^ data[15] ^ key_r ^ nlf;

for (int i=31; i>0; i--) data[i] = data[i - 1];

data[0] = rs_data;

}

#pragma unroll 32

for (int j=0;j<32;j++) bitsl_data_out[bI][tI][j]=data[j];

}

Figure 4: Bitsliced KEELOQ CUDA kernel. The plaintext, key and ciphertext are stored in the GPU
main memory at the beginning of the kernel execution, then copied to registers during the kernel
itself.

tion runs is 32 per thread, as shown by the kernel in Figure 4, with configurable number

nthreads of threads per each CUDA block. Overall, a grand total of 32×nthreads×nblocks

encryption runs are performed at every time by the GPU. It is worth noting that the shared

memory is not used, since the Fermi architecture provides a large number of registers. A

full analysis of the tradeoffs will be shown in the next section.

5 Experimental Results

We implemented a fully bitsliced version of the KEELOQ cipher both employing the

CUDA programming model and pure C. The pure C version has been run on the host

CPU to provide a reference implementation as far as throughput goes. The running envi-

ronment where the bruteforcing speed tests were performed is an Intel Core i7 920 based

system with 12Gb DDR3 DRAM, running Gentoo Linux AMD64. All the GPU binaries

were compiled employing nvcc 4.0 from nVidia CUDA toolkit 4.0, while the CPU base-

line versions were compiled with gcc 4.4.6. The bitsliced implementation of the cipher

has been tested on two different GPUs, which have been mounted as the only device on the

16 lane PCI-Express 2.0 port available on the motherboard in order to test the difference

in performances. The first GPU card is a GeForce GTX 260 equipped with 894 Mb of

GDDR5 video RAM and 192 CUDA cores, while the second card employed for testing

is a GeForce GTX 470 with 448 CUDA cores and 1280 MB of GDDR5 video RAM. An

important step in the evaluation of the performances of our bitsliced implementation of
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Figure 5: Throughput of the bitsliced implementation of the KEELOQ breaker on the Geforce
GTX470 card, related to the number of threads per block and the number of blocks per CUDA
kernel invocation

KEELOQ on CUDA is the exploration of two parameters: the number of threads compos-

ing a CUDA block and the number of blocks constituting a CUDA kernel call. The first

parameter regulates the level of register pressure on the shared register file of the streaming

multiprocessor and the number of warps into which a CUDA block is split. Since the basic

execution unit of a streaming multiprocessor is a single warp, the choice of the number of

threads should consider only multiples of 32 to achieve the best fit. The level of regis-

ter pressure on the Fermi architecture is dictated by the fact that the 32768 registers are

shared among the contexts of up to 3 different blocks which can be scheduled on the same

streaming multiprocessor. In addition to this, the SMP issue unit of the Fermi architecture

is able to dual issue warps, thus it is necessary to keep twice the contexts in the registers.

Combining these data with the fact that a single bitsliced KEELOQ breaking thread em-

ploys at most 45 registers, we obtain a SMP register pressure which can be computed as

270×nthreads. The second parameter to be chosen regulates the level of global computa-

tional load imposed on the GPU. The main point in choosing this parameter is provide at

least enough computations to the GPU so that no SMPs remain idle. Moreover, since the

SMP issue unit is able to interleave different blocks in order to hide global memory access

latencies, it is wise to provide extra workload to the GPU to exploit this feature. These

two considerations pointed to the creation of a CUDA kernel as large as possible with

architectures up to the GT200, since the static scheduling of the blocks on the SMPs did

not account for extra time overhead. With the introduction of a new scheduler for multiple

kernels on the Fermi architecture, this consideration may not be still valid. Figure 5 reports

the results of the exploration of the implementation parameter space: coherently with the

previous considerations, the best solution is reached with 128 threads per block (34560
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Seed Single Core Four Cores Single GPU

Length Core i7 920 [h] Core i7 920 [h] GTX260 [h] GTX470 [h]

32 2.6 0.73 0.14 0.04

48 1.73 10
5

4.84 10
4

9.45 10
3

3.98 10
3

60 7.08 10
8

1.98 10
8

3.81 10
7

1.63 10
7

Throughput [key/s] 4.51 10
5

1.61 10
6

8.27 10
6

1.96 10
7

Table 1: Expected timings and measured throughput for the exhaustive search of the KEELOQ key
generation seed.

employed registers), when the number of blocks per SMP is enough to fill all the issue

queues completely. Raising further the number of blocks per kernel leads to a decrease in

performances which can be ascribed to the extra context switching effort imposed on the

new scheduler. As expected also raising further the number of threads per block leads to a

significant decrease in throughput due to the hindering of context switches caused by the

frequent register spills and fills. An analogous exploration campaign has been lead also

on the GTX260 card, yielding 64 threads per block as the best performing choice of the

parameter. This choice is coherent with the fact that the shared register file of the GTX260

is 16384 since 64 threads per block allow the issue unit of the streaming multiprocessor to

perform the context switching between the three blocks in queue without the need to spill

part of the register file to the global memory. In this case, however, increasing arbitrar-

ily the number of blocks per kernel did not induce any performance penalty as expected

from the GT200 architecture. After choosing the optimal number of threads per block

and blocks per kernel invocation, we evaluate the effective time needed in order to break

the KEELOQ key generation mechanism, with respect to the length of the employed seed.

Table 1 reports the expected running times of an attack, depending on the chosen platform

to perform the exhaustive search. Taking as a reference value the throughput obtained

by the bitsliced implementation of KEELOQ running on the host CPU (419430 keys/s),

we notice that employing a 32 bit seed for the key generation does not yield a sufficient

security margin, as the remote key can be recovered in 3 hours of computation. The bit-

sliced implementations running on the GTX260 and GTX470 GPUs achieve a ×20.5 and

a ×43.5 speedup respectively, allowing a possible attacker to breach even the security of

the 48 bit seed key generation mechanism in a few months. Since the exhaustive search

can be split over multiple GPUs, it is possible to lower the attack time to a single week,

while keeping the cost envelope of the equipment below $10000, as this budget allows an

attacker to build a 20 GTX 470 cluster with the current market prices.

6 Related Work

The first cryptanalysis of KEELOQ is presented in [Bog07]. The attack is based on the

slide technique and a linear approximation of the non-linear Boolean function used in the

cryptographic engine. The attack requires 252 encryptions, 16GB of storage and the entire
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codebook, i.e., 232 known plaintexts. In [IKD+08] the authors introduce a specific key

recovery attack against KEELOQ which combines the technique of slide attacks with a

novel meet-in-the-middle approach. Their method requires 216 chosen plaintexts and has

a time complexity of 244.5 encryptions which results in about two days of computation

employing 50 dual core CPUs at the cost of approximately e10000. The widely adoption

of KEELOQ in practice, paved the way to side-channel analysis as a further viable option

for attacking chips that implement it. In [EKM+08] the first successful DPA and DEMA

attacks on KEELOQ implementations applied to both Identify Friend or Foe (IFF) and

code hopping devices, are presented. The attack is prevented if a 60-bit seed value, with

good random properties, is employed for the key derivation. Nevertheless, considering the

other commonly implemented options of the cipher, the authors reported how to reveal a

manufacturer key from a receiver using a few 1000 power traces, and how to recover the

device key of a remote control with as few as 10 traces. In [CBW08] the authors apply

algebraic techniques to cryptanalyze the cipher. This attack employs the entire codebook,

2
27 encryptions and has an estimated success probability of 44%. The results of a brute-

force attack, implemented on the FPGA-based code-breaker COPACOBANA, are reported

in [NK09]. The authors claim the secret key recovery of a remote control in less than 0.5

seconds if a 32-bit seed is used and in less than 6 hours in case of a 48-bit seed. The

case of a 60-bit seed needs in the worst case about 1011 days at the cost of approximately

$10000. However, the technical effort needed to build an FPGA-based code-breaker, and

even more one the size of the COPACOBANA, is much greater than that needed to carry

out a GPU-based attack. Moreover, while FPGA-based code-breakers require specialized

hardware, the GPU-based attack can benefit of a large installed base of CUDA-enabled

devices, allowing distributed attacks to be carried out by groups of users, or by botnets.

7 Conclusions

In this paper, we report our experience with bit-level parallelism in GPGPU programming,

using as a case study the brute force attack on the KEELOQ cipher. We proposed a full

redesign of the computation strategy from the original hardware implementation-oriented

algorithm to reach high performance in parallel software, by exploiting SIMD techniques

down to the bit level. We report a speedup of ×40 speedup in the computation time with

respect to a CPU brute force attack, even though only consumer-grade hardware is used.
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Abstract: This paper presents a novel approach to efficiently perform early system
level design space exploration (DSE) of MultiProcessor System-on-Chip (MPSoC)
based embedded systems. By modeling dynamic multi-application workloads using
application scenarios, optimal designs can be quickly identified using a combination
of a scenario-based DSE and a feature selection algorithm. The feature selection algo-
rithm identifies a representative subset of scenarios, which is used to predict the fitness
of the MPSoC design instances in the genetic algorithm of the scenario-based DSE.
Results show that our scenario-based DSE provides a tradeoff between the speed and
accuracy of the early DSE.

1 Introduction

A significant amount of research has been performed on system-level DSE for MPSoCs

[Gri04] during the last two decades. The majority of this work is focused on the analysis

of MPSoC architectures under a single, static application workload. The current trend,

however, is that application workloads executing on embedded systems become more and

more dynamic. This is not only the time-dependent behavior of a single application, the in-

teraction between different applications can also be hard to predict. This dynamic behavior

can be classified and captured using so-called workload scenarios [G+09].

In this paper, we propose a novel scenario-based DSE method that allows for capturing

the dynamic behavior of multi-application workloads in the process of system-level DSE.

An important problem that needs to be solved by such scenario-based DSE is the rapid

evaluation of MPSoC design instances during the search. Because the number of different

workload scenarios can be large, it is infeasible to rapidly evaluate a MPSoC design in-

stance during DSE by exhaustively analyzing (e.g., via simulation) all possible workload

scenarios for that particular design point. As a solution, a representative subset of work-

load scenarios can be used to make the evaluation of MPSoC design instances as fast as

possible. The difficulty is that the representativeness of a subset of workload scenarios is

dependent on the target MPSoC architecture. But since the evaluated MPSoC architectures

are not fixed during the process of DSE, we need to simultaneously co-explore the MPSoC

design space and the workload scenario space to find representative subsets of workload

scenarios for those MPSoC design instances that need to be evaluated. To this end, we pro-
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pose a scenario-based DSE method combining a multi-objective genetic algorithm (GA)

and a feature selection algorithm.

The remainder of this paper is organized as follows. In the next section, we briefly sum-

marize the concept of scenario-based DSE. Section 3 describes the proposed framework

to perform scenario-based DSE. In Section 4, we present experimental results in which

we evaluate our scenario-based DSE approach, and also compare our method to a coevo-

lutionary scenario-based DSE approach. Section 5 discusses related work, after which

Section 6 concludes the paper.

2 Scenario-based Design Space Exploration

With the introduction of multiple applications that can execute (possibly simultaneously)

on a single embedded system, the interactions on the system become more complex. If

traditional DSE is applied, there are two options: 1) isolate the different applications on

the MPSoC platform or 2) design the system for the situation where all the applications

are running simultaneously. In both situations, the system will typically be over-designed.

In case of an isolated design, each application must run on a separate part of the platform

to prevent interaction at runtime. This can take up more resources on the MPSoC than
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Figure 1: High level scenario-based
MPSoC simulation

required. The same is true for running all applica-

tions simultaneously, as they must meet their dead-

line while assuming that all applications are run-

ning. To avoid such worst case design, and to opti-

mize the system for cost and efficiency, we propose

to model the interactions of the applications using

workload scenarios. Workload scenarios allow the

designer to exactly describe the usage of the sys-

tem. To prevent over-design, scenarios can describe

which applications can be active simultaneously.

More precisely, scenario-based DSE bundles two

concepts. The first concept is the early DSE of MP-

SoC based embedded systems. During such early

DSE, MPSoC platform instances are quickly eval-

uated in order to find a set of promising candidate

designs. For evaluation purposes, we are using the

high-level MPSoC simulation framework Sesame [PEP06]. This framework, which is il-

lustrated in Figure 1, enables fast performance evaluation using separate application and

architectural models. An application model describes an application using a Kahn Pro-

cess Network (KPN), while the architecture model models the MPSoC architecture in a

cycle-approximate fashion. Subsequently, there is an explicit mapping of the application

model(s) onto the architecture model, implemented using trace-driven co-simulation of

the two aforementioned models. Mapping solves two aspects concurrently: 1) allocation

and 2) binding. Allocation selects the architectural components used on the MPSoC plat-

form, whereas the binding defines on which architectural component the application tasks
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and communications are executed. During the evaluation of a mapping, each process in

an application model generates a trace of application events, representing the application

workload at a high level of abstraction. These event traces are simulated by the architecture

model to obtain non-functional metrics like execution time and energy consumption.

The other concept that is used in scenario-based DSE is the deployment of workload sce-

narios [G+09]. In this work, we distinguish two types of workload scenarios: intra and

inter application scenarios. Intra-application scenarios describe the different behaviors, or

operation modes, within an application. For example, an MP3 application can play music

in mono or stereo sound. An inter-application scenario describes the behavior of multiple

applications. In our case, it specifies which applications can run concurrently. In the exam-

ple of Figure 1, the inter-application scenario describes simultaneous execution of the MP3

application and the video application. In order to fully describe what a system is doing,

a complete application scenario bundles the possible intra-application scenarios of all the

active applications. The set of active applications is described using an inter-application

scenario, whereas each intra-application scenario specifies a particular operation mode of

an individual application. An example application scenario in Figure 1 is that the MP3

application is playing music in mono sound, while the video decodes at a low bitrate.

Incorporating the concept of application scenarios in the process of early DSE of MPSoCs

should pave the road for exploring modern embedded systems that are executing dynamic

multi-application workloads. Earlier work in this direction [vSP10a] already showed that

a random pick of a set of application scenarios does not result in the best set of candidate

design instances. Therefore, scenario-based DSE aims at efficiently searching for a set of

candidate MPSoC design instances that perform well when considering all the potential

situations that can occur in a dynamic multi-application workload.

3 Proposed Framework

In this paper, we propose a new framework for scenario-based DSE. The framework is

illustrated in Figure 2. The left-hand side of the diagram shows the general flow of our

scenario-based DSE. As input, the description of the target multi-application workload and

a MPSoC platform are supplied, as well as search parameters for the GA.

The multi-application workload is described using KPN application models for each sep-

arate application in the multi-application workload and a scenario database in which the

inter and intra application scenarios are made explicit. For the latter, we use the work

from [vSP10b], in which a scenario-aware extension of the Sesame simulation framework

is presented. This means that the input KPN application models specify the structure of

each individual (concurrent) application allowing for mapping exploration of the applica-

tion tasks, while the different possibilities for multi-application workload behavior (e.g.,

which applications or application modes are active at the same time) are characterized in

the scenario database.

As was mentioned earlier, the number of different application scenarios can be very large.

Consequently, it is infeasible to rapidly evaluate MPSoC design instances during early
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DSE by exhaustively analyzing all possible workload scenarios for these particular design

instances. As a solution, a representative subset of application scenarios can be used. The
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Figure 2: The framework for scenario-
based DSE using feature selection

representativeness of a subset of application sce-

narios is, however, dependent on the target MP-

SoC architecture, which is in our case not fixed as

we are performing MPSoC DSE. The solution is

to co-explore the MPSoC design instances and the

representative subset. The right-hand side of Fig-

ure 2, which zooms in on our scenario-based DSE,

shows the two co-exploration processes. One pro-

cess, called the design explorer, is similar to classi-

cal MPSoC DSE as it uses a metaheuristic, which

is in our case a GA, to search for optimal map-

pings (i.e., optimal MPSoC design instances). The

second process, referred to as the subset selector,

tries to identify the best representative subset of

application scenarios. As will be explained later

on, the subset selector is implemented using fea-

ture selection. Both processes are asynchronous,

and inter-process communication is performed via

shared memory.

The primary reason for asynchronous execution is

that both processes are independent. To provide a

trade-off between DSE and subset training effort,

the user can manually assign a fixed number of worker threads to the design explorer and

subset selector. After termination of the design explorer, the scenario-based DSE finishes

by returning a Pareto front of MPSoC design instances (in the case of this paper a trading

off performance, energy consumption and cost).

3.1 Design Explorer

The design explorer is responsible for searching and identifying optimal MPSoC design

instances by exploring different mappings of the multi-application workload on the MP-

SoC platform architecture model. To actually perform the search, a NSGA-II [D+02]

based multi-objective GA is used. NSGA-II is an elitist selection algorithm that uses

non-dominated sorting to select the offspring individuals. An example of non-dominated

sorting is given in Figure 4. Non-dominated sorting ranks all the design points based on

their dominance depth [C+07]. Conceptually, this dominance depth can be obtained by

iteratively obtaining and removing the set of non-dominated individuals. The main rea-

son of choosing NSGA-II is its use of the dominance depth for the optimization. In the

subset selector, the scalar value of the dominance depth can easily be used for rating the

subset quality independent of the number of objectives. This will be explained in the next

subsection.
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In order to couple the GA to the feature selection algorithm inside the subset selector, some

communication is required. Figure 3 shows the extended algorithm of the GA. Before any

Selection

Get Scenario
Subset

Evaluation

Write
Population
Sample

Reproduction

Initialize

Figure 3: The GA to find the optimal
mapping extended with steps to com-
municate data with the subset selector

evaluation can be done, the current representative

subset must be retrieved from the shared memory.

Using the obtained subset of application scenarios,

the candidate mappings can be quickly evaluated

using Sesame [PEP06]. The design explorer has a

pool of worker threads, where each thread can sim-

ulate and evaluate a single mapping in parallel, to

fully utilize multi-core systems. A sample of the

simulated mappings is sent to shared memory. After

the evaluation, the GA can select individuals based

on their estimated fitness. In case of a representative

scenario subset, the decisions made by the NSGA-II

selector are similar to the case where the real fitness

would have been used. The real fitness is equal to the average fitness of all possible appli-

cation scenarios as stored in the scenario database. The selected individuals can be used

for reproduction after which the whole procedure will repeat itself in the next generation.

3.2 Subset Selector

To obtain an estimated fitness of the MPSoC design instances in the GA population of the

design explorer, a good representative subset of scenarios is required. We have chosen

to select this representative subset of scenarios using feature selection. Feature selection

is a technique of selecting a subset of relevant features for building classifiers. This fits

our needs well since we want to select a set of application scenarios (the features) to

classify the dominance depth of a mapping (i.e., a MPSoC design instance). An important

consequence of this decision is that we need to have a set of training mappings of the multi-

application workload from the design explorer to be able to score a subset of scenarios

within the subset selector. Moreover, we need to have the real fitness in order to judge if

the estimation of the dominance depth is correct.

For this purpose, we added a trainer. The trainer keeps a small set of mappings which

are exhaustively evaluated with Sesame (using all application scenarios in the scenario

database) to obtain their real fitness. The trainer is updated at runtime, using the current

sample of mappings originating from the design explorer. In this way, we train the sce-

nario subset exactly with respect to the part of the design space where the design explorer

is currently searching. To isolate the exhaustive mapping evaluation from the GA in the

design explorer, we have introduced a separate pool of worker threads in the subset selec-

tor. These worker threads are managed by the ”updater thread”. This updater thread will

read out the sample mappings from the shared memory. Based on their estimated fitness, it

will select a small portion of interesting mappings to add to the trainer, from which the real

fitness is determined. To fully parallelize the simulation of these mappings (i.e., exploit-

ing multi-core host systems), we do not only evaluate the different mappings in parallel,
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but also the total set of application scenarios is divided in multiple chunks. In this way, a

single mapping can be evaluated quicker using multiple worker threads, each simulating a

different scenario for the respective mapping.

Simultaneously with the updater thread, a feature selection algorithm is executed. Every

time this algorithm finds a better subset, it updates the best subset in the shared memory.

We have chosen to use the sequential oscillation search [SP00] as our feature selection

algorithm. Oscillating search uses a kind of hill climbing technique to improve the current

subset of scenarios. We have chosen to use the oscillating search for two reasons. As it
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Figure 4: An example of non-
dominated sorting. All design
points are annotated with their
dominance depth.

iteratively improves the scenario subset, it can provide pre-

mature results that can already be used in the design explorer.

Additionally, it starts from an existing subset. As a result,

we can keep using the current representative subset after the

trainer has been updated.

The misclassification rate is used to judge the quality of the

scenario subset. The misclassification rate is equal to the

percentage of incorrectly predicted dominance depths (Fig-

ure 4). The lower the misclassification rate, the better the

subset is able to identify the Pareto front that consists of the

non-dominated solutions. The benefits of using the domi-

nance depth are twofold. First, the better the estimation of

the dominance depth is, the better our selection algorithm

NSGA-II will perform its work. Second, the quality metric

of the subset is independent of the number of the objectives in the mapping space.

At the startup phase, the trainer is empty. Therefore, a random subset is created as the

quality of the subset can not be judged. Once the updater thread has issued mappings to

the trainer, the sequential oscillating search can be started. When a better subset is found

during this search, it is communicated to the mapping space using the shared memory.

Periodically, the updater thread has a new group of exhaustively evaluated mappings for

the trainer. In this case, the oscillating search is temporarily halted.

4 Experiments

To verify our framework, a number of experiments have been performed with a stochastic

multi-application workload with 10 different applications. The multi-application workload

with 4607 application scenarios is generated using a Python tool that is loosely based on

[Ors09]. We decided to use stochastic applications because it provides us full control over

the workload. On top of that, stochastic applications can be instrumented to mimic the

abstract behavior of real applications. The workload is mapped onto a MPSoC platform

with four general purpose processors, two ASIPs and two ASICs. In addition to these

processing elements, the platform contains a shared memory, a crossbar network, and four

point-to-point FIFO communication channels. As our framework performs mapping DSE,

handling both the allocation and the binding, not all the components in the platform are

used in the final design. As a result, we consider three objectives: execution time, energy
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and cost (with respect to silicon area).

The early DSE of an embedded system like this can only be done using heuristic search

methods such as a GA. The number of possible mappings is exponential with respect to

the number of potential architectural components. Our example multi-application work-

load has more than 6.8 ∗ 1058 different mappings onto the architecture. Moreover, the

exponential number of scenarios (with respect to applications) makes fitness prediction –

based on a representative subset of scenarios – a necessity for a feasible early DSE. Two

types of experiments have been performed. The first experiment focusses on the feature

subset selection. Based on the results of this experiment, we have performed our second

experiment in which we demonstrate the functionality of the scenario-based DSE.

4.1 Subset Selection

One of the parameters of our framework is the size of the scenario subset. This size

involves a tradeoff with respect to quality and speed. The smaller a subset is, the faster

our early DSE will be performed. On the other hand, a larger subset will result in a better

fitness prediction and thus a better average outcome of the GA. The potential design space

of possible subsets is huge: in our example multi-application workload there are already

6.6 ∗ 1042 different subsets of size 15.

To investigate the exact influence of the subset size, we have applied our subset selector in

isolation. For this purpose, the updater thread is disabled and replaced by a fixed trainer.

The fixed trainer is selected in beforehand and contains 518 exhaustively evaluated map-

pings. As a result, we are able to investigate the properties of the subset selection without

any external influences. We have restricted the execution time of the subset selector to 10

minutes (wallclock time). A longer execution time is likely to get better scenario subsets,

but in early DSE the time available for training is limited.

4.1.1 Quality versus size

In our framework, we have decided to perform feature selection with a deterministic al-

gorithm. To substantiate this decision, we have compared our subset selector using a

deterministic feature selection (FS) algorithm to a genetic algorithm (GA) approach (com-

parable with the subset search method in [vSP10a]). Figure 5 shows the result of the

experiment. The horizontal axis shows the wallclock time in seconds, whereas the vertical

axis shows the quality of the best subset at that point in time. Quality is defined by the

misclassification rate: the lower the number of incorrectly predicted dominance depths,

the better the subset is. Each time a new subset is found, a marker is placed. The experi-

ment is done for different subset sizes, where each line refers to the misclassification of a

subset with a specific size.

Both approaches start with random subsets and therefore their initial quality is similar.

This can be clearly seen in the figure. In general, a larger subset means a better quality. A

subset with a size of 60 starts with a misclassification rate of 54 percent, whereas a subset

with 15 scenarios incorrectly classifies 68 percent of the individuals. During the startup
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phase of the search, the GA-based selector

has better quality subsets than our FS-based

subset selector. The oscillating search ap-

plies a hill climbing technique. As a result,

the changes to the subset are minor and the

subset can only be changed slowly. The GA,

on the other hand, can apply crossover to

quickly change large parts of the represen-

tative subset of scenarios. However, the de-

terministic approach of our FS-based subset

selector will eventually outperform the GA.

For a subset of size 15, it takes only 30 sec-

onds. This time grows to 170 and 300 sec-

onds for the subset size of 60 and 240 scenarios, respectively. As comparison, a large

subset of 3000 scenarios is also added. Within 600 seconds, our subset selector does not

outperform the GA-based approach of [vSP10a]. However, after a certain period it is

expected to outperform the GA.

Since a larger subset means a larger evaluation time of the design explorer, the better

eventual quality of the subset is more important than the better selection of the approach

of [vSP10a] in the startup phase. In this phase, the quality improvements in the MPSoC

designs (execution time, energy, etc.) are still quite significant and it is relatively easy

to discriminate between different MPSoC designs. Later in the DSE, differences become

smaller, but at this point in time our deterministic subset selector will have a better repre-

sentative subset than is achieved with the stochastic GA-based approach. The larger the

representative subset is, the more time there is to find a high quality representative subset.

This large representative subset results in a longer evaluation period in the design explorer,

resulting in more time for the subset selection.

Based on the above results, we have decided to use a subset with 240 scenarios. We believe

that it provides a good trade-off between size (fast evaluation time in the design explorer)

and quality. Compared to the large subset of 3000 that achieves a misclassification of 5%, a

subset of 240 scenarios drops below 15% within 5 minutes. After five minutes, the trainer

will likely be updated and the subset can quickly be adjusted for better representativity.

4.1.2 Misclassification: how does it look like

To give a feeling of how the misclassification looks like, consider Figure 6. This figure

uses a density graph for the relationship between the predicted and the real values of the

dominance depths. The color legend (density) shows the number of mappings that have

a predicted dominance depth of x (the x-axis) and a real dominance depth of y (the y-

axis). To get this relationship, we used a set of 1933 mappings which is disjunct to the

set of mappings with which the scenario subset is trained. Ideally, the predicted and real

dominance depth are equal. In the density graph, this would manifest itself with a straight

line (y = x). In our experiment, this straight line is also visible. However, the line becomes

wider for high dominance depths.
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In our case, we are interested in good mappings. These

mappings have a dominance depth that is as low as pos-

sible. Looking at the real Pareto front (the mappings

with dominance depth 1), Figure 6 indicates that 84

percent is classified correctly. Looking at the other 16

percent, we see that 14 percent has a predicted domi-

nance depth of 2. Once the population of the NSGA-II

based GA is large enough, it is quite likely that also

these mappings are added to the population of individ-

uals that is carried to the next generation. The larger

discrepancy between prediction and reality is mainly

observed at the individuals with a high value of the real

dominance depth. This is, however, not problematic for

our case, as we are not interested in low quality map-

pings anyway.

4.2 Design Space Exploration

Now that the subset selector has been validated, the complete framework can be validated.

This is done using two experiments. First, we will show that the scenario-based DSE with

feature selection can deliver results much faster than traditional early DSE. In such tradi-

tional DSE, MPSoC design points in the design explorer’s GA are evaluated exhaustively

using all application scenarios. Subsequently, in the second experiment, we investigate the

quality of our proposed scenario-based DSE method.

The parameters of the GA in the design explorer are fixed for all experiments. The GA

uses a population size of 300 and an offspring size of 100. For the fitness prediction in

the experiments with scenario-based DSE, we use a subset of 240 scenarios. To compare

the quality of the resulting Pareto fronts, we use the hypervolume [ZT98] metric. The

hypervolume is equal to the area of the Pareto front and the larger it is, the better the

Pareto front. We have normalized the hypervolume values such that the combined Pareto

fronts of all performed experiments equal to a hypervolume of 1.0.

4.2.1 The evaluation time of early DSE

In the first experiment the evaluation time of traditional DSE and the proposed scenario-

based DSE with feature selection (FS) is compared. The traditional DSE uses 12 threads

to evaluate the individuals in the GA, whereas the scenario-based DSE with FS uses 10
threads for the design explorer (the mapping GA) and 2 threads for the subset selector.

This ratio determined using calibration of time versus precision. The experiment is done

on a dedicated server with 2 Intel six-core Xeon L5640 processors running at 2.26Ghz.

From Figure 7, it can be clearly seen that our framework is much faster than the traditional

DSE. While the traditional DSE only performs 34 generations, the scenario-based DSE

with FS can execute 300 generations. As a consequence, the resulting Pareto front of the
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Figure 7: Time-based comparison

traditional DSE after 90 minutes is clearly

outperformed by the faster scenario-based ap-

proach. We would like to note, however, that

although the convergence rate of the tradi-

tional DSE looks more slowly and bumpy,

this is only due to the small number of gen-

erations. The scenario-based DSE is capa-

ble of doing more generations, resulting in a

smoother and faster convergence. However, it

is as expected that the final result of the ex-

act traditional DSE is better as can be seen in

Figure 8.
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Figure 8: Generation-based comparison

For early DSE, it is key that a large number

of candidate designs can be rapidly evaluated.

Hence, the traditional DSE method takes too

much time (12 hours and 40 minutes) for a

quick feedback loop in which the designer

is able to manipulate the application(s) and

the MPSoC components based on the candi-

date designs. Moreover, as the number of ap-

plications grows, the larger the gap between

the evaluation time of the scenario-based DSE

and the traditional DSE.

4.2.2 The quality of the scenario-based DSE

In the previous experiment, we have shown that it is necessary to speed up the early DSE

of a multi-application workload by using scenario-based DSE. As a next step, we show

that the deterministic approach of selecting a subset of scenarios improves our result of

the early DSE. To this end, we compare our approach to an alternative scenario-based

DSE approach which has been proposed in [vSP10a]. In this alternative approach, a co-

evolutionary GA is used to perform scenario-based DSE. The experiment is performed

on a sixteen core machine and thus we have used 12 threads for the design explorer and

4 threads for the subset selector. For both the FS and the GA approach ([vSP10a]), the

experiment is repeated five times.

Figure 9 shows the results of the experiments. The hypervolume is averaged over all the

runs and the standard error over the different experiments is shown with an error bar. Dur-

ing the first 50 generations, the FS and the GA approaches are comparable. In this initial

phase, the differences between the fitness of the different platform instances is still large

enough to tolerate inaccurate predictions of a subset with a moderate misclassification rate.

As of approximately 50 generations, our FS method starts to outperform the GA approach,

and the gap between both approaches steadily increases. After a startup period, the FS ap-

proach is able to find a better scenario subset with a higher accuracy. The higher accuracy

results in a good and valid distinction between mappings which have fitness values that
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Figure 9: The effect of the deterministic subset
selection on the quality of the DSE. The feature
selection (FS) approach presented in this paper is
compared with an approach where a GA is used
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are relatively close. As a consequence, the

FS approach can find a higher number of

better candidate designs. The GA approach

is less capable of making a distinction be-

tween the highly ranked mappings and its

hypervolume starts to flatten earlier.

Moreover, it can be seen that the FS ap-

proach is more deterministic than the GA

approach. The standard error of the differ-

ent experiments is significantly smaller after

250 generations have passed. On the final

result, the standard error of the mean is 3.6
times as small as compared to the GA ap-

proach. This is because the GA approach is

dependent on the stochastic nature of the GA to find good scenario subsets. A stochastic

approach will eventually find a good subset, but the larger the subset is, the tougher it

becomes.

5 Related work

There is a large body of research dedicated to early DSE of MPSoC based embedded

systems [Gri04]. However, the majority of this work still evaluates the embedded systems

with a single (fixed) application workload. Recently, research has begun to apply workload

scenarios [G+09] for making the design phase scenario aware [PSZ08, P+06, S+10a].

In [vSP10a] a scenario-based DSE technique using a coevolutionary GA is described.

The scenario-based DSE approach proposed in this paper has been inspired by the work

of [vSP10a], but as shown in Section 4.2.2, the scenario subset selection is significantly

improved and thereby the quality of the entire DSE process.

In our scenario-based DSE, fitness prediction[JB05] is used to deal with the large number

of application scenarios. For this purpose feature subset selection[S+10b] is used. An

example of a case where feature selection is used for ranking can be found in [L+04].

This work uses a hybrid method, which is a combination of a so called kNN classifier and

a NSGA-II based GA, to estimate the Pareto front of a hydrological model. These parts

are running in lockstep and not independent as in our approach.

6 Conclusions

In this paper, we have presented a framework for scenario-based DSE with feature selec-

tion. Scenarios enable the modeling of the dynamism in multi-application workloads. Our

framework performs simultaneous co-exploration using a design explorer and a subset se-

lector. The design explorer uses the current scenario subset to predict the fitness of the

MPSoC design instances. The subset selector, on the other hand, uses a sample of design
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instances to train a scenario subset using feature selection. Our experiments show that,

based on the size of the subset of scenarios, we are able to make a tradeoff between quality

and the evaluation time of the early DSE.
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Abstract: Data-parallel processing is a widely applicable technique, which can be
implemented on different processor styles, with varying capabilities. Here we address
single or multi-core data-parallel instruction-set processors. Often, handling and re-
organisation of the parallel data may be needed because of diverse needs during the
execution of the application code. Signal word-length considerations are crucial to
incorporate because they influence the outcome very strongly. This paper focuses on
the broader solution space of selecting sub-word lengths (at design time) including
especially hybrids, so that mapping on these data parallel single/multi-core processors
is more energy-efficient. Our goal is to introduce systematic exploration techniques so
that part of the designers effort is removed. The methodology is evaluated on a repre-
sentative application driver for a number of data-path variants and the most promising
trade-off points are indicated. The range of throughput-energy ratios among the dif-
ferent mapping implementations is spanning a factor of 2.2.

1 Introduction

Today designers are using a very simplified methodology to exploit the available signal
quantisation freedom. That is in general the case for mapping applications to instruction-
set processors, which is our target in this paper. Exceptions are present for cost-sensitive
custom ASIC or FPGA oriented designs, but those are not our focus here. Usually, the
width of the available data-path (e.g. 32 bit) is used for representing all the signals in a
fixed-point notation. Alternatively, all data are just left in floating-point notation when the
processor platform supports it. That is the easiest and the most effective approach from a
design-time reduction point of view. Many processor vendors explicitly use that argument
to motivate the support of expensive floating-point arithmetic in their processors, even
in the embedded DSP domain where processor cost overhead is seen as undesirable (see
e.g. TI C6x DSPs). In the best case, designers use a quantisation technique that reduces
the word-length of all signals in a uniform way to a few power-of-2 values (e.g. [Ha04,
Wi11]). This allows to better exploit SIMD or sub-word parallel operation. Usually, that
leads to a division of the signals in a few categories: 8, 16 and 32 bit data.

However, we believe that recently introduced and still developing techniques for advanced
quantisation exploration [Pa10, No10a] allow to change this state-of-the-art paradigm.
With these new emerging techniques, a methodology is enabled where the minimal word-
length for all signals is determined individually based on quality of service (QoS) require-
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ments. Examples are the bit-error rate (BER) in a wireless system or the signal-to-noise
ratio (SNR) for a multi-media system. As a result, a wide range of signals with a very non-
uniform distribution is produced, e.g. ranging from 6 to 24 bit [No10a]. So, we can exploit
a much wider variation of SIMD groupings and this motivates in its turn to go beyond state-
of-the-art hardware-based SIMD concepts where only a few power-of-2 word-lengths are
supported. In an ad hoc way, custom ASIC designers are sometimes using this fine-grain
quantisation information already, but the resulting range of word-lengths is then used to
hardwire different operators and not used for a time-multiplexed SIMD processor. We are
trying to explore such solutions with our methodology. Moreover, the methodology is not
only applicable on single processing elements (PEs) but also on multi-core processors with
multiple homogeneous PEs which are organised in a SIMD fashion.

Our first contribution is the systematic exploration of selecting data word-lengths on dif-
ferent SIMD platform options, with a given distribution over the signals of minimal word-
length requirements, including especially the attractive hybrid options. Secondly, we also
show how we can obtain a broad range of near-optimal mapping results in terms of per-
formance, energy and area trade-offs for realistic embedded applications on an single or
multi-core SIMD processor.

The structure of the paper is organized as follows: Section 2 presents related work, while
Sect. 3 exhibits the proposed systematic approach for data organisation within the data-
parallel processing context. A case study in Sect. 4 is used to illustrate the potential use
of the methodology and to show the benefits through some high-level comparisons with
alternative techniques. Section 5 concludes the paper.

2 Related work

In the literature, a number of mapping solutions on data-parallel platforms have been pro-
posed, especially for vector or conventional hardSIMD architectures. Regarding SIMD
implemented in software, a number of instantiations are discussed in [BD06, La07, No10b]
but without any systematic classification or selection process.

In order to exploit the data-level parallelism present in the application, often the data lay-
out (the order in which the data is stored in the memory) has to be modified and the data
sub-words that will be operated in parallel have to be (re-)packed together into words.
This process, together with the restructuring of the application code to perform the data
parallel execution, is called vectorization or SIMDization. Vector compiler-focused work
has been published in [LA00, Te05].Various SIMDization and transformations techniques
have been proposed in the general or embedded compiler literature [KL00, XOK07]. They
are focused on the basic parallelisation, potentially together with some cost functions to
reduce the overhead of dealing with various sub-word lengths. But they do not try to de-
scribe or explore the broad search space that is available with non-conventional techniques
or hybrids for effectively handling sub-words with different word-lengths.

Many researchers have addressed SIMD mapping on homogeneous SIMD architectures in
the past (see e.g. [CF04, Qi09]). They have focused however only on the pure hardware-
supported SIMD styles, and very seldom even on the sub-word parallel processing. Ex-
ceptions to this are the papers [Fr05, CVE09] which do address sub-word processing but
again without covering any design space exploration of hybrids.
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3 Systematic exploration of sub-word handling hybrids

3.1 Target platforms description

Typically, the elements, that can be found in sub-word parallel SIMD architectures, are
the data memory and the register file, arithmetic operators such as shift-add units, and
a sub-word rearrangement unit such as a shuffler (if repacking or other operations are
necessary). Traditionally, within SIMD, the arithmetic hardware is capable of handling the
sign and carry (or other bits) propagation for each of the operands during the calculations,
so that they do not pollute each other (called hardSIMD further on). More recently, a
software-controlled technique has been introduced, named softSIMD [BD06]. SoftSIMD
does not include dedicated circuitry in the arithmetic units to support the data-parallel
operations. When operations move operands across their limits, techniques like resizing
of the sub-words (repacking) and masking through placing guard bits [BD06] then have
to be employed. The difference between hardware-implemented SIMD and the software
version, lies in the shuffler operator that now handles the bits on the MSB or LSB side that
can potentially pollute the adjacent sub-words. This sub-word parallel operation with the
corresponding support can be realized in a single core processor but also in a homogeneous
SIMD multi-core processor. In that case, the overall data parallel solution is constructed of
a hybrid between sub-word processing inside the cores and vector SIMD across the cores.
For instance if we have 8 cores of 64 bit each and we have support for sub-words of 8, 16
and 32 bit, then the mapping can contain 64 parallel operations on 8 bit, 32 operations on
16 bit and 16 operations on 32 bit.

3.2 Systematic exploration of sub-word lengths

For this analysis, a set of proposed word-lengths for each variable in the application code
is taken as input. The set comes from emerging systematic and hence automatable quanti-
zation techniques such as [Me10]. It includes information about hard and soft constraints
regarding the word-lengths. This allows the mapping stage to effectively exploit the word-
lengths that are reduced compared to conventional worst-case techniques.

The methodology to select the appropriate sizes for the signals of an application is il-
lustrated through a compact classification scheme (Fig. 1). This scheme can be used by
designers to find optimized options for the application word-lengths in a systematic way,
which makes sure that no important option is missed. Some of these solutions are well-
known but a number of them are novel (to the best of our knowledge), since the techniques
for exploring reduced word-length are not so widely applied yet. More importantly, this
top-down split-based tree organization allows a number of very promising hybrid solutions
to pop up which are not so easy to find simply by trying out different combinations. Hy-
brids come up by combining options. One such more obvious illustration is that software
SIMD can be used to improve the capabilities of a hardware SIMD platform. An example
mentioned in [BD06] is that softSIMD could be used in DSPs when, for instance, hard-
ware support for 16-bit SIMD operations is provided, but not for operands with a lower
word-length. In that case, 16-bit hardSIMD instructions are combined with lower word-
length softSIMD instructions inside the 16-bit segment. But the searching space is broad
and this is what we are trying to explore here.
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Initially, the quantization information of all variables in the application code is collected.
Then, an important distinction has to be made between selecting signal sizes for applica-
tions that allow accuracy loss and those that do not (split a in Fig. 1). The information
about which direction we follow in the diagram, comes from the application designers,
who code the programs.
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Figure 1: Sub-word length selection

3.2.1 Accuracy loss tolerance.
When the type of application allows that data have some accuracy loss, two potential cases
can be found (split b). In the first case (left-hand side of split b), at compile time it can be
known exactly how many bits can be discarded from each data item, namely accuracy loss
takes place in a completely controlled way. In the second case (right-hand side of split b),
the loss of accuracy can not be fully determined until run-time. The bit loss is bounded by
a pre-analysed upper limit, to ensure correct functionality. This is the non-controlled sub-
category. Whether we are in the controlled or non-controlled branch depends on whether
we have sufficient knowledge of how the application evolves during execution time. An
example application in the controlled accuracy loss subcategory is a video encoder. Since
the code and typical (natural) data streams of the video encoder and the compression stan-
dards are predefined, it can be analysed at design time how much accuracy loss will be
present. This happens by profiling representative video input sequences and extrapolating
from these information regarding the accuracy loss. On the other hand, the subcategory of
uncontrolled accuracy loss solutions can be applied in cases like data transmission applica-
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tions that are best effort-oriented, such as Skype-like protocols. Since it can not be known
exactly at design time how many users will appear, namely the load changes at run-time,
it is impossible to accurately preanalyse the data.

An example can be used to illustrate more effectively these cases. We use simple oper-
ations as additions and right shifts, which are representative cases of handling bits both
on the MSB and LSB side. In this example, the operands, resulting from the quantization
analysis, are 5-bit long and the data-path is 30 bits wide. Each of the operands takes part
in an addition and/or a right shift. Given a 30-bit data-path, we can operate 6 sub-words
of 5 bits in parallel.

In the controlled approach (left-hand side of split b), the accuracy loss can be guaranteed
either by stopping bit propagation (carry or LSBs) by means of hardware (leaf 1) or by
adding bits (leaf 2). This guarantee refers to making certain that the operands do not
cross their boundaries and pollute their neighbouring ones. Thus, the results remain valid.
Leaf 1 applies both to hardSIMD and softSIMD. For softSIMD, the bit cut off can be
similar to the hardSIMD case, but with a different internal hardware structure to create
less overhead especially when many (non power of 2) sub-word sizes exist. Adding bits
can be accomplished by extending the word-lengths and placing guard bits or modifying
bits in the existing space (applies for the softSIMD case). In the example shown in Fig. 2a,
the accuracy loss is being controlled leading to only 1-bit loss (instead of potentially 2 due
to the right shift). This happens by extending the 5-bit operands to 6 bits and zeroing out
their LSB before they are shifted.

30b

results

operands A0 0 0 00

6b

6b

>>2

(a) controlled accuracy loss

30b

+

= results

operands A

operands B
6b

6b

6b

(b) accuracy preservation

Figure 2: Extended sub-words for controlled accuracy loss and preservation

The placing of the guard bits can either take place in a hardware-based fashion (leaf 2i),
for instance by shuffling of bits, or in an instruction-based way (leaf 2ii). In the last case,
the data-word to be masked is entered as one input of the masking unit. Another word,
with the desired composition of guard bits, needs to have been stored upfront in the data
memory. The (re)placement occurs through a logic operation.

When accuracy loss occurs in the non-controlled way (right-hand side of split b), no spe-
cial care is taken for the sub-words of the output (after the addition or the shift). Only
an upper limit exists for the bit loss (see beginning of Subsect. 3.2.1). In the example,
the 5-bit values of the output may contain inaccurate data. Here, the case that there is
pollution of data of the neighbouring sub-words on the LSB side (leaf 3) or on the MSB
side (leaf 4) has to be discussed separately. Regarding leaf 3, inaccurate data appears (as
shown in Fig. 3a) when an overflow occurs during an addition. If no precaution is taken,
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the overflow bit moves out of the sub-word and generates an inaccurate result for both this
and its neighbouring sub-word (the MSB enters the left-hand sub-word).

Also right-shift operations can lead to accuracy loss in an uncontrolled way (the shifted
bits -LSB- enter the right-hand sub-word). These instances are relevant to leaf 4. Since the
MSBs are influenced, it is possible that the results come out totally wrong. However, cases
exist that this does not happen, as the one illustrated in Fig. 3b. Here, the operands are two
32-bit sub-words. The data values needed to be represented are only 24 bits. If these 24
bits are chosen to be positioned on the right-hand side (LSB side) of the sub-words, then
the 4 bits that are shifted in from the left-hand side do not influence the results on the MSB
side. In this way, the results remain valid and no overhead operations need to take place.

5b

30b

5b

5b

+

= results

operands A

operands B

(a) during an addition

32b

>>4 results

operands A

24b

24b

32b

(b) during a right shift

Figure 3: Accuracy loss that occurs in a non-controlled way

3.2.2 Accuracy preservation.
The second category (right-hand side of split a) considers the case where a hard guarantee
exists for the accuracy preservation. This is true in mission critial applications where not
meeting these hard requirements on the results will have an unacceptable impact.

The accuracy preservation can happen either by enlarging the sub-words to prevent bit loss
during the operations (split e left-hand side) or by upfront (during the word-length decision
phase) selecting a bigger word-length before the beginning of the execution (right-hand
side of split e). In Fig. 2b although the operands are 5-bit long, 6 bits are reserved for each
one of them. The 6th bit (MSB) provides space for the overflow bit.

In the case of resizing (left-hand side of split e), sub-words are extended to prepare for the
operations that follow. The decision on the resizing can be made either at compile (leaf
5) or at run-time (leaf 6). The run-time mechanism could be realised with preinstalled
hardware that supports precoded senario-based mapping options. The latter are then se-
lected during run-time. For the addition case of our example, this means 6-bit sub-words
are selected before the beginning of the operation. For the right-shift operation, (5+n)-bit
sub-words are selected before the beginning of the shift by n. In this case, less sub-words
are processed in parallel, i.e. only 5 instead of 6 in the case of the addition. Still, every
sub-word of the output has a correct result and no sub-word is affected by its neighbouring
one. Thus, at the cost of extra resizing operations and a reduced number of parallel sub-
words, a hard guarantee can be provided for the accuracy. To achieve an efficient resizing
for the softSIMD case, guard bits are used. The placing of the guard bits can take place in
a similar way as for leaf 2 (subtree h).
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At the right-hand side of split e, during the initial selection of the word-lengths, we choose
a bigger word-length in order to provide enough space for the extra bits i.e. the overflow
bit in the case of the addition. In our example instead of the minimal length of 5 bits, we
select 6-bit word-lengths. In that case, the correctness of the results is maintained, and
extra resizing is avoided, but we operate only 5 sub-words in parallel. The bigger word-
lengths can either have been stored in the data-memory in the intended extended form
(leaf 7) or the extension can take place during their stay in the register file (leaf 8). Within
softSIMD, the extra space provided by the bigger word-length selection is filled with guard
bits on the one or both sides of the sub-words depending on the next operations.

3.2.3 Hybrid solutions.
Most importantly, many hybrid solutions can be derived in a fully systematic way by
combining characteristics of any subset of leaves in Fig. 1. All these leaves are namely
potentially compatible with each other. Here, we will describe only a few to illustrate this
property. These combinations lead to new, non-obvious choices.

One such case is that within the controlled accuracy loss approach (left-hand side of split
b), the stopping of bit propagation (leaf 1) can be combined with the addition of bits
at specific places (leaf 2). In that way, space can be provided for the MSBs by cutting
off LSBs. The guard bits for this case are placed at the MSB side of the sub-words. In
Fig. 4 such an example is shown. The LSB of the 6-bit operands is stopped by means of
hardware during the right shift by 1. In combination to that, a guard bit is placed on the
MSB of the sub-words to potentially prepare them for an addition. If we would choose to
stop bit propagation on the MSB side as well (during the addition), then the neighbouring
sub-words would still be protected but the accuracy of the current sub-words would be
altered (as they cannot expand to the extra bit any longer). The other option to preserve
accuracy would be to resize the sub-words to a bigger word-length before the execution
of the operations. But this potentially means less parallelism exploitation. This hybrid
approach provides a way to avoid the use of a bigger word-length. A second hybrid

30b

results

operands A

6b

6b

>>1

Figure 4: Hybrid approach for controlled accuracy loss

illustration considers the combination of the resizing option (left-hand side of split e) with
controlled loss of accuracy (left-hand side of split b). This could be considered when
the loss of accuracy would be too big if no resizing takes place but a flawless accuracy
preservation is also not preferable (e.g. because it leads to lower parallelism exploitation).
Many other promising hybrids exist in the overall search space.

It becomes obvious that this diagram can be effective for the selection of the platform
characteristics, since certain platform options can lead to more optimized mapping results
depending on the application domain and the overall system requirements. However, even
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when the platform is already defined this diagram remains partly relevant. For example,
instruction-based masking can be performed as long as the basic logical operations are
supported on the platform. This is common for conventional instruction-set processors.

The way to select and evaluate the different possibilities is dependent of course on the
application and platform characteristics. But also trade-offs are present. We briefly discuss
here the main issues that play a role in this decision making. A more systematic evaluation
is part of future work. The total number of groups of lengths should be small so that the
overhead involved with resizing the sub-words is minimized (e.g. in the shuffler). If, for
example, in an application among other word-lengths needed, 13- and 16-bit data occur at
similar frequencies, it would make sense to use the 16-bit value for both cases. In that way,
the support of an extra word-length is avoided. In addition, a resizing operation should be
avoided when the accuracy loss is acceptable compared to the gain due to more difficult
masking and repacking. For example, if an application allows that some LSBs are lost
then it is better to avoid repacking to preserve accuracy and make use of this tolerance
of the application so that energy consumption is further minimized. A specific example
illustrating trade-offs regarding this selection decision is discussed in Subsect. 4.2.

4 Evaluation of the proposed methodology
4.1 Driver algorithm

An image filter is used as driver for the evaluation of the proposed sub-word handling tech-
niques. The illustration regards the mapping of a 1-dimensional Gauss loop filter applied
to an input frame. Different architectures are considered for mapping the Gauss loop.
However, due to space limitations, only one mapping implementation will be discussed
more thoroughly now and the others will be summarized and compared in Sect. 4.3. The

program 1 Optimized Gauss loop (1D)
for x = 1 → N − 1 do

for y = 2 → M − 1 do
Op1:MulRes0 = imsub[x− 1][y] + imsub[x+ 1][y];
Op2:MulRes7 = MulRes0 ∗Gauss[0][1];
Op3:MulRes4 = imsub[x][y] ∗Gauss[0][2];
Op4:imgauss x[x][y] = MulRes4 +MulRes7;

end for
end for

optimized code of the 1D filter is depicted in program 1. The operations involved are two
additions (Op1, Op4) and two constant multiplications (Op2, Op3). The filter coefficients
are shown in Table 1. The multiplications can be performed either by using a multiplier
unit or by a shift-add unit (by applying strength reduction). For the current illustration,
when the multiplications are performed in a shift-add way, the right-shift approach is cho-
sen and for the constants the Canonical Signed Digit (CSD) [Ba07] encoding is considered
(see Table 1). The first multiplication is performed in three shift-add/subtract steps by 4,
by 3 and by 2. Similarly, for the second multiplication right shifts by 3, by 2 and by 5 and
the corresponding additions/subtractions need to take place.
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Gauss[0][1] Gauss[0][2]
Decimal 655 983
Binary 1010001111 1111010111
CSD coding 101001000- 10000-0-00-

Table 1: Gauss coefficients

Signal Length
(bits)

Signal Length
(bits)

imsub 7 imgauss x 12
MulRes7 10, 11, 13 MulRes4 9, 10, 13

Table 2: Gauss loop signals

4.2 Application of the methodology

We will illustrate the mapping of the code using the softSIMD related leaves in Fig. 1.
SoftSIMD makes sense to use while performing simpler operations that do not lead to a
potential explosion of the operands’ word-length [BD06]. Thus, for the multiplications,
the shift-add scheme is employed. We consider a 48-bit data-path that consists of a shift-
add-subtract unit (SAS) for the arithmetic operations, a shuffler unit for the repacking
operations and intermediate registers (softSIMD data-path).

For the mapping, minimal quantization-based word-lengths (for the input signals, the in-
termediate results of the constant multplications and the final results), as shown in Table 2,
are our starting point. Then, in correspondence to the Fig. 1, the word-length choices of
this Gauss filter code occur as follows:

1. The first operation (Op1) is an addition of 7-bit values (imsub). The result needs to
be stored in 8-bit values. To avoid a repacking operation from 7 to 8 bits, the signals are
stored as 8-bit in the data memory (leaf 7). That means 6 sub-words are in parallel in the
48-bit data-path. The result of this operation (MulRes0) is used in the second operation
which is a multiplication with a Gauss coefficient. The second multiplication starts with
a right shift by 4. Since the operands need to be shifted by 4, they need to be extended
to 12-bit values, before they enter the data-path. So that accuracy is preserved during the
right shift, 1 LSB is cut-off from the first addition result (leaf 1) and guard bits are added
(leaf 5i or 5ii) so that the sub-words are 12-bit long to prepare for the next multiplication.
Combining these leaves is possible as explained in Subsect. 3.2.3.

2. During the second operation (Op2), after the first shift-add operation by 4 (explained
before) and prior to the second shift operation by 3, a repacking operation of the variable
to 16 bits needs to take place so that accuracy is preserved (leaf 5i or 5ii). Because two
guard bits are required at the left-hand side of the repacked multiplicand (one for the
additions within the multiplication and one extra for the addition of the fourth operation
of the Gauss loop), the result is shifted out of the sub-words during the last shift by 2. In
this case, care must be taken so that the extra bits are cut off and do not enter the adjacent
operand (leaf 1). This choice is a hybrid combination of the resizing option (leaf 5i or 5ii)
and the stopping of bit propagation (leaf 1), that allows us to exploit the given word-length
in an efficient way while we are also obeying the accuracy limitations. If the guard bits are
not placed, potential overflows coming from the additions can corrupt the results. On the
other hand, if the 2 LSBs are not cut-off, right-hand sub-words may be polluted. Another
alternative would be that an extra word-length is then supported, for example the 18-bit
or 24-bit word-length. But this would increase the hardware overhead (for example in the
shuffler because an additional repacking operation would have to be supported) and would
limit the parallelization potential. With the 18-bit or 24-bit option only two sub-words
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could operate in parallel in the 48-bit data-path. This allows this hybrid combination to
appear as an optimal option.

3. For the third operation (Op3) similar choices with the previous operation are made. The
imsub data are stored as 8-bit in the data memory (leaf 7) and are resized to 12-bit by the
register file (leaf 8) before they enter the data-path. As before, the sub-words operate as
12-bit during the first cycle and as 16-bit during the two subsequent cycles.

4. The fourth operation (Op4) is an addition of the multiplication results (Op2, Op3)
stored into a 12-bit value (according to quantization results). In this case, 4 sub-words are
working in parallel.

More detailed information on the exact mapping is available in [Ps10].

4.3 Comparison with mapping on alternative data-paths

Alternative data-paths. Besides the softSIMD discussed above, alternative data-paths
are considered. Like softSIMD, hardSIMD data-paths also include a shift-add-subtract
(SAS) unit and a shuffler. The differences with softSIMD have been discussed in Sect. 3.
The cases considered are one more unconventional hardSIMD option (HardSIMD SAS,
3-wl) that supports all three sub-word sizes (8-, 12-, 16-bit), one more conventional (Hard-
SIMD SAS, 2-wl) that supports only power of 2 sub-word sizes (in this case 8-, 16-bit).
Moreover, the SIMD case where only one sub-word size (24-bit) is considered (SIMD
SAS, 1-wl). In the last case, no shuffler is needed and the SAS unit does not need to
handle the carry and other bits (the operands remain within their boundaries).

As further reference, we also consider hardwired multiplier data-paths. In this case, a mul-
tiplier is used in the position of the SAS unit. Operands’ width during the multiplications
is calculated as follows. The input operands (imsub[x. . . ]) are 7-bit and the Gauss coeffi-
cients are 10-bit long. That means that the width needed for each multiplication result is
at least 17 bits, and when rounded to the next power of 2, this becomes 32 bits. For the
multiplier approaches discussed in this paper, a more optimized choice of 24 bits is used
as an optimistic comparison reference. Moreover, for the additions existing in the applica-
tion an adder is needed and when more than one word-length is supported, a shuffler unit
is present. In this category, two cases are considered, one (HardSIMD Mult, 3-wl) where
three sub-word sizes (8-bit for the initial addition, 24-bit for the multiplications and 12-bit
for the final addition) are supported and one (SIMD Mult, 1-wl) where only one size is
supported. In the last case, six groups of two 24-bit operands are operating in parallel and
operands remain within their limits during the operations.

Relative area, energy consumption and throughput. The different data-path options
with the required functionalities have been implemented in TSMC 40 nm std. cell tech-
nology, using Cadence RTL Compiler and SoC Encounter for synthesis and place and
route. To obtain the area, energy and throughput numbers for the components, a similar
estimation flow as in [Fa09] has been applied. Each data-path is synthesized for the maxi-
mum clock frequency; no pipelining in the arithmetic data-path is applied. The algorithm
is manually scheduled and optimized for each data-path variant. Software pipelining is
applied in cases where more than one operator is present. The number of required clock
cycles (to complete one Gauss iteration; 12 pixels) together with the critical path is then
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used to determine the relative throughput. For the energy estimation, the actual activation
count for each data-path unit is considered. Table 3 summarizes the results.

Data-path option Accesses of operators Area Energy Through-
put

Through.
/energy

SoftSIMD 27*SAS + 19*Shuf 1.63 0.80 1.69 2.12
HardSIMD SAS, 3-wl 27*SAS + 11*Shuf 1.48 0.72 1.27 1.76
HardSIMD SAS, 2-wl 30*SAS + 4*Shuf 1.28 0.72 1.33 1.85
SIMD SAS, 1-wl 48*SAS 1.00 1.00 1.00 1.00
HardSIMD Mult, 3-wl 5*Adder + 12*Mult +

9*Shuf
7.84 2.05 2.00 0.96

SIMD Mult, 1-wl 12*Adder + 12*Mult 6.63 2.00 2.29 1.15

Table 3: Estimation of the total relative area, energy consumption, throughput and
throughput-energy quotient for one Gauss iteration (data-path = 48 bits).

As it can be seen in Table 3, SIMD SAS 1-wl requires the lowest area, which is reasonable
since no bit handling among sub-words needs to take place. However, the delay signif-
icantly increases in this case. The softSIMD and hardSIMD SAS (3-wl) data-paths, that
exploit maximally the different solutions presented in Sect. 3, are among the near-optimal
solutions in the table. SoftSIMD achieves a higher throughput, compared to the other
SAS implementations (because of the small critical path and the dense scheduling). More
importantly, it achieves the highest throughput-energy ratio. HardSIMD SAS data-paths
exhibit energy-efficiency because of the simpler shuffler unit. HardSIMD SAS (2-wl) has
a more optimal throughput-energy combination than the hardSIMD (3-wl) because of the
slightly smaller critical path. The multiplier data-paths have a big area and energy over-
head but achieve the highest throughput. The throughput-energy ratio is a viable metric
because at the circuit level, it is the most relevant trade-off. A faster circuit indeed re-
quires more energy to perform a computation than a slower one, due to buffer sizing. For
instance, the softSIMD circuit could be made slower and therefore it will also consume
less energy. Note that these results scale as well to a multi-core processor composed of a
homogeneous set of PEs with sub-word parallel support, as indicated already in subsec-
tion 3.1. In that case the mapping above is simply copied for each of the PEs due to the
homogeneous overall mapping principle.

The table demonstrates a wide range of options in the total space, which lead to a wide
range of quantitative results. According to the objectives, the options are worth exploring.
For instance, when high timing constraints are present using a multiplier data-path is a
better option. When design time is not a hard limitation, softSIMD as well as hardSIMD
which supports non power-of-2 sub-word sizes are worth exploiting, since they exhibit the
best energy-efficiency.

5 Conclusion
In this paper, the broad solution space of organizing parallel data with minimal data word-
length requirements in domain-specific processors during mapping (at design time) is ex-
plored in a systematic way. These processors can consist of single or multi-core archi-
tectures organized in a homogeneous SIMD fashion. A methodical way reveals a broad
number of options and can potentially save design time. The application of the proposed
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sub-word handling analysis on a driver algorithm has substantiated a wide mapping so-
lution space. Our goal is to facilitate an intermediate step of the mapping process, after
having selected the minimal word-length requirements and before the compiler tool de-
cides and applies the final mapping. This precompiler methodology can provide pragma
or intrinsic-based guidance to support the traditional compilers.
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Abstract: To rapidly evaluate performances and power consumption in design space
exploration of modern highly complex embedded systems, new simulation tools are
needed. The checkpointing technique, which consists in saving system states in order
to simulate in detail only a small part of the application, is among the most viable simu-
lation approaches. In this paper, a new method for generating and storing checkpoints
for accelerating MPSoC simulation is presented. Experimental results demonstrate
that our technic can reduce simulation time and the memory size required to store
these checkpoints on a secondary memory. In addition, the necessary time to load
checkpoints on the host processor at runtime is optimized. These advantages speedup
simulations and allow exploration of a large space of alternative designs in the DSE.

1 Introduction

Several studies showed that the time needed for designing and verifying next high perfor-

mance embedded systems will be more and more important due to the increasing system

complexity [VAM+06, SBR05, GVH01]. The use of DSE and high level simulation tech-

nique for the realization of high performance embedded systems represents an important

solution to this dilemma. Nevertheless, several obstacles stand in the way to allow MPSoC

simulations being efficient. Among these obstacles, we find: 1) the significant number of

parameters to be taken into account in the exploration phase of the MPSoC design 2) The

increasing complexity of systems to be simulated. Consequently, the more the architecture

is sophisticated and provides more features, the slower is the simulation. For instance, in

the MPSoC platform used in our experiments, the simulation speed is slowed down by a

factor of 6 when the number of processors increases from 1 to 12.

The work, we present in this paper, aims at the design of a tool for rapid and accurate MP-

SoC simulation. Our contribution involves supporting the application sampling technique

as a viable and competitive method to quickly simulate MPSoC architectures. In this pa-

per, we extend one of the most used sampling methods, namely the Simpoint [SPH02]

method, to be efficient for simulating MPSoC. Our proposition consists in adapting of the

checkpointing approach to MPSoC by transforming Basic-Block Vectors (BBV) analysis

to Basic-Block Matrices (BBM) analysis. This extension makes Simpoint efficient for
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MPSoC simulation. We demonstrate that, by our trace analysis and checkpointing, simu-

lation time and memory space overheads can be greatly reduced.

The rest of this paper is organized as follows. An overview of related work on simula-

tion acceleration techniques is presented in Section 2. In this section, the multi-granularity

sampling (MGS) approach [TIN08], on top of which the proposed checkpointing technique

is evaluated, is presented in detailed. In Section 3, two existing techniques for building the

checkpoints before a sample run are discussed. The base line implementation used in the

original MGS proposal is also outlined in this section. Our new method of checkpointing

based on BBM analysis for MPSoC simulation acceleration is introduced in Section 4 and

its performances are given Section 5. Finally, we present our conclusion and perspectives

in Section 6.

2 State of the Art

In order to find the most adequate embedded system architecture configuration for a given

application or group of applications, it is necessary to explore a large set of possible ar-

chitecture configurations. The challenge is to reduce this exploration phase in the Design

Space Exploration (DSE) in order to reduce the time-to-market. Accelerating the DSE

can be done at two levels; either by reducing the number of architectural alternatives to

evaluate [PSZ09] and/or by accelerating the evaluation process associated with each alter-

native. In this paper, we deal with the second alternative. In the literature several different

approaches have been proposed for this purpose. Higher abstraction modeling level in-

stead of the cycle description level (such as Transaction Level Modeling TLM) [Don04],

analytic modeling [CHE11] , and emulation on FPGA [CPN+09] are among the widely

used methods. This paper is based on the application sampling method.

In this approach [SPH02, WWFH03], application execution is first divided in several in-

tervals. From these intervals, some samples are chosen to represent application repetitive

phases. The samples have a reduced instruction count compared to the total execution and

approximate the behavior of the whole application on the hardware platform. The choice

of the samples could be either obtained periodically, as in SMARTS [WWFH03], or by

interval analysis as in SimPoint [SPH02]. In the exiting methods, simulation acceleration

is obtained by commuting the simulator between two states: 1) Detailed-simulation used

during the sample execution and 2) Moving to the next sample to simulate in detail. In

this case, intervals with known performance estimates are either skipped, thus requiring

checkpoints of the system state after the skipped intervals, or simulated with functional

simulation. Checkpointing is usually associated with large disk space overhead, while

fast-forwarding is usually associated with additional simulation cycles. In this paper, we

propose a new checkpointing method for MPSoC sampling-based simulation.

While the detection of identical simulation phases of an application can be accurately

done using phase classification technique (such as Simpoint), concurrent applications are

more problematic because phases from different applications may not perfectly overlap.

In [TIN08], we introduced the Multi-Granularity Sampling (MGS) approach, to addresses

this problem. MGS relies on detecting execution phases that are similar and executing one
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Figure 1: The two stages of the method MGS with 3 processors running 3 applications

(a, b, c). The two figures A and B correspond to the first stage in MGS and Figure C is

the second one. Notation A(ij) is the i(th) interval of granularity j. Steps A and B are also

applied for P2 and P3 to obtain 3 multi-granularity phase matrices for the 3 concurrent

applications a, b, and c [TIN08]

representative sample of each of the execution phases in detail. When an execution phase

is encountered later during the simulation, it is skipped necessitating loading a check-

pointed image of the system state after this phase. The MGS [TIN08] method involves

two steps:

1) Multi-Granularity Phase Matrix MGPM Creation: In this step phase-ID traces for each

application to run on the MPSoC simulator is individually generated using a rapid func-

tional simulation. These traces are neither dependent on the concurrent processes on the

other processors, nor they dependent on a specific MPSoC architectural configuration.

Each application is decomposed into intervals of K instructions. This value is called here

granularity order of 1 and corresponds to 50K instructions in the experiments. For each

interval, a basic block vector (BBV), containing the frequencies of executed basic blocks

in the corresponding interval, is generated. A phase-ID trace is then generated by examin-

ing the similarity between these BBVs using SimPoint [SPH02] classification. Using the

same starting points (i.e. a discretization point of 50K instructions), overlapping samples

of coarser granularity 100K, 150K, etc. SimPoint is used repeatedly to detect similarity

for these coarse granularity phases.

Simpoint is used to detect the similarity for each granularity in order to generate Multi-

Granularity Phase Matrix MGPM ( 1.B) . Each line in the MGPM corresponds to one

starting point in the execution of the application. This first stage is executed once and

statically for all the granularities expected during runtime and a rapid functional simulation

is used to obtain phase matrices in a few minutes. Granularities up to 20 seemed sufficient
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Table 1: A multi-phase cluster table (MPCT) containing 4 MPCs and their metrics. This

MPCT corresponds to figures 1.b and 1.c. gi corresponds to the phase granularity (in

K inst) for processor i. Here we assume having 3 parallel applications (a, b, c) on 3

processors (P0, P1, P2). For example, the first cluster that is met in the execution consists

of 3 intervals: interval 1 of granularity_2 for P0, interval 1 of granularity_1 for P1 and

interval 1 of granularity_2 for P3

MPC g1 g2 g3 K-Cycles Energy(mJ) Repetition

a12, b11, c12 100 50 100 280 104 3

a52,b11,c53 100 50 150 487 190 1

a21,b11,c12 100 50 150 277 150 1

in our experiments, requiring less than 10 minutes of profiling per application.

2)Multi-Phase Cluster (MPC) generation: The second stage uses the MGPMs that have

been generated in the first step. Phases that are executed in parallel by processors are

combined together to form a multi-phase cluster (MPC). These parallel phases are deter-

mined dynamically at runtime as follows: An MPC contains p parallel phases, where p

is the number of processors in the MPSoC. Each new MPC is assigned an entry in the

multi-phase cluster table (MPCT)(see Table 1). MPC containing the same parallel phases

have the same behavior, and thus can be skipped during simulation after estimating their

performance once. Discretization of the overlapping execution phases is adopted. In order

to generate the MPCs, the granularity of each of the p phases is determined dynamically.

Whenever a process reaches the boundary of 50K instructions, a decision is made as to

whether to continue the simulation or to stop to form an MPC. The number of cycles

needed to finish the current interval for each processor is calculated. If the maximum

number of cycles is less than a certain predefined threshold TWSS1, then the approach en-

ters the cluster formation mode, in which each process tries to finish the current phase and

then waits for the other processes. In the MPCT, the combined phase identifiers, which are

executed in parallel, represent a unique MPC identifier and MPCs with the same identifiers

are assumed to have the same performance.

In Table 1, after simulating the first MPC (a12;b11;c12), this MPC recurs 3 times. Since it

already exists in the MPCT, the repetition entry is simply incremented, and the repeated

MPCs are not simulated in details.

In the work we present in this paper, the purpose is to make the simulation by sampling

faster, than MGS. For this reason, we propose to eliminate the fast-forwarding phase and

the checkpointing method is used to minimize the simulation time. We extend phase trace

generation and classification technique based on Simpoint [SPH02], by analysis of all

the granularities that can be encountered at runtime. Therefore, the same start point of

program execution is associated with multiple classifications based on the granularity of

the phase (instruction count), as will be outlined in the following discussion.

1Threshold Waiting at Simulation Synchronization is denoted by TWSS.
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3 System context construction for simulation acceleration

The use of application sampling for simulation acceleration requires addressing the follow-

ing two issues: 1) Restore the exact image of the application context also named starting

sample image and 2) Restore the micro-architectural state also called warming-up sample.

The architectural state is represented by the values of data found in registers of different

processors and in private or shared memories in the case of multi-processor architectures.

These data represent the context of the application and are independent of the architecture

configuration. On the other hand, the micro-architectural state corresponds to content of

caches, the branch prediction table, pipeline, etc [BCE06, WWFH06]. The previous two

tasks must be realized before starting the detailed simulation of each interval. They are

usually made either by a functional simulation or by storing/loading checkpoints. In con-

trast to functional simulation, checkpointing reduces the simulation time by eliminating

the time consumed by FFW [WWFH06] between samples. It consists in saving an image

containing the two states mentioned above, for each cluster. The checkpoints are collected

offline by simulating in details the entire application once for the entire operation of the

DSE. The disadvantage of checkpointing is the large memory size required for storage on

disk. This reduces the simulation acceleration, since additional time is needed to access

the disk and to load the checkpoint.

4 Basic Block Matrices for MPSoC checkpointing

For MPSoC platform simulation with important number of processors is increased, the

number of checkpoints and the memory space to store the checkpoints could be very im-

portant . The method for selecting checkpoints that we present in this paper aims to solve

this problem. Our method reduces the number of checkpoints by static analysis, prior to

execution, of different intervals for different granularities. It allows the user to set the

number of checkpoints to be stored depending on the memory available on the host. The

idea is to combine the different basic block vectors (or BBV) of different granularities

associated with a starting point of the simulation in a matrix. This matrix is called matrix

of basic blocks or BBM. Subsequently, a search of the similarity between the BBM of all

starting point is made. This analysis is independent from micro-architectural configuration

and allows detecting multi-granular phases of the application. In fact, when two BBMs

are identical, this corresponds to intervals of the same multi-granular phase of the appli-

cation. These phases are denoted in the following by MPhases, for Multi-granular phase.

When two BBM belong to the same MPhase, this means that the instructions executed in

intervals of both BBM, taken in pairs, are similar. In other words, whatever the considered

interval size the work done is the same. Therefore, the execution of one BBM replaces the

other, and more importantly a checkpoint of one BBM can be used to start the other. Thus,

all BBMs will be provided to a classification tool in order to select a number of MPhases

set by the user and representing, in the best way, all the BBMs of the application. The

classification tool selects one BBM for each MPhase of the application.
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Figure 2: Generation of BBM from BBV. Here we suppose that the number of basic blocs

is n and bij corresponds to the number of occurrences of basic bloc j of size of granularity

i. BBMi corresponds to the concatenation of columns: BBVi1, BBVi2, ,BBVi3., .etc

4.1 Generation of Basic Block Matrices

Figure 2.A shows the construction of BBMs from BBVs with a granularity equals to 3.

There are BBMs as many as rows in the phase matrix. All the constructed BBMs form

the “BBM vector" represented in Figure 2.B Each BBM contains gxn elements; g and

n correspond respectively to the considered granularity and to the total number of basic

blocks of the application. In Figure 2, g corresponds to 3.

To detect the MPhases of the application, the BBMs are compared by a profiling tool such

SimPoint.

4.2 Classification of Basic Block Matrixes

Once the similarity degree is calculated, the similar (or almost similar) BBMs are gath-

ered in one group, called MPhase. One BBM, called representative BBM, is chosen to

represent each MPhase. This allows us to represent the behavior of the whole application

by the representative BBMs. Indeed, the classification aiming at distributing the BBMs

into MPhases so that BBMs belonging to the same MPhase are very similar, and BBMs

belonging to distinct MPhases are different from each other.

Thus, we are inspired from the SimPoint methodology to achieve BBMs classification.

This is based on the k-means algorithm. However, any classification methodology, such

as [JH08], can be used to realize this classification. Subsequently, a classification algo-

rithm, such as k-means, is applied to BBMs . This algorithm achieves a distribution of
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Figure 3: The similar BBMs in Figure B have the same identifier. The identifier is com-

posed of Mphase application name and the index of its representative BBM. The cylinders

represent the collected checkpoints. C) Xi.J means that the instructions executed belong

to the Mphase Xi and to the order of granularity j.

BBMs in k different MPhases (1 ≤ k ≤ Kmax). To choose the value of k, SimPoints uses

the Bayesian Information Criterion (BIC) [12] to compare the quality of the classification

of different values of k. Indeed, the classification must provide two things, first, the small-

est possible value for k, and the second one is all the BBMs belonging to the same MPhase

must be very similar. Here, the chosen classification is the one that gives the smallest value

of k with a BIC score at least 90% of the best BIC score obtained. BIC simply indicates

the degree of similarity of all BBMs in an MPhase. The last step is to elect a representative

BBM of each MPhase. This represents the behavior of the whole MPhase. The centroid

of the BBM is calculated as the average of all BBMs of the MPhase. In these cases, the

representative BBM of the MPhase is one that has the closest distance from the centroid of

MPhase. Since there are as many representative BBMs as MPhases, k BBMs are selected

to represent the behavior of the entire application and representative checkpoints are col-

lected at starting points of the k representative BBMs. Figure 3.A presents an application

X as a suite of BBMs that are collected offline. Figure 3..B shows the classification of

BBMs of the application X. The similar BBMs have the same MPhase identifier. Here,

the identifier of the MPhase corresponds to the name of the application (X) followed by

the index of the representative BBM of the considered MPhase. For example, the first and

fourth BBM are considered similar by the static analyzer and thus have the same identifier

MPhase. The fourth BBM, called BBM4, was selected as representative BBM of that

MPhase. Thus the identifier of that MPhase is X4 in the Figure. Figure 3.B shows two

MPhases and two representative BBMS BBM3 and BBM4. As the checkpoints are col-

lected at starting points of representative BBMs, checkpoints in Figure 3.B are collected
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at the third and fourth starting point. These checkpoints are represented by the different

cylinders in Figure 3.B.

4.3 Use of BBM by MGS to Accelerate Simulation

We illustrate the use of our checkpointing method in Figure 3. Checkpoints are collected

at starting points 3 and 4 for the application X and there are as many checkpoints as repre-

sentative BBMs for each of the concurrent applications, as shown in Figure 3.B. For each

processor of MPSoC architecture, the associated checkpoint with the representative BBMs

of the phases to be executed, is loaded in the memory of the host. In Figure 3.C, P0 begins

with the detailed simulation of the MPhase X4. The representative BBM of that MPhase

is the fourth BBM in the matrix (see Figure 3.B). It corresponds to the starting point 4.

Thus, the checkpoint of that BBM is loaded for P0 at the beginning of the first MPC and

the fourth BBM is executed. As the granularity of instructions executed in an MPC is

determined dynamically by MGS, it is impossible to know a priori the granularity of the

phases. The first MPC corresponds to a phase of granularity 2 for P0. Subsequently, the

second interval of P0 starts at the point 3. As for the second MPC, P0 load the checkpoint

of the representative BBM corresponding to point 3 of the execution. In this example the

representative BBM at this point of execution is the same, denoted X3 The same technique

is applied for processors P1 and P2 in our example. During the simulation, an MPC is con-

sidered similar to an MPC already simulated if the MPhase in the simulated MPC and that

in the trace of MPhases are similar. Thus in Figure 3.C, the third MPC is considered sim-

ilar to the first MPC. Similarly the fourth MPC is considered similar to the second MPC.

The advantages of the method of checkpoint generation by BBMs versus the method of

similarity lines proposed in [TIN08] is the fact that the representative BBMs correspond

to the centers of MPhases. This allows a more accurate performance approximation than

taking the first occurrence of the MPhase during the simulation.

5 Experimental Results

In this section, we quantify the amount of saving in checkpointing storage when the the

BBM technique is used in conjunction with MGS. Note that since trace analysis and check-

pointing generation is made only once and offline, simulation acceleration factors are at

least identical to those given by MGS [TIN08].

5.1 Checkpoints construction

To reduce required memory size for storing checkpoints, the Touched Memory Image

(TMI) was implemented in conjunction with MGS and BBM-Based checkpointing. In

TMI, checkpoints, which do not contain memory regions that are not modified by the

application phases, are not integrated in the checkpoints. In addition, in a checkpoint

state instead of having an address for every memory position, only one address is stored
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Figure 4: Variation of the number of checkpoints to store checkpoints in the similar line

method (LS) and in the BBM method (BBM) with Gmax 20 and 64

Figure 5: Variation of the total memory size in MB to store the checkpoints for LS and

for the BBM with Gmax 20 and 64

to represent a sequence of consecutive data in the memory. We also used the Memory

Hierarchy Sate (MHS) technique [BCE06]. In MHS, cache contents are created from

the largest reference cache (64KB in our case). Thanks to this method, the size of the

architectural state of each processor in each checkpoint is limited to 200KB, for the studied

benchmarks.

5.2 Number of checkpoints reduction with BBM-based checkpointing

In this section, the required memory size for BBM-based checkpointing is compared to

the required size when line similarity (LS) and BBV [TIN08] are used. We conducted the

experiments with Gmax of 20 and 64 . These values are the largest observed granularity for

the MiBench application combinations [GRE+01]. As in [TIN08], we used an interval

size of 50K instructions as the order-1 granularity. Finally, we fixed KMAX to 10. Figure 4

gives the number of checkpoints for the two approaches BBM and LS. In this figure, we

notice that the number checkpoints increases with granularity in LS. This is due to the fact

that similarity between lines diminish with the increase of the line size. For example, for

the adpcm application and granularity of 64, more than 3000 checkpoints must be stored.
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(a) Simulation speedup factor
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(b) Estimated IPC error

Figure 6: Simulation speedup factor and estimation error (in%) for 4 combinations of

benchmarks provided by MGS with BBM-Based Checkpointing and compared with Line

Similarity technique [TIN08]. The number of processors is 4 and 8.

In contrast with BBM, this number depends only on KMax. For KMax of 10, the number

of checkpoints is less than 10. We also notice that the number of checkpoints is constant

with Gmax. Even better, for the majority of the executed applications, this number slightly

decreases because the BBM contains intervals that partially recur. Indeed, when phase

granularity increases, the degree of similarity between intervals and consequently between

BBM also increases.

5.3 Required memory size reduction with BBM-based checkpointing

Figure 6b gives the required memory size to store all collected checkpoints with LS and

BBM. For instance, with adpcm and a granularity of 64, the maximum memory size is

3MB for each processor when BBM is used. In the same conditions, LS requires a 1000

MB memory size. If we assume a 12-processor MPSoC, 12 GB of RAM is needed for LS

while 16 MB of RAM is sufficient in the case of BBM. The advantage of fewer and smaller

checkpoints allows holding all of these checkpoints on the physical memory (RAM) in-

stead of streaming them from the hard-drive. Consequently, the time overhead for warming

the systems by checkpoints restoring is reduced thus allowing to increase the simulation

speedup.

5.4 Performance Analysis of MGS with BBM-Based Checkpointing

In this section, we present the performance in terms of simulation factor and the IPC

estimation accuracy while using MGS with BBM-Based Checkpointing.

Figure 6a gives the simulation acceleration for 4 different benchmark combinations, for 4

and 8 processors using MGS with BBM-Based Checkpointing. In these experiments dif-

ferent concurrent applications are executed. For example with Rijndael-Bf benchmark on
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4 processors, Rijndael-encrypt, Rijndael-decrypt, Blowfish-encrypt and Blowfish-decrypt

are executed in parallel on each of the processor [GRE+01]. The simulation factor for

concurrent applications varies generally between 20x and 60x (for rijndael and blowfish).

The average simulation factor is about 35x for all the studied applications. It is clear that

the simulation factor obtained by our method is significantly important without sacrificing

accuracy as shown in Figure 6.B.

In [TIN08] it has been mentionned that the IPC estimation error has two sources. The first

source corresponds to the added waiting cycles that are injected at simulation discretization

points. The second source of error is the association of the IPC of recurring MPCs with the

IPC of the first simulated MPC. This is due to the fact that intervals classified as similar

may not have exactly the same performance. In the case of BBM-Based checkpointing

the representative BBMs correspond to the centers of MPhases. The representative BBMs

based on selecting the centers of MPhases is more accurate than taking the first occurrence

of the MPhase during the simulation. This approach reduces the error in the performance

estimation. This explained the low error in IPC obtained by our method. Based on the last

figure, the error is smaller than 10%. Additionally that error does not significantly increase

with the number of processors increase.

6 Conclusion

Simulation Acceleration for embedded systems is crucial to explore large design space

under stringent time-to-market constraints. Multi-granularity sampling technique provides

an attractive solution for the simulation of heterogeneous concurrent applications by ana-

lyzing each application for multiple granularity level, thus allowing to overlap samples of

phase executions in an efficient and accurate manner. Checkpoints of the system state are

required to skip repeated phases, but they require large storage space that makes simula-

tion speed limited by the speed of the hard disk of the system. In this work we introduce

a space efficient mechanism to select the most representative checkpoints. We propose

to use classification methods, such as k-means, to identify the checkpoints that are most

representative for a large set of checkpointed states. The classification scheme allows

the user to control the maximum checkpointed states of the system, with little sacrifice

in accuracy. In contrast, the base checkpointed states grow quickly with the number of

concurrent applications, in the case of multi-granularity sampling technique. We showed

that the space needed of the checkpointed states can be reduced by orders of magnitude

compared with the base scheme for multi-granularity sampling, thus allowing to keep all

needed checkpoints in the memory of the host machine. Simulation acceleration are sig-

nificantly speedup, without impacting accuracy, when using multi-granularity sampling in

conjunction with the introduced representative checkpoints.
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Abstract: When arithmetic components are parallelized, fault-prone interconnections
can tamper results significantly. Constantly progressing technology scaling leads to
a steady increase of errors caused by faulty transmission. Resilient data encoding
schemes can be used to offset these negative effects. Focusing on parallel signed-digit
based arithmetic frequently used in high-speed systems, we propose suitable data en-
codings that reduce error rates by 25%. Data encoding should be driven by the occur-
rence probabilities of digits. We develop a methodology to obtain these probabilities,
show an example fault-tolerant encoding, and discuss its impact on communicating
parallel arithmetic circuits in an example error scenario.

1 Introduction

In times of billion-transistor processors being commercially available and transistors being

processed in 22 nanometer CMOS process [ITR11], it becomes more and more difficult

to design fault tolerant [NSF01, RSKW07] and mixed critical systems [PMN+09]. More

complex circuits require increased inter- and intra-circuit connections which become in-

creasingly fault-prone.

Focusing on fast, parallelized, signed-digit based arithmetic, used extensively for instance

in CORDIC arithmetic, we propose a data encoding which can significantly lower trans-

mission error rates. Our data encoding principle is based on occurrence probabilities of

digits. We show that digit probabilities in signed-digit arithmetic converge when results of

addition operations are iteratively reused as input to other addition operations. Digits with

the highest limit probability should have more than one bit level encoding. Some errors

at bit level would result in unchanged values at digit level. We apply our methodology

exemplarily to 2-bit encodings and provide an error rate optimal encoding.

Alternative approaches like using check symbols have been proposed [COP+06], which

are less efficient in terms of latency, since every arithmetic operation has to be done mul-

tiple times to obtain error information.

In the following section we discuss the signed-digit arithmetic used. In Section 3 we show

our methodology to obtain digit probabilities for signed-digit encoded data. In Section 4
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we discuss a possible communication error scenario, where fault tolerant data encoding

can reduce error probabilities, and give recommendations for error resilient encoding. Ap-

plying our methodology, we provide accurate data word probabilities for common signed-

digit adder cell implementations in Section 5 and present error rates for different encoding

schemes. We conclude in Section 6 and give an outlook to future work.

2 Signed-digit arithmetic

A special case of a signed-digit [Avi61] number system is a signed-binary number system,

where each digit is limited to {−1, 0, 1}. In the following we focus on signed-binary

number systems. A signed binary number is defined as

Zsb = (zn−1, ..., z0), zi ∈ {−1, 0, 1}, 0 ≤ i < n (1)

I(Zsb) =

n−1�

i=0

2i · zi (2)

where zi ∈ {−1, 0, 1} and I : {−1, 0, 1}n → Z is the interpretation function.

A signed-binary adder (SBA) calculates Ssb = Asb+Bsb which corresponds to S = A+B

with A,B, S ∈ Z, I(Asb) = A, I(Bsb) = B, and I(Ssb) = S. We decompose this into

digit operations:

Ssb = Asb +Bsb (3)
n−1�

i=0

si =

n−1�

i=0

2i · ai +

n−1�

i=0

2i · bi; si, ai, bi ∈ {−1, 0, 1} (4)

=

n−1�

i=0

2i · (ai + bi) (5)

Figure 1 shows this decomposition. One operation at digit i calculates si = ai+ bi. Since

ai, bi ∈ {−1, 0, 1}, ai + bi ∈ {−2,−1, 0, 1, 2}, but si ∈ {−1, 0, 1}, we need some carry

to propagate {−2, 2} to the digit at i + 1. Focusing on a 3-level design as in Chow and

Robertson [CR78], we introduce ci ∈ {−1, 0} and di ∈ {0, 1} as a solution. We include

ci and di in Equation 5:

Ssb =

n−1�

i=0

2i · (ai + bi + ci + di − 2 · ci+1 − 2 · di+1) (6)

Here c0 and d0 are the carry-ins of the whole adder, set to 0 in normal operation. The

carry-outs of the whole adder are cn and dn. For any i the signed-binary adder cell (SBAC)

calculates:

si + 2 · ci+1 + 2 · di+1 = ai + bi + ci + di, (7)
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ai+1bi+1

si+1

ci+2

di+2

ai bi

si

ci+1

di+1

ai−1bi−1

si−1

ci ci−1

di di−1

Asb Bsb

Ssb

Asb +Bsb = Ssb

SBACSBA

Figure 1: Signed-binary adder (SBA) consisting of three level signed-binary adder cells (SBAC)
shown at numerical level, see [CR78, S.111].

The calculation of ci+1 must be independent (⊥) from ci and di. the calculation of di+1

must be independent from di, see again Figure 1. By enforcing these independencies,

the remaining carry chain is locally constraint, the calculation of any si depends only on

ai, bi, ai−1, bi−1, ai−2, bi−2, see also [Zeh92].

3 Digit probabilities

We now describe a SBAC through atomic operations that are in accordance to Equation 8.

ei = ai + bi (8)

ci+1(t, ai, bi) =






0 when ei > 0,

−1 when ei < 0,

γ(t, ai, bi) when ei = 0.

(9)

fi = ei − 2 · ci+1(t, ai, bi) (10)

gi = fi + ci (11)

di+1 =

�
0 when gi ≤ 0,

+1 when gi > 0.
(12)

hi = gi − 2 · di+1 (13)

si = hi + di = ai + bi + ci + di − 2 · ci+1 − 2 · di+1 (14)
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(ai, bi) {(−1,−1)} {(−1, 0), (0,−1)} {(0, 0), (+1,−1), (−1,+1)} {(+1, 0), (0,+1)} {(+1,+1)}

ei = ai + bi −2 −1 0 +1 +2

ci+1 −1 −1 0 −1 0 0

fi = ei − 2 · ci+1 0 +1 +2

ci −1 0 −1 0 −1 0

gi = fi + ci −1 0 +1 +2

di+1 0 0 +1 +1

hi = gi − 2 · di+1 −1 0

di 0 +1 0 +1

si = hi + di −1 0 +1

Figure 2: Signed-binary adder cell decision graph. For ai + bi = 0, the dashed graph denotes a
choice of ci+1 = 0, the dotted graph a choice of ci+1 = −1. For ai + bi = 0 it is obvious, that
di+1 depends on the choice of ci+1 but not on ci. Furthermore, for ai + bi = 0,si does not depend
on the choice of ci+1, but si+1 does depend on the choice of ci+1 through di+1.

We construct a decision graph, see Figure 2, that shows all possible degrees of freedom

when constructing a functionally correct SBAC that is constrained by the formal model

from Section 2. To enforce the independence constraints , the adder cell has no knowledge

of ci and di when calculating ci+1, and no knowledge of di when calculating di+1. Some

choices of ci+1 and di+1 may therefore be wrong, when worst case values of ci or di occur.

In Figure 2, all impossible choices of ci+1 and di+1 have already been removed. There

are still left some degrees of freedom in choosing ci+1 and di+1, but by fixing a choice on

ci+1, we lose all freedom of choice in di+1. We illustrated the choice of ci+1 = −1 by

dotted arrows and of ci+1 = 0 by dashed arrows. We see by the dotted and dashed paths,

that this choice also fixes the decision of di+1.

Our SBAC model offers 23 = 8 different signed-binary adder cells at the numerical level.

Let t be the type id of the design choice, 0 ≤ t < 23. All possible design choices are

t γ(t, 0, 0) γ(t,+1,−1) γ(t,−1,+1)

0 0 0 0

1 0 0 -1

2 0 -1 0

3 0 -1 -1

4 -1 0 0

5 -1 0 -1

6 -1 -1 0

7 -1 -1 -1

Table 1: Meaning of parameter t in description of SBAC.
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li z P (li = z)

ei −2 P (ai = −1) · P (bi = −1)
−1 P (ai = 0) · P (bi = −1) + P (ai = −1) · P (bi = 0)
0 P (ai = 0) · P (bi = 0) + P (ai = −1) · P (bi = +1)+

P (ai = +1) · P (bi = −1)
+1 P (ai = 0) · P (bi = +1) + P (ai = +1) · P (bi = 0)
+2 P (ai = +1) · P (bi = +1)

ci+1 −1 P (ei = −2) + P (ei = −1) + P (γ(t, ai, bi) = −1)
0 P (ei = +1) + P (ei = +2) + P (γ(t, ai, bi) = 0)

fi 0 P (ei = −2) + P (γ(t, ai, bi) = 0)
+1 P (ei = −1) + P (ei = +1)
+2 P (ei = +2) + P (γ(t, ai, bi) = −1)

gi −1 P (fi = 0) · P (ci = −1)
0 P (fi = 0) · P (ci = 0) + P (fi = +1) · P (ci = −1)

+1 P (fi = +2) · P (ci = −1) + P (fi = +1) · P (ci = 0)
+2 P (fi = +2) · P (ci = 0)

di+1 0 P (gi = −1) + P (gi = 0)
+1 P (gi = +1) + P (gi = +2)

hi −1 P (gi = −1) + P (gi = +1)
0 P (gi = 0) + P (gi = +2)

si −1 P (hi = −1) · P (di = 0)
0 P (hi = −1) · P (di = +1) + P (hi = 0) · P (di = 0)

+1 P (hi = 0) · P (di = +1)

Table 2: Probability level description of SBACt.

shown in Table 1. Note that the formula for calculating ci+1 depends on the input digits

(ai, bi) and the chosen design parameter t. Let SBACt be the design using choice t to

calculate ci+1.

Assigning probability information to the symbols in Equations 8 through 12 we are able

to calculate the digit probabilities. At probability level SBACt is described as shown in

Table 2.

P (γ(t, ai, bi) = 0) and P (γ(t, ai, bi) = −1) are calculated in accordance to Table 1 as

P (γ(t, ai, bi) = 0) = P (ai = 0) · P (bi = 0) · P (t ∈ {0, 1, 2, 3}) +

P (ai = +1) · P (bi = −1) · P (t ∈ {0, 1, 4, 5}) +

P (ai = −1) · P (bi = +1) · P (t ∈ {0, 2, 4, 6})
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P (γ(t, ai, bi) = −1) = P (ai = 0) · P (bi = 0) · P (t ∈ {4, 5, 6, 7}) +

P (ai = +1) · P (bi = −1) · P (t ∈ {2, 3, 6, 7}) +

P (ai = −1) · P (bi = +1) · P (t ∈ {1, 3, 5, 6})

Note that P (ei = 0) = P (γ(t, ai, bi) = 0) + P (γ(t, ai, bi) = −1).

4 Digit error scenario

Figure 3 shows two circuits exchanging digits by signal lines 0 through n − 1. On each

line, the signal is sent as li ∈ {0, 1} and received as T (li) ∈ {0, 1}. The digits received

may differ from the digits sent due to imperfect wiring [SOHH07, KPKJ07].

In our simple error model, pbf denotes the probability, that one bit is inverted. The possi-

bility of a bit flip leads to

T (li) =

�
li when no bit flip occurred,

1− li else.

P (T (li) = li) = 1− pbf

When encoding signed-binary digits {−1, 0, 1} with two bits, we can leave one bit combi-

nation unused or encode one of the digit values by two different bit combinations. We call

the first non-redundant, the second redundant encoding. When using redundant encoding,

our SBAC outputs only one code for the double encoded digit. The other code can only

occur by faulty transmission, but is interpreted as a correct double encoded digit. Table 3

shows the effects of using a 2-bit redundant encoding of signed-binary digits with such a

correction in comparison to a non-redundant encoding with no error correction. Tnr(dw)
is the result of transporting the 2-bit data word dw with non-redundant encoding and no

error correction, Tr(dw) is the result of transporting the data word with redundancy and

error correction.

X1 X2

l0

ln−1

T (l0)

T (ln−1)

li T (li)

pbf

Figure 3: Circuit X1 communicates with circuit X2 through signal lines l0 to ln−1. Our simple error
model consists of a possible bit flip with probability pbf .
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no redundancy redundancy

example encoding data word error prob. data word error prob.

00 dw0 2 · pbf − p
2
bf

dw0 pbf

01 unused — defected dw0 —

10 dw1 2 · pbf − p
2
bf

dw1 2 · pbf − p
2
bf

11 dw2 2 · pbf − p
2
bf

dw2 2 · pbf − p
2
bf

Table 3: Simple error model: Error reduction by using gray code adjoined encoding for data words
dw0, dw1, and dw2. All calculations using the redundant encoding consist of a 01 to 00 correction.

The probability of an uncorrected error in dw0 in our example is reduced

P (Tnr(dw0) �= dw0) = 2 · pbf − p2bf > 2 · pbf − pbf = pbf (15)

= Pred(Tr(dw0) �= dw0)

The error probability for any 2-bit data word dw ∈ {dw0, dw1, dw2} with no error cor-

rection can be calculated as

P (Tnr(dw) �= dw) = P (dw = dw0) · (2 · pbf − p2bf ) + P (dw = dw1) ·

(2 · pbf − p2bf ) + P (dw = dw2) · (2 · pbf − p2bf )

= (P (dw = dw0) + P (dw = dw1) + P (dw = dw2)) ·

(2 · pbf − p2bf )

= 1 · (2 · pbf − p2bf ) = 2 · pbf − p2bf

In comparison to an applied error correction

P (Tr(dw) �= dw) = P (dw = dw0) · pbf + P (dw = dw1) ·

(2 · pbf − p2bf ) + P (dw = dw2) · (2 · pbf − p2bf )

= P (dw = dw0) · pbf + (P (dw = dw1) + P (dw = dw2)) ·

(2 · pbf − p2bf )

With equation 16 we get

P (Tnr(dw) �= dw) > P (Tr(dw) �= dw)

The encoding strategy is rather simple: Use the redundant encoding 00, 01 to encode the

digit with the highest probability of occurrence to reduce the error probability. The error

ratio of this strategy can be calculated by

error ratio (of red dw encoding) =
error rate of dw red encoding

error rate of dw non-red encoding

e(dw) =
P (Tr(dw) �= dw)

P (Tnr(dw) �= dw)
(16)
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5 Results

For any trivial digit probability, where one symbol out of {−1, 0, 1} has a probability

of 1, and the others have of 0, the probabilities of the output symbols are either 0.0 or

1.0. If any other, non-trivial digit probability is applied to initial ai,bi, and the probability

distribution of si is looped back to the SBACt inputs ai,bi, the probabilities converge,

see for example Figure 4, where t = 5 and initially P (ai = 0) = P (bi = 0) = 0.1 and

P (ai = 1) = P (bi = 1) = 0.9.

Since the calculation of ci+1 ( and indirectly di+1 ) depends on t, the converg also depends

on t, see Figure 5.

A sample application for signed-digit arithmetic could be a CORDIC-based algorithm.

CORDIC [Vol59] transforms initial data iteratively with predefined coefficients. Let A0

be the initial N-bit data, and Bi the predefined coefficients:

Ai+1 = fcordic(Ai, Bi) , with 0 ≤ i ≤ N − 1 (17)

fcordic is the CORDIC function for processing Ai and Bi by an adder/subtracter and

shifter. AN is the final result, A0 the input data to be processed. To simulate the im-

pact of subtraction, we assume a probability of 50%, that input for bi has opposite signs.

Figure 6 corresponds to this more realistic use case.

Applying the simple error model to a SBAC type 7 with a probability of 50% of +/−
alternation, we investigate the digit error depending on the bit flip error and the encoding,

as shown in Figure 7. The error ratio is 75% for small pbf and increases to expected 100%
for pbf = 1. This means by using error correction and redundant encoding for digit 0
instead of no error correction for any digit, when using SBAC type t = 7 in a CORDIC

like arithmetic with switching sign possibility of one operand of 50%, error rate drops by

25%.

�

���

���

���

���

�

� � � � � � � � � � ��

�

���	 
�
���
���

����
����
����
���
����
���

Figure 4: SBAC adder operation data probabil-
ity for t = 5 and initial P (ai = 0) = P (bi =

0) = 0.1 and P (ai = 1) = P (bi = 1) = 0.9.
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Figure 5: SBAC adder operation data proba-
bility depending on t for non-trivial initial data
probabilities.
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Figure 6: SBAC adder/subtracter data proba-
bility depending on type t for non-trivial initial
data probabilities. Solid symbols represent Fig-
ure 5, hollow symbols represent a probability of
50% for +/− alternation.
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Figure 7: SBAC adder/subtracter digit error
probability for t = 7 and non-trivial initial digit
occurrence. Probability of +/− alternation is
50%. ”no red” denotes no redundant encoding,
”-1 (0,1) red” denotes redundant encoding and
error correction for -1 (0,1), ”e(0)” denotes the
error ratio of redundant encoding and error cor-
rection of digit ”0”, see equation 16.

6 Conclusion and future work

In a scenario, where data paths between memory and a SBAC as well as between several

SBACs are fault-prone, the knowledge of digit probabilities offers a chance to use a data

encoding scheme that provides some implicit fault tolerance. We have shown a model to

gain data flow probability information for signed-binary based arithmetic operations and

have proposed a data encoding scheme that provides advanced fault tolerance properties.

In our example, the proposed SBACt tends to generate symmetric P (si = −1) and

P (si = +1) probabilities with respect to type t, see again Figure 5. The actual values of

P (si = −1) and P (si = +1) are due to the choice of ci+1 ∈ {−1, 0} and subsequently

di+1 ∈ {0,+1}. Let us call such a design SBAC−t.

In contrary, SBAC+t with ci+1 ∈ {0,+1} and di+1 ∈ {−1, 0} produces the opposite

probability behavior for P (si = −1) and P (si = +1) with respect to t. Since the prob-

abilities P (si = −1) and P (si = +1) are symmetric, SBAC−,t1 and SBAC+,t2 with

t1+t2 = 7 have the same si digit probabilities. The digital circuit designer is free to chose

the more implementation friendly design.

Still, more detailed research is needed. Changing the design from using one SBAC− (or

a chain of n SBAC−) to the use of alternating SBAC− and SBAC+ will lead to digits

with P (si = −1) = P (si = 1). The possible advantages for fault tolerance and reduced

(false) carry generation cn and dn have to be investigated.

The mentioned application, i.e. CORDIC, is not very accurately described, since the co-

efficients Bi are actually calculated and saved to some memory in advance. An arbitrary

encoding can be chosen here to enforce a desired data probability characteristic, making

the whole system even more fault-tolerant, especially when allowing more than two bits

for encoding one digit.
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Abstract: Parallel storage systems distribute data onto several devices. This
allows high access bandwidth that is needed for parallel computing systems.
It also improves the storage reliability, provided erasure-tolerant coding is
applied and the coding is fast enough.
In this paper we assume storage systems that apply data distribution and
coding in a combined way. We describe, how coding can be done parallel on
multicore and GPU systems in order to keep track with the high storage access
bandwidth. A framework is introduced that calculates coding equations from
parameters and translates them into OpenMP- and OpenCL-based coding
modules. These modules do the encoding for data that is written to the
storage system, and do the decoding in case of failures of storage devices. We
report on the performance of the coding modules and identify factors that
influence the coding performance.

1 Introduction

Parallel and distributed storage systems are susceptible against faults due to their
higher number of storage devices that all can fail or can become unaccessible tem-
porarily. Thus, a combination with fault-tolerant coding, particularly erasure-
tolerant coding is often applied. Codes are applied to calculate redundant data
that is distributed in addition to the original data onto several failure-independent
devices. That redundant data serves for the recalculation of ’erased’ data that can
not be read when devices fail or get disconnected.
There is a number of simple solutions, e.g. duplication of every data unit in a
distributed system to another storage node. This introduces a high overhead in
terms of storage capacity and a high write access load. Another simple solution
is a parity code across all units that are distributed. The parity data is a kind
of shared redundancy and can be applied to recalculate any data pice in case of a
single failure. Erasure-tolerant codes are a generalization of the shared redundancy
principle and are capable to tolerate a higher number of failures. Generally, codes
base on a distribution of original data across k devices and a number of redun-
dant data blocks that are placed on m additional devices (see Figure 1). It must
be known which devices failed in order to decode the original data successfully.
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This assumption is typically fulfilled within storage systems and differentiates the
applied codes from general error-correction codes, e.g. codes for channel coding.

k : original data m : redundant data

different
blocks

independent disks

or storage servers

devices:

Figure 1: Data block distribution and redundancy used in parallel and distributed storage
systems.

Some erasure-tolerant codes are optimal in terms of tolerated failures and storage
overhead by allowing to tolerate every combination of up to m failed devices among
these k+m devices in total. The coding community investigated much research ef-
fort to find codes that show this optimal property for a large range of parameters
k and m. Another criterion is the number of operations for encoding and decoding
that should be as low as possible.
We already introduced an equation-oriented approach to erasure-tolerant coding in
[SP08] that applies the Cauchy Reed/Solomon code arithmetics. Equations that
calculate redundant data units by XORing original data units in an appropriate
way define the functionality of the storage system. Initially, we provided these
equations in data files in order to parameterize the en- and decoder of the storage
system. The contribution of this paper is a proof of the concept that equations
can be translated into programming language code directly. This code is enriched
with expressions that control parallel processing, either in terms of data-parallel
OpenCL kernel code, or in terms of OpenMP directives. These expressions are
generated automatically.
The paper is organized as follows. Related work is surveyed in Section 2. The
principle of equation-oriented en- end decoding is explained in Section 3 and in
Section 4 we describe the translation to OpenCL and OpenMP code. A perfor-
mance evaluation of our implementation can be found in Section 5. We conclude
with a summary.

2 Related Work

Parallel storage systems that employ several storage devices and coding for fault
tolerance first have been introduced with RAID systems [KGP89] in the context
of several host-attached disks. This general idea later got adopted to networked
storage. Later a variety of different codes were explored and applied for different
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types of systems, e.g. networked storage, distributed memory systems or memories
for sensor networks.

The Reed/Solomon code [IR60] (R/S) is a very flexible code that allows to construct
coding systems for different distribution factors (k) and different amount of redun-
dant data (m). R/S provides specific coding and decoding rules for any k and m,
following a linear equation system approach. Originally, R/S requires Galois Field
arithmetics and therefore needs more instructions and processing time on general
purpose processors, compared to XOR-based codes that can directly use the pro-
cessors XOR instruction. An XOR-based variant of R/S was introduced by Blomer
et al. [BKK+95] and got later known as the so called Cauchy-Reed/Solomon code
(CRS). This code divides each of the k+m storage resources into ω different units
(ω is chosen such that 2ω > k + m holds) that are individually referenced by XOR-
based calculations. In our previous work on the NetRAID [Sob03, SP06] system
an equation-based description of encoding and decoding was developed and allows
a flexible use of different codes.

Equation-based coding strongly relates to the matrix-based coding technique that
is supported by the jerasure library for erasure-tolerant codes [Pla07]. A binary
code generator matrix selects Bits of the original data word to be XORed to the
redundant Bits. Optimizations of the encoding algorithms and the creation of
decoding algorithms are a result of matrix operations. The main objective is to find
efficient codes with optimal failure-correction capabilities and minimal computation
cost. In our tools we apply matrix-based techniques as well, but provide a textual
description of coding algorithms that consists of equations over different Bits.

In an environment with parallel processes and parallel storage devices, it is nec-
essary to exploit parallelism as well for storage coding to reach reasonable high
coding throughput that keeps track with the desired high speed of the storage sys-
tem. To use multi core processors is obvious. In addition, R/S and CRS have been
offloaded to FPGA [HKS+02],[HSM08], GPU using NVidia CUDA [CSWB08] and
other hardware [SPB10]. In [CSWB08] a GPU was evaluated for encoding a k=3,
m=3 R/S code. It could be shown that the GPU’s encoding rate is higher than
the RAID level 0 aggregated write rate to the disks and coding keeps track with
the pure disk system performance. The wide availability of multicore processors
and OpenMP (Open Multi Processor) motivated further steps to run the coder as
a multithreaded system.

Besides data parallelism as a straightforward way, further functional parallelism
can be exploited in storage system coding. The functional parallelism is repre-
sented by the different equations for different redundant data units. For CRS, a
number of ω · m different redundant units can be calculated independently using
individual XOR calculations which allows equation-based functional parallelism. A
comparison between equation-oriented coding and data-parallel coding in [Sob10]
revealed that equation-parallel coding improves the locality of data access for in-
put and output data. Nevertheless, equation-oriented parallelism does not always
produce an evenly balanced workload and requires a special choice of parameters
to create evenly distributed encode equations.
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3 Coding by Equations

The concept to describe encoding and decoding by XOR equations has been intro-
duced in [SP08]. The equations are provided by a tool that includes all the CRS
arithmetics and delivers the equation set for a storage system.

The naming of the units and the placement of the units on the storage resources
is defined as follows. We place units 0, 1, . . . ω-1 consecutively on the first original
storage device, units ω to 2 · ω-1 on the second device and so on. Each unit is
denoted by the character ’u’ and a number, e.g. u0 for the first unit in the system.
The code calculations have to reference these units properly in the XOR equations.
For the example with k = 5 and m = 2, the number of equations is 6. There is
an individual equation for each of the 6 units. These 6 units are placed on two
redundant storage devices (see Listing 1).

u15 = XOR(u2,u3,u4,u5,u7,u9,u11,u12)

u16 = XOR(u0,u2,u3,u7,u8,u9,u10,u11,u13)

u17 = XOR(u1,u3,u4,u6,u8,u10,u11,u14)

u18 = XOR(u0,u2,u4,u6,u7,u8,u11,u12,u13)

u19 = XOR(u0,u1,u2,u4,u5,u6,u9,u11,u14)

u20 = XOR(u1,u2,u3,u5,u6,u7,u10,u12)

Listing 1: Example for a coding scheme (k = 5, m = 2, ω = 3).

The equations above allow to calculate every redundant unit independently from
the other ones. Such a coding naively supports parallel processing, but contains
redundant calculations, e.g. XOR(u2, u3) is calculated 3 times. We call this the
direct coding style. Another style of coding is called the iterative coding style that
exploits previously calculated elements when possible. In that way, redundant
calculations can be eliminated, e.g. XOR(u2, u3) is stored in a temporary unit
t0 and then referenced 3 times. Replacing all common subexpressions reduces
significantly the number of XOR operations. For the k = 5, m = 2 system a
reduction from 45 to 33 XOR operations occurred. For this example, the equations
are given in Listing 2 with temporary units denoted with ’t’ and their number.
The iterative equations can be formed from the equations given in the direct style
using an automated preprocessing step.

Our approach is to translate the equations in a further processing step directly to
OpenCL kernel code, or alternatively to OpenMP code. Both variants use extension
of the C programming language. The generated code can be compiled to storage
system components during system runtime. Particularly, at the time when a new
failure situation is detected, the framework calculates new decoding equations to
recalculate the missing data units from the other ones that are still available. A
new decoder code can be generated from the decoding equations, translated to C
code with parallel OpenCL or OpenMP extensions and then compiled to runtime
components of the system.
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u15 = XOR(t1,t3,t4)

u16 = XOR(t4,t6,t7)

u17 = XOR(u3,u4,u8,t6,t9)

u18 = XOR(u2,u4,u6,u7,t3,t7)

u19 = XOR(u0,u2,u9,u11,t1,t9)

u20 = XOR(u5,u7,u10,u12,t0,t8)

t0 = XOR(u2,u3)

t1 = XOR(u4,u5)

t2 = XOR(u7,u9)

t3 = XOR(u11,u12)

t4 = XOR(t0,t2)

t5 = XOR(u0,u8)

t6 = XOR(u10,u11)

t7 = XOR(u13,t5)

t8 = XOR(u1,u6)

t9 = XOR(u14,t8)

Listing 2: Coding scheme (k = 5, m = 2, ω = 3)

4 Translation to parallel code

Our tool that generates the equations is capable to generate OpenCL kernel code
and OpenMP program code as well. To do that, the user solely has to specify a
few optional parameters, e.g. the file for code output and the unit length that is
needed for addressing within the data arrays. This can be seen in the following
command line of the tool:

./cauchyrs -k=5 -m=2 --ocl_encoder --ocl_file=crs5+2.cl

--ocl_unit_len=2048 --ocl_encstyle=iterative

The OpenCL code, generated from a CRS code with k = 5, m = 2 is listed in
Listing 3. The unit numbers got translated into index values in order to address
the data that relate to the unit. For instance u0 got translated to n[0 + i] , u4 to
n[8192 + i] and u15 to r[0 + i] by comparing the OpenCL code with the equations
given in Listing 2. The constant offset in the index is calculated from the unit
number and the length of the units, e.g the 5th unit with the index 4 points
to 4 × 2048, when 2048 is the unit length. The redundant units with numbers
n : k×ω ≤ n < (k+m)×ω are translated into elements within the r array (r denotes
redundant data). The constant part is derived by ((n−k)×ω)×unitlength. Every
index contains a variable part i that addresses each individual byte in the unit. The
XOR (operator symbol ˆ) causes that corresponding bytes of the different units in
the C statements are XORed bitwise. Finally, a XOR operation on corresponding
bits within the units takes place. A processing along different i values is done by
the GPU that invokes the kernel code when the function

clEnqueueNDRangeKernel(...,ckKernel,1,NULL,&GlobalSize,&LocalSize,...)
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// Parameters: k=5, m=2, w=3, OCL_UNIT_LEN=2048

__kernel void crs(__global const char *n, __global char *r)

{

unsigned int i = get_global_id(0);

char t21 = n[4096+i]ˆ n[6144+i];

char t22 = n[8192+i]ˆ n[10240+i];

char t23 = n[14336+i]ˆ n[18432+i];

char t24 = n[22528+i]ˆ n[24576+i];

char t25 = t21ˆ t23;

char t26 = n[0+i]ˆ n[16384+i];

char t27 = n[20480+i]ˆ n[22528+i];

char t28 = n[26624+i]ˆ t26;

char t29 = n[2048+i]ˆ n[12288+i];

char t30 = n[28672+i]ˆ t29;

r[0+i] = t22ˆ t24ˆ t25;

r[2048+i] = t25ˆ t27ˆ t28;

r[4096+i] = n[6144+i]ˆ n[8192+i]ˆ n[16384+i]ˆ t27ˆ t30;

r[6144+i] = n[4096+i]ˆ n[8192+i]ˆ n[12288+i]ˆ n[14336+i]ˆ t24ˆ t28;

r[8192+i] = n[0+i]ˆ n[4096+i]ˆ n[18432+i]ˆ n[22528+i]ˆ t22ˆ t30;

r[10240+i] = n[10240+i]ˆ n[14336+i]ˆ n[20480+i]ˆ n[24576+i]ˆ t21ˆ t29;

}

// another kernel that works with a word len of 16 bytes

// and reaches slightly better performance

__kernel void crs16(__global const char16 *n, __global char16 *r)

Listing 3: Automatically generated OpenCL kernel.

is called by the host program. A number of LocalSize threads are started on the
GPU multiprocessors and are supported by the SIMD-like data parallel execution
technique. The GPUs used, allowed to start 512 threads (NVidia Quadro FX880M)
and 1024 threads (NVidia Quadro 600). The parameter GlobalSize can express
a higher thread number, that are run in a batch mode in groups of LocalSize

threads.

In the same style like the OpenCL code generation we support OpenMP (Open
Multi Processor language) programs for coding. OpenMP allows to create mul-
tithreaded processes from a sequential code by adding directives to the program.
Typically, the workload of for-loops is distributed to several threads. OpenMP
threads run on a shared memory and do not need to transfer any data before and
after the multithreaded execution.
In the example, a C-program is written to the file omp5+2.c.

./cauchyrs -k=5 -m=2 --omp_encoder --omp_file=omp5+2.c

--omp_unit_len=2048 --omp_encstyle=iterative

The C program (see Listing 4) contains array index values instead of unit numbers.
For OpenCL we generated macro code for the index. This allows to read the
code like equations and find the unit numbers. The C preprocessor replaces the
macro symbols with the macro expressions. At compile time, the constant part

450

450



of each index is calculated. The variable part i of an index is controlled by the
for-loop during the runtime of the encoder. Where a common C program would
run all the iterations from i=0 to i=unitlength-1, OpenMP delegates the loop
to several threads that cooperatively run different index ranges. The OpenMP
directive (#pragma omp ...) is generated automatically in the same way as the
program code.
Variables that are in local use for each iteration have to be declared as private. For
our application this applies to the character variables for the temporary units.

// Parameters: k=5, m=2, w=3, OCL_UNIT_LEN=2048

#define UNIT_LEN 2048

#define RUNIT(a) a*UNIT_LEN+i

#define OUNIT(a) a*UNIT_LEN+i

void calc(const char *n, char *r)

{

int i;

char t21, t22, t23, t24, t25, t26, t27, t28, t29, t30;

#pragma omp parallel for private(t21, t22, t23, t24, t25, t26, t27,

t28, t29, t30)

for (i = 0; i < UNIT_LEN; i++)

{

t21 = n[OUNIT(2)]ˆ n[OUNIT(3)];

t22 = n[OUNIT(4)]ˆ n[OUNIT(5)];

t23 = n[OUNIT(7)]ˆ n[OUNIT(9)];

t24 = n[OUNIT(11)]ˆ n[OUNIT(12)];

t25 = t21ˆ t23;

t26 = n[OUNIT(0)]ˆ n[OUNIT(8)];

t27 = n[OUNIT(10)]ˆ n[OUNIT(11)];

t28 = n[OUNIT(13)]ˆ t26;

t29 = n[OUNIT(1)]ˆ n[OUNIT(6)];

t30 = n[OUNIT(14)]ˆ t29;

r[RUNIT(0)] = t22ˆ t24ˆ t25;

r[RUNIT(1)] = t25ˆ t27ˆ t28;

r[RUNIT(2)] = n[OUNIT(3)]ˆ n[OUNIT(4)]ˆ n[OUNIT(8)]ˆ t27ˆ t30;

r[RUNIT(3)] = n[OUNIT(2)]ˆ n[OUNIT(4)]ˆ n[OUNIT(6)]ˆ n[OUNIT(7)]ˆ

t24ˆ t28;

r[RUNIT(4)] = n[OUNIT(0)]ˆ n[OUNIT(2)]ˆ n[OUNIT(9)]ˆ n[OUNIT(11)]ˆ

t22ˆ t30;

r[RUNIT(5)] = n[OUNIT(5)]ˆ n[OUNIT(7)]ˆ n[OUNIT(10)]ˆ

n[OUNIT(12)]ˆ t21ˆ t29;

}

}

Listing 4: Automatically generated OpenMP program.
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5 Performance Evaluation

OpenCL always uses ’just in time’ compilation of the GPU code. This means that
during the operation of the storage system processes a new kernel code can be
compiled and executed. Typically, when the storage system processes are started,
the encoding algorithm is compiled into the run time components once. Later on,
for encoding the data is transferred to the GPU, the kernel is invoked and the data
is moved back to the host memory. An OpenCL process runs through the following
phases:
(1) platform exploration and connecting to the GPU, (2) buffer management i.e.
allocating GPU memory, (3) kernel compilation, (4) input data transfer, (6) kernel
invocation and (7) result data transfer. We measured the time of these phases by
a host program (see Listing 5).

OpenCL K=3 M=2 w=3 UNIT_LEN=7168 wordlen=16

0.088277 seconds for platform exploration

0.000014 seconds for buffer management

0.189414 seconds for kernel compilation

0.000048 seconds for data transfer

0.000573 seconds for kernel execution and result return

Data rate incl. transfer: 99.058733 MiB/s

Data rate w/o. transfer: 107.341098 MiB/s

Listing 5: Example for an OpenCL kernel execution and the measured times.

The times measured for OpenCL phases of different runs are depicted in Figure
2 for a small system (code parameters k = 1, m = 1, ω = 1, unitlen= 16 byte)
that moves 1 × 16 Byte to the GPU, copies the 16 Bytes to the array of redundant
bytes and moves 1× 16 Byte back to he host memory. The comparison for a
system with a higher distribution factor, more redundancy and a larger block size
is given in Figure 3 (code parameters k = 4, m = 2, ω=3, unitlen= 32kByte).
This coding scenario transfers 4 × 3 × 32kiB = 384kiB to the GPU memory and
2 × 3 × 32kiB = 192kiB The kernel executes 33 XOR operations for every 12
Bytes input and 8 Bytes output data. These are 1081344 Byte XOR operations in
total. Both measurements were taken on a NVidia Quadro FX880M. The individual
times for specific phases show that a bigger equation system causes a longer kernel
compilation time. The other time values are dependent from the size of processed
data.

A direct comparison of sequential processing, OpenMP processing with 4 threads
and OpenCL processing on two different GPUs (GPU-1: NVidia Quadro FX 880M,
GPU-2: NVidia Quadro 600) is given by the data throughput rates in Table 1. The
execution times for sequential and OpenMP processing were measured on two dif-
ferent processors (CPU-1: Intel Core i5 M520, 2.4 GHz, CPU-2: AMD Phenom II
X4, 840, 3.2 GHz). We calculated the redundancy for a k = 4, m = 2, ω = 3 code
with a unit length of 32 kiB and 64 kiB. The values are average times taken from
10 runs. The measurements for the direct encoding style were done with equations
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Figure 2: Minimal Code: Time consumption of phases for OpenCL processing on a GPU.
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Figure 3: Bigger Code: Time consumption of phases for OpenCL processing on a GPU.

that still contained redundant calculations and are clearly disadvantageous for se-
quential processing.
OpenMP shows a moderate performance improvement. CPU-1 is a dual core pro-
cessor that supports 4 threads. The measured speedup on that dual core system
is 1.6 and 1.8. CPU-2 is a real 4-core system and the speedup factor is approxi-
mately 4 on that system. Besides of the different speedup, both CPUs reach nearly
the same absolute performance when OpenMP processing is applied. This can be
explained with the bigger cache of CPU-1 that improves the performance of each
thread for this data-intense coding application.
The GPU performance is significantly better than sequential processing on the
CPU, and better than multithreaded execution on the CPUs as well. However, it
does not reach the theoretical performance of the GPU by far. This is caused by
the data transfer between the host memory and the GPU memory.
When doing coding with a higher distribution factor and more redundant devices,
the computational cost increases. Accordingly, the ratio between transferred data
and computations is moved in direction of a bigger computational part. For sequen-
tial processing the data rates sink due to the higher computation cost. For GPU
computing the disadvantageous cost of data transfer is assumed to diminish with
increasing distribution and redundancy factors, due to the higher computational
load that can be coped with by the highly multithreaded architecture.
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unit encoding CPU-1 CPU-2 GPU-1 GPU-2
length style sequential OpenMP sequential OpenMP OpenCL

32 direct 124.3 189.7 44.9 179.3 224.4 299.9
kiB (× 1.5) (× 4)

iterative 168.9 269.8 72.0 256.1 222.2 407.1
(× 1.6) (× 3.5)

64 direct 111.3 181.2 54.6 181.4 273.2 318.6
kiB (× 1.6) (× 3.3)

iterative 252.6 464.1 70.7 257.3 263.6 410.3
(× 1.8) (× 3.6)

Table 1: Data throughput of encoding on different platforms in MiB/s.

6 Summary

OpenCL and OpenMP are appropriate platforms to implement software-based
erasure-tolerant coding for storage systems. Because the erasure-tolerant codes
strictly follow mathematical principles, particularly linear equation systems in case
of the Cauchy Reed/Solomon code, the kernels of the coding programs can be gen-
erated in an automated way. We showed that an equation-oriented description of
the codes can be easily translated to OpenCL and to OpenMP code. Fortunately,
all the expressions to control parallel execution could be generated automatically
as well.
OpenCL supports just in time compilation of GPU code which can be applied for a
storage system to exchange coding modules during runtime. This is needed to in-
sert new decoding algorithms in case of failures. The decoding algorithm adapts to
the specific failure situation without requiring to run through control flow instruc-
tions. Because OpenCL is capable to run code on several platforms, especially on
a multicore CPU device as well, it is a preferable platform compared to OpenMP.
The performance evaluation revealed a moderate speedup for GPU processing using
OpenCL and for multicore processing using OpenMP. We expect that GPU com-
puting using OpenCL can reach to I/O bound (transfer bandwidth to and from
GPU via the system interface) when all optimizations are applied.
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Abstract: Efficient computation of regional land-surface parameters for large-scale
digital elevation models becomes more and more important, in particular for web-
based applications. This paper studies the possibilities of decreasing computing time
for such tasks by parallel processing using multi-threads on multi-core processors.
As an example of calculations of regional land-surface parameters we investigate the
computation of flow directions and propose a modified D8 algorithm using an extended
neighborhood. In this paper, we discuss two parallelization strategies, one based on
a spatial decomposition, the other based on a two-phase approach. Three datasets of
high resolution digital elevation models with different geomorphological types of land-
scapes are used in our evaluation. While local surface parameters allow for an almost
ideal speed-up, the situation is different for the calculation of non-local parameters
due to data dependencies. Nevertheless, still a significant decrease of computation
time has been achieved. A task pool-based strategy turns out to be more efficient for
calculations on datasets with many data dependencies.

1 Introduction

A large variety of methods for space-oriented analyses of the earth’s surface have been de-

veloped in the past couple of years. Methods based on photogrammetry and laserscanning

are able to produce digital elevation models (DEMs) with a geometric resolution within

centimeters and a high quality, as well as a high quantity of data. Algorithms have to

be developed enabling computational efficient processing of large datasets in reasonable

time [Woo09]. Therefore, new strategies for efficient implementation and parallelization

of such computations are needed.

The attribute ‘flow direction’ is the basis for the calculation of the most popular hydrolog-

ical parameters like ‘specific catchment area’ or ‘topographic wetness index’ [ZKLY07,

GP09]. The typical workflow for the computation for these parameters is sketched in Fig-

ure 1. First, the raw data of the DEM is preprocessed to remove artefacts, systematic errors,

and to reduce noise. It is also important to eliminate spurious sinks by filling [RHGS09].

Afterwards, the flow directions are determined. The computation of catchment area and
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Figure 1: Sketch of the typical workflow for hydrological parameter calculations.

flow accumulation base on the flow direction. Computationally, these steps are less inten-

sive.

Although the sequential running time for test sites with 108 grid cells is in the range of a

few minutes on standard desktop machines, further reductions of processing times are still

of crucial importance for the acceptance of web-based hydrological applications [ASMB03,

GTDS10]. Our intention is to investigate how parallel processing using multi-threads can

help to decrease computing time of flow direction’s calculation. For this purpose, we have

developed two parallelization strategies and tested them on a modified single-flow algo-

rithm (Section 2.1). In this paper, we restrict our discussion of parallelization strategies

to this single-flow algorithm, although we have implemented parallel algorithms for the

remaining steps of the workflow, too [Sch10].

A classical and most basic algorithm to determine flow directions is the so-called D8-

algorithm [OM84]. From each grid cell, all flow is passed to the neighbor in direction of

the steepest descent. Except for cells at the boundary of the DEM, a cell can be viewed as

the center cell of a 3× 3 subgrid. The 8 non-central cells of such a subgrid are considered

as neighbors, hence the name D8. The crucial point in this method is how ambiguous flow

directions are resolved, when the same minimum down-slope gradient is found for several

neighbor cells. We would like to emphasize that such ambiguities are not an academic

consideration, they occur quite often in practice. To resolve such ambiguities, we have

developed an extended neighborhood approach. Extended neighborhoods pose a particular

challenge for parallelization due to non-local memory access patterns.

Related work Based on the model of SIMD (single instruction stream, multiple data

stream) computers, Mower [Mow94] discusses data-parallel procedures for drainage basin

analysis. More recent work on multi-core machines uses the OpenMP library or MPI.

For example, Neal et al. [NFT09] describe and report experience with parallelization of

procedures for flood inundation models using the OpenMP interface. Building on the

message passing interface MPI, Tesfa et al. [TTW+11] developed parallel approaches for

the extraction of hydrological proximity measures. In contrast to the single flow direction

method studied in this paper, they use the multiple flow direction model D-infinity. Instead

of using multi-core processors, another interesting approach for parallelization is the usage

of GPUs. Ortega and Rueda [OR10] have studied the applicability of this approach for

parallel computation of drainage networks using the CUDA framework.
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To cope with large-scale high-resolution datasets, Mølhave et al. [MAAR10] developed

I/O-efficient external memory algorithms. The focus of our paper, however, is on algo-

rithms which can be handled within internal memory.

Overview In Section 2, we first sketch our extended D8 algorithm for flow computations

and then explain our two parallelization strategies. We also describe the sites used in our

experimental study. Computational results for both parallelization strategies are given in

Section 3. Finally, we summarize and discuss our observations in Section 4.

2 Methods

2.1 Extended D8 algorithm for flow computations

To avoid ambiguous flow directions, we introduce a modified algorithm D8e which recur-

sively extends the neighborhood in such cases until a unique single flow direction is found.

For a given cell c and its neighborhood N(c) let S(c) ⊆ N(c) be the subset of neighbors

which realize the steepest descent. Thus, S(c) forms the candidate set for the flow di-

rection of c. If |S(c)| = 1, the flow direction is unique and we are done. Otherwise, we

determine the extended neighborhood EN(S(c)) as the set of all cells which are connected

to some cell c̄ ∈ S(c) by a path of cells with the same altitude as c̄. Then we compute

recursively the flow direction of all cells within EN(S(c)). Among all considered cells,

we take again the steepest descent. If this value is unique, we can now assign the flow

direction of cell c as the one which leads along a path of assigned flow directions to the

cell of steepest descent. Otherwise, the procedure has to be continued in the same manner

until the ambiguities are resolved or no further neighborhood extension is possible. In the

latter case, an arbitrary decision for cell c is made.

The neighborhood extension is the most time-consuming part of the computation of flow

directions. The average size of the extended neighborhood varies widely depending on

the terrain. An example of the effect of ambiguous flow directions is given in Figure 2.

The figure shows two catchment areas, one computed with the D8 and one with the D8e

algorithm. The first one misses a significant part of the catchment area.

2.2 Parallelization strategies

We investigate two main strategies for parallelization. The first approach divides the DEM

into squares and the second one divides the computation of the flow directions into two

phases. All threads access the same DEM stored in shared memory. Therefore, there is no

need to transfer data but the data access has to be synchronized among the threads.
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Dividing the DEM into squares If the grid domain of the DEM is partitioned into a

number of disjoint squares and the flow directions are computed concurrently by different

threads complications often arise. Namely, the extended neighborhood computation can

include cells of other squares. This means that the same flow direction of a single cell

might be calculated several times and the number of such cells could be prohibitively

high.

To avoid such problems a pre-computation is executed. At first, the algorithm chooses

squares which are slightly overlapping at common boundary cells. Then the flow direc-

tion of all boundary cells and their neighbors is computed in a sequential step. In doing

so, no thread will cross its square boundary in the upcoming parallelized computations.

Figure 3 exemplarily illustrates two cases where the algorithm extends the neighborhood

of the cell with altitude 7 and precalculates the flow directions of all cells of the extended

neighborhood (cells with altitude 5). Finally, the results of the sequential pre-computation

are accessible by each thread. Afterwards, each thread computes the flow direction of the

remaining cells.

Dividing the computation into two phases The main idea of this approach is to com-

pute the flow direction using the original D8 algorithm during a first phase. Instead of

extending the neighborhood of cells with ambiguous flow directions (see Section 2.1) such

cells are only marked. During the second phase, our algorithm extends the neighborhood

of each marked cell and computes their flow directions.

The first phase can be parallelized by dividing the DEM into squares. Only using the 3×3-

neighborhood of a cell for computing the flow direction, no pre-computation is needed. In

the second phase, the marked cells are assigned to different groups in such a way that

redundant calculations are avoided. At first, a marked cell is assigned to an empty group.

Afterwards, a cell will be assigned to this group, if

• the marked cell is adjacent to one cell of the group, or

• there is at most one unmarked cell between the marked cell and a cell of the group.

The group assignment is done with breadth-first search.

Figure 2: Comparison of catchment areas based on the flow directions computed using the D8 and
D8e algorithm. This example shows the dramatic difference between the traditional D8 algorithm
(which leads to a way too small catchment area) and our new D8e algorithm resulting in a catchment
area confirmed by experts.
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(a) (b)

Figure 3: Excerpts of a DEM where two squares overlap in the gray-shaded boundary cells. Numbers
in each cell of the DEMs correspond to the elevation. In both examples, the D8e algorithm extends
the neighborhood of the cell with altitude 7 and precalculates the flow directions of all cells with
altitude 5.

Figure 4(a) shows marked cells for which the computation requires a neighborhood ex-

tension. In each of the three examples the algorithm puts the marked cells into the same

group. The differently marked cells in the example of Figure 4(b) belong to two different

groups. The extended neighborhoods of both cells are disjoint. One thread is responsible

for assigning cells to groups and manages these groups by a task pool [RR10]. Pseudocode

is given in Algorithm 1. Each of the other threads takes a group out of the task pool and

computes the flow direction of the marked cells of this group. In doing so, this approach

ensures that two threads will never compute the flow direction of the same cell and that

the computed extended neighborhoods will never overlap.

(a) In each example, cells with ambiguous flow direction are marked. Because of the neighborhood extension,

the marked cells will be computed by the same thread. Therefore, our algorithm puts them into the same group.

(b) In this example, differently marked cells are far enough from each other so that their extended neighbor-

hoods are disjoint. Thus, our algorithm puts them into different groups.

Figure 4: Parallelization of the D8e algorithm by dividing the computation into two phases. Numbers
in each cell correspond to the elevation in the DEM.

2.3 Efficiency measurement

For measuring the runtime of a parallel implementation, the real time (wall clock time) can

be used, but it can be influenced by other applications running on the system. User and

system CPU time of a parallel application is the accumulated user and system CPU time on

all processors. Because of the disruptive effect of other processes running on the system

the number of cores used by one job cannot easily be determined and can also vary during

program execution. We used an almost unloaded system for real-time measurements.
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Algorithm 1 The procedure determines groups of cells with ambiguous flow direction

(see Figure 4(a)) and puts each group of such cells into the task pool. If all cells with

ambiguous flow direction are grouped a signal is send to all threads.

1: procedure DETERMINE GROUPS OF CELLS

2: for each cell ∈ DEM ∧ cell.f lowdirection == 0 do

3: create newGroup

4: newGroup ← {cell}
5: for each nCell in 4× 4 neighborhood of a cell ∈ newGroup do

6: if nCell.f lowdirection == 0 then

7: newGroup ← newGroup ∪ {nCell}
8: end if

9: end for

10: put newGroup into the taskpool

11: end for

12: send signal termination to all threads

13: end procedure

2.4 Study sites and datasets

The computational experiments are executed on three different DEMs with high spatial

resolutions (Table 1). All DEMs are based on airborne laser-scanning which are cleaned

from vegetation and artificial objects like buildings. The datasets represent three geomor-

phological types of landscapes in Central Europe: high mountains (the Alps - Reintal; see

Figure 2), low mountain ranges (the Ore Mountains - Saidenbachtal) and floodplains of

the lowlands (Floodplain of the River Mulde). In all DEMs sinks were removed by filling

within a preprocessing step (see [RHGS09]). Table 1 shows the meta data of the used

DEMs.

Table 1: Meta data parameters of the DEM datasets

DEM Cell Columns Spatial reso- Filesizea

dataset number and rows lution [m2] [Mb]

Reintal 37,734,557 10717× 3521 1× 1 290

Saidenbachtal 35,000,000 7000× 5000 2× 2 240

Mulde 116,674,076 6661× 17516 1× 1 880

aascii-grid format (*.asc)
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3 Results

The following runtime measurements were done on a symmetric multiprocessing com-

puter (two Intel(R) Xeon(R) CPUs with four cores and 2.93 GHz each, and with 47 GB

main memory). Additional runtime measurements were executed on different hardware,

like a Linux Server with four AMD OpteronTM processors 852 (1000 MHz) and 16 GB

main memory, or a symmetric multiprocessing cluster (18 computation nodes with 16

CPU cores each and with at least 32 GB main memory each). In all cases the computa-

tions require up to 2 GB main memory. Computations on the symmetric multiprocessing

cluster were executed only on one node. On the available architectures speed-up and ef-

ficiency did not show significant differences. The algorithms are implemented in C++ and

the Pthread library is used for parallelization, using compiler g++ in version 4.4.3.

3.1 Dividing the DEM into squares

The sequential runtimes for the three DEMs are 3.4s for DEM 1 (Reintal), 6.7s for DEM

2 (Saidenbachtal) and 122s for DEM 3 (Mulde). The obtained speed-ups for up to four

threads are shown in Table 2. The number of threads is displayed in the form of
”
a ·

b“ where a is the number of rowwise partitions, and b the number of columnwise partitions.

In Figure 5 the runtime (real time) is compared to the ideal runtime. The stacked bars show

Table 2: Speed-ups of the parallel algorithm which divides the DEM into squares.

number of threads: 1 · 1 1 · 2 2 · 1 1 · 3 3 · 1 2 · 2
speed-up (DEM 1 “Reintal”): 0.99 1.80 1.78 2.33 2.23 3.23

speed-up (DEM 2 “Saidenbachtal”): 0.97 1.59 1.63 2.05 2.02 2.40

speed-up (DEM 3 “Mulde”): 0.98 1.53 1.55 1.46 1.81 1.82

the sequential computing part and the cumulative runtime of threads. Added together they

are a measure for the cost of computation. The cost of the computation is also directly

obtained by measuring the CPU time used. Both clarify that rising the number of threads

tends to result in an increase of used CPU time. But the effects differ between different

runs with the same number of threads. The more threads we use, the more likely it is that

the pre-computation steps are computationally more intensive. Note that by chance the

boundary cells of the squares may have (almost) with unambiguous flow directions. If so,

the pre-computation step is computationally less intensive as we can see in the case 2× 2
in Figure 5. The load balance depends in particular on the topology and on the partition of

the DEM. In most but not all cases we have a suboptimal load balance.
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Figure 5: Runtime diagrams of the parallel algorithm which divides the DEM into squares. The
number of threads on the x–axis is displayed in the form of

”
a · b“ where a is the number of rowwise

partitions, and b the number of columnwise partitions.

3.2 Dividing the computation into two phases

In Table 3, the speed-ups for up to four threads are presented. The runtime (real time)

compared to the ideal runtime is shown in Figure 6. The stacked bars show the cumulative

calculation time of threads of both phases and the runtime which is needed to group the

cells. The calculation time is the period in which the threads perform computations without

synchronization and communication. The maximum waiting time becomes significant

when using more than two threads (“Reintal” and “Mulde”) or more than three threads

(“Saidenbachtal”). For instance, using four threads for computing the flow directions of

“Saidenbachtal”, one of the four threads had to wait up to 63% of the whole parallel

runtime. In case of less than four threads, a thread has to wait for a task up to one percent

of the whole runtime. Regarding the dataset “Mulde” a thread has to wait up to 23%
(four threads) or 28% (eight threads), respectively, of the whole parallel runtime. The

average waiting time of a thread is 14% (using four threads) or 27% (using eight threads),

respectively, of its calculation time.

Working on the data set “Saidenbachtal” and “Reintal”, further investigations show that

all threads have nearly equal computation time. The effort of calculation is well balanced,

but in some periods there were no tasks for the threads. Thus, one or more threads had to

wait. The maximum difference between computation time and the cumulated time of all

464

464



threads were determined, too. The more threads were used the more threads had to wait to

get new tasks, but the threads had all nearly the same computation time.

Using the data set “Mulde”, we get a maximum difference between the calculation time of

each thread of 10% (two threads are used) up to 18% (eight threads are used).

Table 3: Speed-ups of the parallel algorithm which divides the computation into two phases.

number of threads: 1 · 1 1 · 2 2 · 1 1 · 3 3 · 1 2 · 2
speed-up (DEM 1 “Reintal”): 0.90 1.67 1.73 2.23 2.26 2.47
speed-up (DEM 2 “Saidenbachtal”): 0.94 1.82 1.84 2.38 2.40 2.58
speed-up (DEM 3 “Mulde”): 0.85 1.76 1.77 2.31 2.29 2.08
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Figure 6: Runtime diagrams of the parallel algorithm which divides the computation into two phases.
The number of threads on the x–axis is displayed in the form of

”
a · b“ where a is the number of

rowwise partitions, and b the number of columnwise partitions. Theses partitions only apply to the
first phase.

We have implemented several modifications of the algorithm to improve the runtime. One

modification eliminates recursion. Another one implements a heuristic which tries to

change the processing order in such a way that large groups of cells are handled with

priority. To avoid an overwhelming effort for the data access, a modification – which
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merges small groups of cells together and puts those into the task pool – has also been im-

plemented. However, all these modifications did not show significant runtime differences.

As shown in Figure 6, for all test sites the runtime decreases but the accumulated computa-

tion time increases with the number of threads. There is no explicit synchronization during

the calculations because of the disjoint groups of cells. An increased number of threads

causes an increase of the overhead of thread administration and an increase of random

access which can induce for instance false sharing (see [HS08]). The cumulated waiting

time also increases.

4 Discussion and conclusion

In this study, we investigated the efficiency of parallelization techniques on the example

of the non-local “extended neighborhood” of raster cells. An extended neighborhood is

used within the D8e algorithm to make the flow direction unique when ambiguous flow

directions occur. The ordinary D8 neighborhood has ambiguous flow directions. Two

parallelization approaches were tested regarding their efficiency (Section 2.2):

1. The advantage of parallelization by dividing the DEM into squares is the low cost

of synchronization. A disadvantage is the inefficient load balancing. On the one

hand, if we have a well-adjusted load balance the speed-ups would be improved. On

the other hand, speed-ups near to the best possible speed-up in all cases could not

be achieved because of the sequential part (pre-computation step). Synchronization

costs are insignificant in our implementations.

2. The advantage of parallelization by dividing the computation into two phases is the

well-adjusted load balance. Disadvantages are the increasing cost of synchroniza-

tion and data access. The sequentially grouping of cells causes increased computa-

tion expenditure and is independent from the number of threads. This parallelization

alternative is more independent of the composition of the DEM because of the dy-

namic distribution of the cost-intensive calculations to the threads. Possible reasons

for the non-ideal speed-ups have been examined. Unbalanced distribution of cal-

culations, synchronization time and conflicts between threads because of a shared

data structure can be excluded as being mainly responsible for these observations.

Possible explanations are data access and the effect of false sharing caused by the

high number of write and read accesses.

Neither parallelization strategy enabled speed-ups that are equal to the number of threads.

This is in contrast to the parallelized calculation of local surface parameters like slope

and aspect where speed-ups near to the number of threads have been achieved for all

three study areas. The speed-up comparisons also revealed landscape-related dependen-

cies. While the speed-ups for the high mountain dataset computation are higher by running

the first strategy (DEM “Reintal”), the speed-ups of the second strategy have proved to be

more efficient for the calculation on the low mountain and the floodplain datasets (DEM 2
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“Saidenbachtal” and DEM 3 “Mulde”). The second case shows the effect of flat areas (e.g.

dams, filled sinks and floodplains) on the parallelization efficiency where a fixed DEM

division into threads was carried out. This implies that the distribution of the extended

neighborhoods is fixed, too. This could lead to a sub-optimal load balancing. The second

parallelization strategy is more appropriate to such DEMs because of the dynamic consid-

eration of the extended neighborhood. As mentioned in the abstract, this task pool-based

strategy is more efficient for calculations on datasets with many data dependencies. How-

ever, the second parallelization strategy is more computationally intensive. Thus, in the

case of almost optimal load balances (e.g. dataset “Reintal”) the speed-ups of the second

parallelization strategy are lower than the speed-ups of the first one.

In all datasets there are many small and few huge extended neighborhoods. As a conse-

quence, one thread could work on just one huge extended neighborhood while the other

threads have already finished.

Further runtime measurements based on different spatial resolutions (area of DEM 1 in

2 × 2m2 and 5 × 5m2 resolution, area of DEM 2 in 5 × 5m2 resolution, and area of

DEM 3 in 2 × 2 resolution) were executed, too. Because of the decreased runtime of

the calculations caused by the lower number of cells, the overhead of administration of

the threads becomes more significant. The speed-ups were a bit lower than the speed-

ups presented above. Runtime measurements based on the original DEMs (the datasets

previous to the sink filling) were also executed. Because of significantly fewer flat areas,

the speed-ups were significantly higher than the presented speed-ups.

In future work we will try to improve the computation by parallelizing the extended neigh-

borhood computation. But this seems to be challenging because of data dependencies. We

will also work on much larger datasets (about 109 cells). Because of runtimes greater than

some minutes we will focus on applications besides web-based implementations, too. In

anticipation of a growing number of cores per processor, it will be worth studying other

parallelization strategies for shared memory machines.
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Abstract: Parallel computing has been a niche for scientific research in academia for
decades. However, as common industrial applications become more and more perfor-
mance demanding and raising the clock frequency of conventional single-core systems
is hardly an option due to reaching technological limitations, efficient use of (embed-
ded) multi-core CPUs and many-core platforms has become imperative. 3D surface
analysis of objects using the white light interferometry presents one of such challeng-
ing applications. The goal in this article is to get an impression which speed-up for an
established and parallelized white light interferometry preprocessing algorithm, called
Contrast Method, is possible on an embedded system that works without any operat-
ing system. Therefore, we decided to use a virtual environment that is able to simulate
embedded multi-core as well as many-core systems and that enables running real ap-
plication code on the designed system. The results show, that a significant speed-up is
possible when using a many-core platform, instead of a design that only implements
one single core, if the algorithm is parallelized for getting full advantage of the many-
core design. Furthermore, an acceptable absolute run time is achievable.

1 Introduction

The white light interferometry scanning is a versatile technology which provides a reli-

able non-contact, 3D optical measurement of surface roughness in the nanometer range

[KM07]. In the scanning device, which is usually a Michelson interferometer equipped

with a broadband light source, the emitted white light beam is split into two separate

beams. One of the beams is projected onto the object to be measured, while the other

beam follows a well defined and constant path to a reference mirror. Both beams are re-

flected and superimposed, resulting in an interference pattern of light and dark fringes.

This fringe pattern is captured on a CCD camera chip and processed in software. By

moving the object closer to the scanning device in discrete time steps, the path difference

between the two beams and, thus, the fringe pattern changes. During a common measure-

ment process, the whole interference range (the region where the path length difference of

reflected beams is less than the coherence length of the wight light) is covered [Lar00].
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Thereby, individual time series of interference intensities are recorded by the pixels of

a CCD sensor. Figure 1 shows such a two dimensional series, called correlogram or

interferogram, for one pixel. At each pixel, where the optical path length difference of

both beams is zero, the occurred constructive interferences have reached their maximum

value. In the case that the object is not a flat plane, the maximum interference of each

pixel point is obtained in different time steps for each pixel. A 3D map can be derived

from the positions of the translation arm, where maximum intensities are observed, and

the distance to the start position [His05]. Thus, the aim of the white light interferometry

analysis process is to find the corresponding maximum interference value for each pixel

of the CCD sensor.

Figure 1: A synthetic interferogram or correlogram signal of a pixel

The measurement of the whole test object is done using the so-called stitching process.

This means, that the scanning area is subdivided in 1 × 1 mm2 regions that are scanned

subsequently. For example a 25× 25 mm2 measuring area must be subdivided in 625 par-

titions. Usually more than 200 frames are necessary for a complete scan of each subarea.

The scan of the whole area takes approximately 70 minutes with the camera that is used at

the moment. To increase performance, a high speed camera is used to accelerate the scan-

ning procedure. The necessary computations on the data, which are captured for such a

subarea, are performed while the scan of the next subarea is already in execution. Because

the scanning procedure is accelerated, the elaboration procedure has to be accelerated, too.

This can be achieved by the parallelization of the elaboration procedure.

The interference range (IR ) span at most few hundred intensity values and all other in-

tensities captured by the camera are not relevant for the height map calculation. Thus, a

preprocessing step in the white light interferometry analysis is used, to reduce the required

image data to significant regions for the height map calculation. In the postprocessing
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stage, the maximum interference for each pixel in the corresponding extracted region is

calculated [His05].

Because each pixel’s correlogram is elaborated independently from those of the other pix-

els, the analysis process is well suited for parallel processing.

As can be seen in Section 2 there are studies about performance and speed up using white

light interferometry with GPUs as well as with conventional multi-core systems from Intel

and AMD. According to our present knowledge there are no studies which performance

and which speed up could be achieved on single or multi-core and many-core, respectively,

embedded processors. As a consequence this is an unexplored niche which is, according

to our opinion, a very interesting region because the usage of embedded multi-core sys-

tems is growing more and more and embedded computing gives a substantial added value

to many products in fields such as automotive, industrial automation, telecommunications,

consumer electronics or entertainment [COMS11]. Using an embedded hardware layout

for the white light interferometry has the advantage of more power efficiency (less power

consumption). When using a NVIDIA Tesla C2050 GPU, there is a maximum power con-

sumption of 238 W TDP (Thermal Design Power) [Cor10]. For the Xeon X5650 Hexacore

(2.66 GHz), a conventional multi-core processor developed by Intel, the power consump-

tion amounts to 95 W TDP [Int11]. In comparison to that, a single ARM CortexA9 pro-

cessor, that we used for our investigations, has a power consumption of 0.4 W (soft macro

implementation) [ARM11]. As a consequence, the power consumption of an embedded

multi-core system, consisting of single CortexA9 processors and up to ten cores, is only

a fraction compared to a NVIDIA Tesla C2050 GPU or a Xeon X5650 Hexacore. In ad-

dition to that, a more compact construction of the measurement system is possible when

using an embedded system instead of a GPU or a conventional multi-core system.

Our final goal is to integrate such a compact embedded system in a smart thrilling head,

which includes micro optical devices and fast electronic evaluation systems, too. A GPU

board with cooling equipment, for example, could not be integrated in the even mentioned

thrilling head, because there is plain and simple not enough space available.

The development of a real embedded hardware layout can be very expensive because, as

it is often the case, the hardware layout has to be changed during the development phase.

To avoid this it will be of great advantage to use an environment that emulates the em-

bedded hardware and could be modified whenever necessary. Such a virtual environment

for embedded hardware and software development is Open Virtual PlatformsTM (OVPTM)

provided by ImperasTM. With the aid of OVP it is possible to build single-core as well as

multi-core and many-core hardware platforms, add desired peripherals and simulate real

application code [OVP11].

Because of the ability to establish multi-core and many-core platforms running real appli-

cation code, it is possible to develop parallel applications that can be simulated, verified

and evaluated. That is a very important feature for our work and the reason why we chose

OVP as the virtual environment for our study. The chosen preprocessing algorithm is the

so-called Contrast Method (see Section 4). This method uses only one arithmetic instruc-

tion to calculate the central fringe in each interferogram and achieves a high performance

as a consequence [SFKM11].
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2 Related Work

The usage of multi-core and many-core technology in industrial white light interferometry

is gaining more and more attention. The first attempt to use a graphical processing unit

in the surface metrology has been approached by Purde et al. in 2004 [PMS+04]. They

implemented analysis algorithms of the so called electronic speckle pattern interferometry

on GPUs, allowing the measurement of surface contours using the High Level Shading

Language (HLSL).

Gao presented in September 2010 a solution for imaging processing using GPUs for the

wavelength scanning interferometry [GJMM10]. Thereby a GeForce GTX 280 was used

for the parallelization of the computational intensive data analysis procedure and a approx-

imately 30x speed-up was achieved.

Also in September 2010 Sylwestrzak et al. presented the application of massively parallel

processing of Spectral Optical Coherence Tomography (SOCT) data using GPUs [SSST10].

By utilizing NVIDIA’s GeForce GTX 285 with 2 GB device memory Sylwestrzak achieved

overall imaging speed of over 100 fps for 2D tomograms consisting of 1024 A-scans.

In 2011 Schneider et al. published an article about three designated preprocessing white

light interferometry algorithms on emerging multi- and many-core architectures [SFKM11].

He figured out that the best performing algorithm is the Contrast Method and that conven-

tional multi-core systems are the best suited architectures for this algorithm.

3 The simulator

The simulator included in OVP is an instruction accurate simulator because the provided

processor models are instruction accurate, too. This means, that the functionality of a

processor’s instruction execution is represented without regard to artifacts like pipelines.

OVP processors in multiprocessor platforms are not working simultaneously. For effi-

ciency, each processor advances a certain number of instructions in turn. So in multi-

processor simulations a processor cannot respond until the processor has signaled, that

he has finished its quantum. The quantum is defined as the time period in which each

processor in turn simulates a certain number of instructions [Lim11a]. Simulated time is

moved forward only at the end of a quantum. This can create simulation artifacts, where

a processor spends time in a wait loop, while waiting for the quantum to finish. To avoid

this the quantum has to be set very low (perhaps even to one, which will have a signifi-

cant impact on simulation performance) so that the measurements will not be affected by

this simulation artifacts. This can be adjusted in the simulator settings [Lim11b]. The

simulation can only figure out how many instructions were executed. Assuming a perfect

pipeline, where one instruction is executed per cycle, the instruction count divided by the

mips rate (millions of instructions per second) would give the amount of time the pro-

gram runs. Instruction accurate simulation cannot make a clear statement about time spent

during pipeline stalls, due to cache misses and other things that are not modeled, so any

conversion to time will have limited accuracy compared to actual hardware. But it is still
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useful for comparing the relative performance of different algorithms, assuming that they

have similar pipeline stall effects. Furthermore, the OVP-simulator provides the possibil-

ity for measuring instruction counts within a program. As a consequence, the instruction

counts for specific code snippets can be recorded and if the quantum is set to one, like in

this study, the registered instruction count divided by the mips rate is the amount of time

the processor requires for executing the code snippet. In single-processor platforms there

is no need to set the quantum to one because the multiprocessor scheduling algorithm does

not affect and intervene, respectively, the simulation.

4 The preprocessing algorithm

In the preprocessing analysis step, each pixel’s correlogram is demodulated, separating

the carrier wave from the envelope. The demodulation process can be done by a simple

approximation of envelope values. For this purpose, depending on the surface characteris-

tics and the signal-to-noise ratio of the generated signals, different approaches have to be

considered [Rob93]. Envelope demodulation serves also as a data reduction step, because

only the interval around the center of the interference is relevant for the postprocessing

[KM07], as can be seen in Figure 1. The center of interference signal itself can not be seen

as the envelope’s peak. Due to noise and the discrete measurement along the z-axis, the

actual maximum could be between two captured intensities or it could be shifted in some

direction away from the measured interference center. Thus, in the demodulation process

the center of the interference is determined and a predefined number of intensities left and

right from this point is extracted. This is done parallel to the scanning procedure, so that

not all interference images must be stored, but only the relevant regions in corresponding

correlograms. These regions are used in the postprocessing stage to get an approximation

of the actual maximum, as accurate as possible. The approximation can be achieved by

fitting a model envelope function to the detected envelope [Lar00].

For our investigations a algorithm called Contrast Method was chosen. For each pixel p

it uses the maximum absolute difference of successive sampling points I from the input

signal as an estimator for the envelope, see (1). Variable i represents the number of the cur-

rent translation step. This filter becomes maximum where the interferogram oscillations

have a maximum gradient, which is approximately around the maximum of the envelope

[His05].

ẑ0(p) = argmax
i

|Ii−1(p)− Ii(p)| (1)
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5 Implementation details

5.1 Implementation of the virtual test environment

For generating the virtual hardware design with OVP, an application, that defines the nec-

essary components at runtime, was written. The application accepts several parameters,

e.g. if intermediate results shall be displayed or not, and of which type the used virtual

processor is, e.g. a CortexA9 made by ARM that we used for our investigations. One im-

portant parameter defines the number of CortexA9 processors that should be implemented

for the design. Depending on that parameter, the corresponding application to run by the

respective core is automatically loaded into the corresponding processor memory. There

are two different programs that have to be loaded into the memories, if more than one core

shall be used. These core-applications are called MasterApp and SlaveApp (see section

5.2). For each processor two local memories are generated. The first one contains the

heap, the stack and the memory area for the application program to run. The second local

memories (one belonging to each processor) contain the data, the Contrast Method works

with, as well as necessary synchronization variables. These second local memories are

implemented as a distributed shared memory system. As a consequence, each core has the

possibility to access the variables that are required for the synchronization of every proces-

sor. After all local memories are instantiated, they are linked to the associated cores. The

resulting hardware design, depending on the number of cores to implement, is graphically

illustrated in Figure 2.
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Figure 2: Generated design depending on the number of cores to use
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5.2 Parallel implementation of the algorithm

Employed cameras in industrial applications use different color depths (8 bit / 16 bit).

However, the data analysis has to be accomplished in single precision or in double preci-

sion mode. Therefore, we decided to employ template classes, so that all the functionality

needed to execute the described algorithm with corresponding parameter combinations,

can be accessed through the same class. The user only has to provide the template param-

eters during instantiation. The methods of this class are compiled and linked into an appli-

cation named MasterApp, that is executed by only one core, independent of the number of

cores used in the design, called master in this paper. This processor defines all necessary

shared (synchronization) variables and their contents in the initial phase. All other cores

(the slaves) run another application that waits continuously for instructions of the master

with the exception of the initial phase where all address assignments of required shared

variables are performed. The application running on the slaves is called SlaveApp (refer to

Figure 2). The interaction of both applications is illustrated in the following. As mentioned

in Section 1, each pixel’s correlogram is elaborated independently from those of the other

pixels. So the first stage of the preprocessing algorithm (computing the maximum of each

pixel’s interferogram) and the second stage (calculating the relevant intensities around the

maximums) may also be regarded as independent. Hence, the parallelization of the algo-

rithm takes places here. The number of pixels of an image can be seen equal to the runs

of several for-loops that have to be executed during the algorithm and whose instructions

are the same for every pixel’s correlogram. The number of pixels each core has to process

shall be evenly distributed, i.e. nP /nC . Thereby, nP is the number of pixels per frame

and nC is the number of cores used in the design. No core may process more than one

pixel than any other core to achieve an almost equal load balancing. If the reminder rem

of the division nP /nC is unequal to zero, then one pixel more is assigned to the first rem

cores.

For a clearer understanding, Listing 1 illustrates this circumstance in pseudo code.

// Total number of cores used in the design

unsigned int number_of_cores;

// Total number of pixels per frame

unsigned int number_of_pixels;

// Array that holds the runs each core has to perform

// runs_per_core[0] = number of loop passes for core 1

// runs_per_core[1] = number of loop passes for core 2

// ...

unsigned int runs_per_core[number_of_cores];

// The number of cores that have to perform one loop pass more

// than the other cores

unsigned int rem = number_of_pixels % number_of_cores;

// Assign loop passes

for(unsigned int index = 0; index < number_of_cores; index++)

{

// Integer division

runs_per_core[index] = number_of_pixels / number_of_cores;

if(i < rem)

runs_per_core[index] += 1;

}

Listing 1: Pseudo code for equal load balancing
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Because all relevant data is located in the distributed shared memory, and each core is

working on a different address space within the memory area, there are no simultaneous

memory accesses that could trigger additional delays. Everytime such a parallelized re-

gion is accessed by the application running on the master, he instructs all slaves to perform

the necessary (and the same as the master) computations on their assigned data regions in

the distributed shared memory. After all cores (including the master) have finished their

work, the application on the master is continued and the slaves wait for processing (sleep

mode) until the next parallelized region is entered. The even mentioned procedure is real-

ized using the spin lock principle and without any operating system. The synchronization

variables are located in the shared memory area which is accessible for each processor.

The whole number of input frames to analyze by the preprocessing algorithm, as well as

the number of intensities to store around each pixel’s interferogram for postprocessing, are

depending on the user input. For test purposes the input frames are generated in software.

6 Results

A detailed and precise overview about the execution times, the Contrast Method requires

for the chosen test cases on the respective virtual hardware, is shown in Table 1.

256 x 256 pixels 512 x 512 pixels 1024 x 1024 pixels

p/sec m/sec c/sec p/sec m/sec c/sec p/sec m/sec c/sec

1 core 10.93 9.55 1.28 43.70 38.20 5.14 174.71 152.80 20.55

2 cores 5.59 4.78 0.72 22.32 19.10 2.86 89.19 76.40 11.43

3 cores 3.76 3.18 0.47 14.00 12.73 1.91 59.91 50.93 7.62

4 cores 2.85 2.39 0.36 11.34 9.55 1.43 45.27 38.20 5.71

5 cores 2.30 1.91 0.27 9.14 7.64 1.14 36.49 30.56 4.57

6 cores 1.93 1.59 0.24 7.68 6.37 0.95 30.64 25.47 3.81

7 cores 1.67 1.37 0.20 6.63 5.46 0.82 26.45 21.83 3.27

8 cores 1.47 1.19 0.18 5.85 4.78 0.71 23.32 19.10 2.86

9 cores 1.32 1.06 0.16 5.24 4.25 0.64 20.88 16.98 2.54

10 cores 1.20 0.96 0.14 4.75 3.82 0.57 18.93 15.28 2.29

Table 1: Detailed overview of obtaining times depending on the number of cores and the resolution

Thereby, variable p stands for the required time of the whole preprocessing algorithm,

variable m for the time that is required for calculating the maximum of each pixel’s in-

terferogram and variable c is the representative for the time required for computing the

intensities around the maximums. Each measurement was executed with a setup where a

color depth of 16 bits and the double precision processing mode were used. Furthermore,

the number of frames for the scanning procedure was set to 100 and the number of frames
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containing relevant data (intensity values) around the maximum of each pixel’s interfero-

gram was placed to 30. The resolution by contrast changed during the measurements from

256× 256 to 512× 512 and finally to 1024× 1024 pixels.

As expected, the amount of the required time for calculating the maximums and for com-

puting the intensities is not equal to the time the whole preprocessing algorithm requires

(serial proportion). For a resolution of 256 × 256 pixels this proportion amounts to 100

ms, for 512 × 512 pixels to 359 ms and for 1024 × 1024 pixels to 1.357 seconds of the

whole algorithm. As a consequence, the percentage of this serial proportion rises (with

reference to the time the whole algorithm requires), the more cores are used.

Based on the results shown in Table 1, the speed-up, depending on the number of cores

used and in comparison to one core, for each resolution can be calculated. Figure 3 illus-

trates the resulting speed-ups of the whole preprocessing algorithm for different resolu-

tions graphically.
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Figure 3: Speed-up of the whole preprocessing algorithm for different resolutions

The speed-up for calculating the maximum of each pixel’s correlogram, in comparison

to one core, is numerically equivalent to the number of cores used and as a consequence

constant. As opposed to this, the speed-up for the computation of the intensity interval

around the maximum of each pixel’s interferogram is numerically not equal to the number

of cores used, but constant, too. For that reason, the speed-up of the whole algorithm

and the Contrast Method, respectively, is not numerically equivalent to the number of

cores used. Despite this, the speed-up of the whole algorithm is linear. This results from

the distributed shared memory architecture. Each core operates on the data in its own

local memory and thus independent of the other cores. As a consequence, there are no
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simultaneous memory accesses, that could slow down the application, even in practice.

Only simultaneous access to the shared synchronization variables could slow down the

application. This is the case when the master polls for the synchronization variable of a

slave (read), while the slave wants to signal that he has finished its computations (write).

In multiprocessor simulations, and as mentioned in Section 3, each core advances a certain

number of instructions in turn. This number of instructions (the quantum) can be set very

low to increase simulation accuracy and to avoid simulation artifacts. As a consequence,

setting the quantum very low has a significant impact on simulation performance. We

investigated this circumstance for a resolution of 256×256 pixels and for quanta of 1, 100

and 100000. The results have shown, that the simulated time of the whole system, i.e. the

time the simulator determines for the execution in the corresponding real system, is not

influenced by the quantum and amounts to 55.67 seconds for a system consisting of two

cores. As opposed to this, the wall-clock time changes significantly. For the simulation

of two cores and a quantum of 1, the wall-clock time amounts to 4 hours and 27 minutes.

Setting the quantum to 100 evokes a wall-clock time of 33 minutes and 36 seconds. The

fastest simulation is achievable when setting the quantum to 100000. The wall-clock time

than amounts to 42 seconds only. When investigating the instruction counts for the whole

preprocessing algorithm, an amendment depending on the quantum is ascertainable, too.

For a quantum of 1 the instruction count of the whole preprocessing algorithm results

in 558,969,518 instructions, for a quantum of 100 in 558,969,742 instructions and for a

quantum of 100000 in 559,090,510 instructions. When dividing that instruction counts by

the mips rate, which was set to 100, preprocessing times of 5.58970 seconds for a quantum

of 1, 5.58970 seconds for a quantum of 100 and 5.59091 seconds for a quantum of 100000

are emerging. Thus, the simulation accuracy changes at the second decimal place and

at the tenth millisecond place, respectively. This circumstance was noticed independent

of the number of cores used. Because the results of our measurements for the whole

preprocessing algorithm are in a range of seconds (see Table 1), a quantum of 100000 is

rather adequate to provide enough accuracy for our simulations. As a consequence, the

wall-clock time of the simulation is reduced heavily.

7 Conclusion and future work

The speed-up for the parallelized preprocessing algorithm, called Contrast Method, rises

sharply the more cores are used. Furthermore, the speed-up is approximately independent

of the chosen resolution for a constant number of frames to evaluate. When more than ten

cores are used, we expect the speed-up to remain linear until the saturation is reached, also

independent of the resolution. In this context, saturation is reached, when no more notable

speed-up can be achieved by raising the number of cores. This depends on the number

of frames to evaluate and on the chosen resolution. In comparison to the times that are

achievable on a GPU (range of milliseconds for a resolution of 1024 × 1024 pixels), the

times we achieved (see Table 1) are slower, but sufficient enough for the timings required

for an industrial inspection process. Concerning to power consumption we can clearly

make the statement that an embedded solution will reduce power consumption in compar-
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ison to a GPU or a conventional multi-core architecture (see Section 1). As a result, the

full advantages, regarding to compactness and less power consumption can be occupied.

The advantage of a virtual environment is the possibility to simulate any desired number

of cores, even if there is no corresponding real hardware. Our final goal to integrate such

a compact embedded system in a smart thrilling head is therefore achievable.

In future work we will extend our approach by parallelization of the remaining steps from

the white light interferometry data analysis process, which includes the analysis of each

interferograms phase information [His05] and the postprocessing step, where a Gauss-

Newton fitting is applied to each correlogram of a pixel. Furthermore, we will investigate

the difference between the measured times and instruction counts, respectively, when using

other available virtual cores than the CortexA9. It would be very interesting to see what

total power consumption appears on the simulated hardware. OVP provides statistics of

power consumption for the simulated hardware not directly. However, with some software

effort it is possible to get these statistics. This is another point we will treat in future. Last

but not least, one important thing is the comparison of the times figured out with OVP and

the times appearing on real hardware. Therefore, we want to recreate the virtual hardware

design, introduced in this paper, with one to four cores in real. Afterwards, we will port

our software to the real hardware and compare the times we determined with OVP to the

times arising on the real hardware.
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Abstract: Job centric monitoring allows to observe jobs on remote computing re-
sources. It may offer visualisation of recorded monitoring data and helps to find faulty
or misbehaving jobs. If installations like grids or clouds are observed monitoring data
of many thousands of jobs have to be handled.

The challenge of job centric monitoring infrastructures is to store, search and ac-
cess data collected in huge installations like grids or clouds. We take this challenge
with a distributed layer based architecture which provides a uniform view to all mon-
itoring data. The concept of this infrastructure called SLAte and an analysis of the
scalability is provided in this paper.

1 Introduction

Direct observability of computing tasks is more and more lost by using external, distributed

resources for getting calculations done. Job centric monitoring is a service which takes the

challenge to fill the gap between using external resources and direct observability of jobs.

Therefore monitoring data of each job are recorded for future analysis and visualisation.

Job centric monitoring gives detailed information about used resources of currently run-

ning jobs where grid middlewares or batch systems give just the fact that the jobs are

running. Using detailed information enables us to analyse the behaviour of already fin-

ished jobs instead of just showing the exit state. So the reason of an aborted job can be

analysed and found. This can be an unexpected behaviour of the own job or that ensured

computing resources are not available due to hardware problems or misbehaving users. A

comparison of jobs is also offered to detect unusual jobs even if they are not aborted.

Job centric monitoring is most benefiting for environments with large numbers of jobs and

resources which are shared by various users. In these systems, users can not easily observe

jobs like on local resources by using desktop monitoring systems. Resource monitoring

does not solve this problem because it does not provide job observability. Observed are

the characteristics of resource usage, not the impact of single users or specific jobs.
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The architectures we have in focus for job centric monitoring are grids (offering huge

amounts of heterogeneous resources), clouds (offering resources on demand) and HPC or

cluster systems operated by different computing centres. Currently the D-Grid1 infrastruc-

ture is used for research.

One of the challenges in this field of research is to develop visualisation systems which

offer methods to handle thousands of jobs running on different hardware with changing

side effects e.g., the influence of jobs of other users utilising the same computing systems.

But before we can analyse the data we have to handle them. To get an idea which amount

of monitoring data we have to handle we consider an example: A single measurement

consists of 15 kB of data2 (e.g., user name, grid VO, timestamp, CPU time, load average,

used and free memory, used and free swap space, IRQ load, job ID, host name). Assuming

that a single computing system or resource provider offers capacity for 5000 jobs and a

measurement is done every minute (60 s), this results in a network load of 1.25MB/s.

Considering only ten of these systems brings us to 12.5MB/s or 833 packages of 15 kB
each per second only for storing these data! This huge number of small packages is easier

to handle in a distributed infrastructure instead of a central storage system.

Our answer to the challenge of storing, accessing and searching huge amounts of job cen-

tric monitoring data is the infrastructure SLAte [HMP10]. It is build on a concept of

distributed servers organised in three layers. These layers allow to distinguish between

different network capabilities (within a site3 and between different sites) and to build a

monitoring infrastructure adapted to the network. The performance of each of the three

layers can be increased by installing additional servers. Thus the performance of the mon-

itoring infrastructure can be adapted to user needs.

This paper describes the SLAte architecture, major implementation details and related

work. Based on the architecture it is demonstrated how the performance of the job centric

monitoring infrastructure can be increased to handle the increasing amount of data caused

by additional computing resources and users. Afterwards scalability issues and potential

bottlenecks are analysed.

2 Related Work

A lot of scientific work has been done on monitoring in general and similar fields of re-

search. These topics are:

Monitoring on local computing resources: For local monitoring command line tools

like ps, top or free4 or graphical ones like Gnome System Monitor5 can be used.

On clusters Ganglia6 gives information about the utilisation of resources. The im-

1http://www.dgrid.de/
2About 15 kB per measurement is what we measured on our current installations.
3A site is a set of resources of a resource provider at a single location.
4http://procps.sourceforge.net/index.html
5http://library.gnome.org/users/gnome-system-monitor/stable/index.html
6http://ganglia.info/
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pact of a specific user or job can not be identified directly by these tools.

Tracing and profiling: Profiling e.g., done with GNU gprof7 gives information which

functions of a program are used and how long they are used. This information is

often presented as statistical evaluation. Even more detailed information are given

by tracing tools like Vampir [BHJR10]. These analyses often tend to significantly

slowdown the application. Thus they are not valuable for monitoring many jobs at

once. Moreover the infrastructure to handle profiling or tracing data is designed for

one job and in most cases the transfer of data over a wide area network is not needed.

Thus it can not be easily adapted for job centric monitoring.

Accounting: Accounting is used for billing the use of resources and discovering the utili-

sation of computing systems. Examples are SGAS [EGM+] and DGAS [PRAGA09].

Based on the fact that only basic information of a job have to be recorded the amount

of data to be handled is low. Thus there is no demand on a scalable infrastructure

which is suitable for job centric monitoring if a central database is able to handle

all accounting data. An other aspect of accounting is a high demand on reliabil-

ity and methods to verify information while job centric monitoring looks more on

scalability and performance.

Logging: Logging means to record events relevant for the reconstruction of the life cycle

of a job. These events are e.g., the start, exit and abort of a job like recorded with

accounting systems. Another source of relevant events is the program itself. It

can report which subtask is executed or if problems occur. Such problems are e.g.,

missing rights to read or write files, wrong configurations and missing input data.

The information is strongly bound to the context of the program and logging has to

be intended by the program developers. Thus, not each job can deliver logging data.

The logging information is often written to so called log-files or recorded by syslog

daemons implementing rfc 54248. An centralised implementation of logging grid

jobs is shown by [RSK+08].

Resource monitoring: The task of grid resource monitoring is to record information

about grid computers. Collected are information about hardware, used middlewares,

offered services, known outages, planed maintenances and utilisation or free re-

sources. This allows to create statistics of reliability and utilisation of resources and

services or to assign jobs to handy resources. Examples of this kind of projects are

D-Mon [BBK+09], CMS Dashboard [ACC+10] and Ganga [VBC+10]. A lot of the

information collected by these tools are static and have no need for a high frequency

of updates. Thus all resource monitoring data generated on a huge system like grid

are handled by a central database.

The specific needs for handling job centric monitoring data are not properly considered by

any of these tools or fields of research. Thus, we developed new concepts for job centric

monitoring which are explained in the following sections.

7http://sourceware.org/binutils/docs/gprof/
8http://tools.ietf.org/html/rfc5424
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3 Scalable, Layered Architecture – SLAte

3.1 Architecture

The architecture of SLAte is designed in a way that installing additional servers increases

the performance of handling monitoring data. This is needed if more users want to access

monitoring data or new computing resources should be used. As previously introduced the

network capacity may be a limiting factor when observing many jobs in SLAte the overall

bandwidth can be adjusted. For easy access to the distributed monitoring data we provide

an unified and global view.

To get the idea of a scalable monitoring infrastructure to reality, a layer based concept

is realised. It consists of three layers schematically shown in Figure 1. The Short Time

Storage (STS) layer gets the data from the compute nodes and stores them temporarily.

The Long Time Storage (LTS) layer accumulates the data from the STS servers and stores

them persistently and distributed over multiple servers. The outer layer is the Meta Data

Service (MDS) which provides the global view of the data. In the following these layers

are described in more detail.
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Figure 1: The layer based SLAte infrastructure for job centric monitoring data. Each layer can
consist of multiple locally distributed servers. The servers of the MDS layer give a global view to
all data which are stored distributed on the LTS servers.

The STS servers should be installed local at a site (e.g., at the frontend of a grid computing

resource) to be close to the computing node on which the monitoring data are produced.

To avoid that the monitoring data use too much resources on the computing node e.g., if

stored in memory and to avoid that the monitoring data are copied after the job is done,
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which prevents the next job to start, the monitoring information have to be moved to an

STS server as early as possible. This results in a transfer for each single measurement and

tends to many small packages which are handled by the local network (within a site or a

computing system).

The monitoring data cached on the STS server have to be moved to the LTS server proba-

bly over a wide and slow network connection which is not able to handle huge numbers of

small packages. To improve the usage of such a connection the monitoring data is trans-

ferred in batches. In most cases9 the monitoring data of one job are moved at once. By

repacking the monitoring data to huge packages it is avoided to slow down the network by

transferring many small packages thus the effective network bandwidth is increased.

Like the STS layer, the LTS layer can consist of multiple servers to stores the monitoring

data in a distributed way. In contradiction to the STS servers the LTS servers stores per-

manently and the monitoring data of individual STS servers can be merged (in Figure 1

symbolised by the sites A, B and C).

Furthermore an LTS server makes locally stored data accessible to users and visualisation

systems. Therefore it can offer services to search and access job monitoring data.

To provide an unified view to the monitoring data distributed over LTS servers the MDS

layer is used (see Figure 1). Like the other layers it can consist of multiple servers. Unlike

the LTS and STS servers an MDS server has a global view to all data stored in the inner

layers. In this way a user or tool easily accesses monitoring data without knowing any of

the LTS servers. To realise this we distinguish between monitoring data and their metadata.

The monitoring data are the measurements (timestamp, CPU time, load average, used and

free memory and so on) while the metadata hold information to search for jobs. Such an

information is for instance the job ID. Usually, this ID is a unique number or a unique

identifier like the Globus job ID. But mostly the job ID is not known by the user and it is

preferred to search for the users jobs which run during a given time frame. Therefore the

start and end time of a job are metadata as well as the name of the owner (more precisely

the distinguished name of the certificate which was used to submit the job). Additional

metadata are the exit state of the job and the storage location of the data.

To look up or search for jobs only the metadata are considered. This search can be per-

formed by an LTS or an MDS server with the distinction that an LTS server holds only

the metadata of the locally stored data while an MDS server has the metadata of all LTS

servers. Thus an MDS server can find all monitoring data. The monitoring data is not

stored on the MDS server because it is not needed for searching jobs. This dramatically

reduces the amount of data transferred to these servers.

9To realise online monitoring it is needed to get monitoring data of running jobs. In this case the data on the

LTS server are accessed and the data recorded afterwards have to be transferred in an additional package.
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3.2 Implementation Details

The servers creating the three layers were implemented using the Grid middleware Globus

(GT4) [Fos05] with its WSRF framework. The components are implemented in Java as

GT4 resources and services which communicate with each other and the client applications

via their SOAP based web services. So the components can be deployed to already running

GT4 servers (like the frontend of computing resources) or dedicated GT4 containers can

be used.

The security, authentication and authorisation services of GT4 are used to handle the mon-

itoring data of grid users in a secure way. STS, LTS and MDS use grid server certificates

to authenticate and authorise the communication. The authorisation of the user is based on

users grid certificates.

Parts of the infrastructure we use for job centric monitoring are based on AMon [MPNB+06].

It offers visualisation components which are adapted to SLAte. Recording of data is done

by lcg-mon-wn10.

3.3 Exemplification of Scalability

Like already mentioned, one of the major concepts of SLAte is to be scalable with the

demands of users and computing resources. Therefore additional servers can be installed

in the three layers. In Figure 2 an example is shown how additional servers are added to

increase the performance of SLAte.

Expansion stage 1 shows a minimal installation with one STS, one LTS and one MDS

server for one computing resource. These servers are able to handle even more than one

computing resource on the same site and additional users (expansion stage 2).

Additional computing resources on other sites require an additional STS server to buffer

the monitoring data sent in small packages to the STS server. This configuration is shown

as expansion stage 3 (Figure 2).

An additional LTS server adds storage capacity and a network link11 which can be used to

handle more STS servers with additional computing resources. This is shown by expansion

stage 4.

Expansion stage 5 adds a MDS server to handle the search requests of an increased user

group. In Figure 2 two distinct user groups are shown. If it is not possible to establish

distinct user groups load balancing can be implemented with tools like pound12.

10http://tu-dresden.de/die_tu_dresden/zentrale_einrichtungen/zih/

forschung/grid_computing/amon/index_html
11A network link is added if the new LTS server is deployed on a new location.
12http://www.apsis.ch/pound/
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Figure 2: Example of different expansion states of a SLAte installation to handle different amount
of users and resources to monitor.

4 Analysis of Scalability

In the following we look into aspects like required storage capacity and network perfor-

mance for the servers in the three layers of SLAte. We show which criteria influence these

aspects in particular the installation of additional servers.

For the analysis we consider a completely symmetrical installation. Every server in a layer

has the same performance and each STS server has to handle the same amount of monitor-

ing data. Thus, an STS server represents a computing resource and the load is caused by

its job centric monitoring data. As a consequence the number of STS servers defines the

overall amount of monitoring data which has to be handled by the SLAte infrastructure.

The jobs are also considered as uniform and constant in computing time, measurement

interval for monitoring and are equally distributed over the computing resources.

These assumptions are simplifications which only partially reflect the reality. But they

ease the scalability analysis of the concepts used by the SLAte infrastructure. In future

work we have to test and to verify them in a real installation.

4.1 Storage Capacity

The monitoring data are recorded on computing resources. They consist of the monitoring

data and metadata. The amount of metadata kS meta is about constant. The monitoring

data per job depends on the runtime of a job (tjob), the amount of monitoring data collected
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on an single measurement (Ssingle) and the interval (tsingle) between two measurements13.

Due to the uniform jobs, these parameters are fixed and the amount of monitoring data is

constant where tjob/tsingle is the number of measurements per job.

kS mon = Ssingle ·
tjob

tsingle
(1)

On an STS server the monitoring data and the according metadata are stored (SSTS) as

long as the job is running. Afterwards the data is moved to an LTS server. Assuming

the worst case scenario that all jobs start and stop at the same time, the storage capability

depends on the amount of monitoring data and metadata and on the number of jobs (njobs)

the STS server has to handle:

SSTS = njobs · (kS mon + kS meta) (2)

Each STS server sends its data to an LTS server. Thus the data stored on an LTS server

depend on the number of STS servers copying data to it (nSTS), the data stored on one

STS server (equation 2), the time interval the data is stored on an STS server (which is the

runtime of a job) and the time the data should be hold on the LTS servers14 (thold) which

is defined by the configuration of the LTS server:

SLTS = nSTS · njobs · (kS mon + kS meta) ·
thold

tjob
(3)

The amount of metadata, stored on a MDS server can be calculated similar to the metadata

stored on an LTS server. Instead of monitoring data and metadata only metadata have to

be considered but the information of all STS servers (nall STS) is stored.

SMDS = nall STS · njobs · (kS meta) ·
thold

tjob
(4)

Before we start to interpret equation 2, 3 and 4 the number of STS servers per MDS server

is replaced with nSTS = nall STS/nall LTS where nall LTS is the number of all LTS

servers. Also the amount of metadata is replaced with its fraction to the monitoring data

kmon meta (kS meta = kS mon · kmon meta).

SSTS = njobs · (kS mon (1 + kmon meta)) (5)

SLTS =
nall STS

nall LTS

· njobs · (kS mon + (1 + kmon meta)) ·
thold

tjob
(6)

SMDS = nall STS · njobs · (kS mon · kmon meta) ·
thold

tjob
(7)

13We assume that the measurements are done in constant time intervals. This simplifies the considerations.

For more complex interval distribution it is possible to use the minimum or mean time between measurements.
14After some time (weeks or month) the monitoring information is considered as outdated and is removed

automatically from the LTS servers
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By considering that the amount of monitoring data is much larger then the metadata

(kS mon � kmon meta) and by combining constants (thold/tjob = k1) we get to the

following approximations:

SSTS ≈ njobs · kS mon (8)

SLTS ≈
nall STS

nall LTS

· SSTS · k1 (9)

SMDS ≈ nall STS · SSTS · kmon meta · k1 (10)

These formulas show how storage capacity relates to different aspects. In (8) we see that

the needed capacity is proportional to the number of jobs which send monitoring data to

an STS server.

The amount of data on an LTS server is proportional to the needed storage on an STS

server15 and can be lowered by increasing the number of LTS servers.

In opposite to the servers in the other layers, the needed capacity of the MDS server can

not be decreased by installing additional servers (according to (10)). An important impact

has kmon meta. It gives the fraction of metadata to monitoring data and is quite small

(about 0.01 to 0.001). This gives a clear limitation because an MDS server has to be able

to store all metadata. On other hand we expect that we can handle this limit and do not

need to come up with an architecture overcoming this issue.

4.2 Network Capacity for Storing Monitoring Data

In this section we analyse the network capacities needed. Depending on how the network

is used we have to consider factors which reflect this. If packages of reasonable size are

transferred we expect nearly the maximum network speed. If small packages are used we

have to consider a slowdown of kN slow. This is the case for the input network capacity

of the STS servers (NSTS in) where k2 is a combination of other constant values:

NSTS in = kN slow ·
njobs

tjob
· (kS mon + kS meta) = kN slow · k2 (11)

For the output of an STS server the data is repacked to avoid a slow down of the network.

The amount of data to be transferred is the same as for the input.

NSTS out =
njobs

tjob
· (kS mon + kS meta) = k2 (12)

An LTS server receives data of multiple STS servers (where nall STS/nall LTS is the

number of STS servers sending data to one LTS server)

NLTS in =
nall STS

nall LTS

·NSTS out =
nall STS

nall LTS

· k2 (13)

15The factor k1 depends on how long the information is stored and can be expected in the range from 10 to

1000.
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and sends the metadata to each MDS server.

NLTS out = nall MDS ·
nall STS

nall LTS

· k2 ·
kmon meta

1− kmon meta

(14)

Based on the fact that kmon meta � 1 and kmon meta > 0 (metadata is small in compari-

son to monitoring data) we get to a approximation:

NLTS out ≈ nall MDS ·
nall STS

nall LTS

· k2 · kmon meta (15)

A MDS server (NMDS in) gets input from all LTS servers. For easier interpretation we

used the same relations like for (15).

NMDS in = nall STS · k2 ·
kmon meta

1− kmon meta

≈ nall STS · k2 · kmon meta (16)

Equations (11) and (12) show us that the network load on the STS server is bound by

the resource to monitor (k2) and that input is the more limiting factor. This aspect is

represented by kN slow.

Additional LTS server lower the network demands per server of this layer. This is shown

by (13) and (15).

For the MDS server we see similar limitations like for the required storage capacity. We

have the factor kmon meta which reduces the transfer rate, because we only transfer meta-

data but the network utilisation raises with the overall amount of data delivered through

STS servers. Thus, this aspect does not scale.

4.3 Network Capacity for Accessing Monitoring Data

Before the monitoring data can be read they have to be found. Therefore the MDS server

is requested by the user to find relevant job monitoring data. Afterwards the data are read

from the LTS servers.

The search requests are partitioned over all MDS servers and occur every tsearch. The

requests consist of kS search data which is about the amount of metadata. The answer is

a list of nfound jobs found represented by their metadata kS meta. With these parameters

the resulting network load on the MDS server NMDS access can be calculated:

NMDS access =
kS search + nfound · kS meta

nall MDS · tsearch
(17)

NMDS access ≈
kmon meta · kS mon · (nfound + 1)

nall MDS · tsearch
=

kS mon meta

nall MDS

· k3 (18)

Where k3 is defined as k3 =
kS mon·(nfound+1)

tsearch
.
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On the LTS server the monitoring data kS mon and the metadata kS meta are requested.

This happens every tsearch for nfound jobs. Assuming that these data are equally dis-

tributed over all LTS servers, the network load on all LTS servers (NLTS access) is equal.

NLTS access =
(kS mon + kS meta) · nfound

nall LTS · tsearch
(19)

Considering that kS mon � kmon meta and that each search delivers a huge amount of

found jobs (nfound � 1) we can approximate the network load to:

NLTS access ≈
1

nall LTS

· k3 (20)

Additional MDS or LTS servers reduce the load per server (according to (18) and (20)).

The factor kS mon meta in (18) which is not present in (20) shows that the number of

needed MDS servers is lower than the amount of LTS servers.

5 Conclusions and Outlook

We have shown a concept which handles job centric monitoring data in a distributed in-

frastructure with an uniform access layer. It distinguishes between monitoring data and

their metadata. The concept and the idea to take different network infrastructures into

account (within a site and between sites) by organising the servers in different layers is

implemented by SLAte.

Handling monitoring data in a distributed way allows scalability in terms of storing capac-

ity and network bandwidth by increasing the number of STS and LTS servers.

Implementing an uniform view to all monitoring data by using MDS servers which hold

all metadata tends to bottlenecks. This is due to the fact that metadata of all monitored jobs

are stored on each MDS server. But the amount of meta data per job is significantly lower

in comparison to the monitoring data. This allows us to drive even huge installations.

A possible strategy to overcome the limitations of the MDS is a distributed search strategy.

Therefore a component is needed which delegates a search request to all LTS servers and

combines the results of the search. Such a component could replace the MDS servers

without the need to change LTS and STS. The disadvantage of this strategy is an increased

response time caused by the additional steps in the request handling and by the time to

wait for the slowest LTS server.

A further topic of our scientific research is the visualisation and analysis of job centric

monitoring data. Currently, we use AMon to e.g., display single jobs or to compare jobs

by colour coded bars. To support the users in the monitoring our ongoing work is on the

detection of abnormal job behaviour by an automatic analysis and comparison of multiple

jobs.
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Abstract: A fundamental step in the analysis of a massive graph is to compute its di-
ameter. In the RAM model, the diameter of a connected undirected unweighted graph
can be efficiently 2-approximated using a Breadth-First Search (BFS) traversal from an
arbitrary node. However, if the graph is stored on disk, even an external memory BFS
traversal is prohibitive, owing to the large number of I/Os it incurs. Meyer [Mey08]
proposed a parametrized algorithm to compute an approximation of graph diameter
with fewer I/Os than that required for exact BFS traversal of the graph. The approach
is based on growing clusters around randomly chosen vertices ‘in parallel’ until their
fringes meet. We present an implementation of this algorithm and compare it with
some simple heuristics and external-memory BFS in order to determine the trade-off
between the approximation ratio and running-time achievable in practice. Our experi-
ments show that with carefully chosen parameters, the new approach is indeed capable
to produce surprisingly good diameter approximations in shorter time. We also con-
firm experimentally, that there are graph-classes where the parametrized approach runs
into bad approximation ratios just as the theoretical analysis in [Mey08] suggests.

1 Introduction

Massive graphs arise naturally in many applications. Social network graphs or the WWW
graph have implicitly become part of our daily life. A whole branch of computer sci-
ence deals with network analysis [BE05]. A fundamental step in the analysis of a mas-
sive graph is to compute its diameter: In this paper, we consider connected undirected
unweighted large sparse graphs G(V,E) where n = |V | and m = |E|. The distance
d(u, v) between two nodes u, v ∈ V is the number of edges in the shortest path con-
necting u and v. The eccentricity of a node v is defined as ecc(v) = maxu d(v, u).
Finally, D = maxu,v d(u, v) = maxv ecc(v) is called the diameter of G. We are partic-
ularly interested in the case when G is sparse (m = O(n)) but nevertheless too big to fit
into the main memory of a single computing device. In that setting the typical strategies
are: (i) to distribute the data over many computers and apply parallel algorithms (e. g.,
see [BM08, MEJ+09]) and/or (ii) store the data on secondary memory like hard disks or
flash memory. In this paper we will concentrate on practically feasible diameter approxi-
mation algorithms for the latter (external memory) approach.

∗Partially supported by the DFG grant ME 3250/1-3, and by MADALGO – Center for Massive Data Algo-
rithmics, a Center of the Danish National Research Foundation.
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External memory model: The huge difference in time between accessing an element
from the main memory and fetching an element from the disk is nicely captured by the ex-
ternal memory (EM) model (sometimes also called the I/O model), which was introduced
by Aggarwal and Vitter [AV88]. It assumes a two level memory hierarchy. The internal
memory is fast, but has a limited size of M elements (nodes/edges). In addition, there
is an external memory which can only be accessed using I/Os that move B contiguous
elements between internal and external memory. At any particular time, the computation
can only use the data already present in the internal memory. The measure of performance
of an algorithm is the number of I/Os it performs – the less I/Os the algorithm requires,
the better it is. The number of I/Os required to scan n contiguously stored elements in
the external memory is scan(n) = O(n/B) and the number of I/Os required for sort-
ing n elements is sort(n) = O( n

B logM/B n/B). For realistic values of B, M and n,
scan(n) < sort(n) � n and the goal of designing external memory algorithms is often
to reduce the I/O complexity from O(n) to O(sort(n)). Further discussions on realistic
models for computing on large data can be found in a recent survey article by Ajwani and
Meyerhenke [AM10].

Outline: Section 2 presents an overview of various algorithms and heuristics designed
in recent years to compute the exact or approximate diameter including the approaches
implemented in this project. Section 3 provides some implementation details. The experi-
mental results are detailed in Section 4 and we conclude in Section 5.

2 Related Work

The problem of computing the diameter of large graphs, particularly for complex net-
works, has received considerable attention lately, both from an algorithmic and empirical
point of view. For the exact computation of diameters in unweighted undirected graphs,
breadth-first search (BFS) can be executed from all nodes of the graph and the longest
height of a BFS tree is reported as the diameter. Doing so naively requires O(n2+mn) op-
erations. However, the method can be improved by logarithmic factors (e. g., [Cha06]) in
the standard RAM model with logarithmic word size. There are also algebraic approaches
for computing all pairs breadth-first search (AP-BFS) based on matrix-multiplication based
algorithm (e. g., [Sei95]). But the exact diameter computation based on either combinato-
rial or algebraic approaches remains computationally expensive and impractical for mas-
sive sparse graphs. Even the recent result by Peres et al. [PSSZ10] who gave an O(n2)
algorithm for computing all-pair shortest path with high probability is infeasible for such
graphs.

Internal-Memory Small-Factor Approximations

As the exact computation of diameters for massive sparse graphs seems impractical, ap-
proximation algorithms and heuristics have received attention lately. In the following we
review some strategies that rely on the fact that a rather small number of BFS computations
can easily be afforded as long as the input graph fits into internal memory.
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The trivial bounds: It is folklore that already a single BFS run rooted at an arbitrary
source r yields trivial lower and upper bounds on the diameter: ecc(r) ≤ D ≤ 2 · ecc(r).
Obviously, the choice of r determines which of these bounds is tight (if any). The ap-
proximation can be improved by performing k BFS explorations from k carefully chosen
starting points [BFLO06]: in that case the additive error drops to O(n/k) at the cost of
increased running time (for k BFS runs).

The double sweep heuristic: In practice the trivial lower bound based on a BFS run with
some random source r can frequently be improved significantly by just one additional BFS
run from some source v
 satisfying d(r, v
) = ecc(r) and reporting the bound d(v
, v

) =
ecc(v
) for some node v

 with maximal depth in the BFS tree for source v
. This technique
is also called the double sweep method (e. g., see [CDHP01, MLH09]). On certain graph
classes including trees the double sweep method even guarantees to yield a tight lower
bound on the diameter [CDHP01]. On general graphs, the double sweep lower bound
will at least not be worse than the trivial one. In addition, the double sweep method
can be iterated for different sources but then previously applied sources for the respective
second BFS runs should not be reused. The double sweep lower bound can also be used to
yield improved upper bounds on the diameter of these BFS trees since it is able to derive
the exact diameter of a tree (and hence also of a BFS tree) as mentioned above. Again
iterating over several carefully chosen BFS trees may strengthen the upper bound even
further. Observe, however, that there are graph classes (like rings) where any BFS tree
of those graphs has a larger diameter than the respective original graph (up to a factor of
two).

The fringe heuristic: As long as the input graph fits into main memory, the name of the
game is to find matching upper and lower bounds for many graph classes while investing as
few BFS traversals as possible. To the best of our knowledge, the most efficient approach
of this kind is the fringe heuristic by Crescenzi et al. [CGI+10]. For some vertex u, the
fringe of u, denoted F (u), is set of all vertices v ∈ V such that d(u, v) = ecc(u). The
fringe heuristic uses the double sweep method to find a lower bound on the diameter and
computes an upper bound on the diameter as follows:

1. Let r, v
, and v

 be the vertices identified by double sweep method.
2. Find the vertex u that is halfway along the path connecting v
 and v

 inside the BFS-
tree rooted at v
.
3. Compute the BFS tree for source u and its eccentricity ecc(u).
4. If |F (u)| > 1, find the BFS trees for all sources z ∈ F (u), and compute B(u) =
maxz∈F (u) ecc(z):

– If B(u) = 2 · ecc(u)− 1, return 2 · ecc(u)− 1.
– If B(u) < 2 · ecc(u)− 1, return 2 · ecc(u)− 2.

5. Return the diameter of the BFS tree rooted at u.

It is shown in [CGI+10] that the fringe algorithm correctly computes an upper bound on
the diameter using at most |F (u)|+3 BFS traversals. While |F (u)| = Ω(|V |) in the worst
case, Crescenzi et al. demonstrate that |F (u)| is often rather small (less than 20) for real
world graphs. Additionally, for nearly all tested cases in [CGI+10] the fringe heuristic
produced matching lower and upper bounds.
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External-Memory Approaches

There has been a significant number of publications on external-memory graph algo-
rithms; see [MSSE03, Vit06] for recent overviews. Exact computation of the diame-
ter on unweighted undirected graphs (via All-Pairs Shortest-Paths, APSP) has been ad-
dressed in [AMT04, CR05]: both approaches require Θ(n · sort(n)) I/Os for sparse
graphs. Taking into account that current machines easily feature several gigabytes of
RAM, in the external-memory setting where n > M 
 B, an algorithm spending
Θ(n · n/B) = Ω(n2/B) I/Os is practically useless.

Small-factor approximations: Chowdhury and Ramachandran [CR05] also gave an al-
gorithm for computing approximate all-pairs shortest-paths with additive error. However,
their approach only takes less I/O than exact EM APSP when m ≥ n log n, which is not
the sparse graph case we are interested in, and even then the I/O volume is huge.
Of course, the simple BFS-based RAM approximation approaches discussed above can be
implemented in external-memory using EM BFS. However, even for the trivial 2-approxi-
mation this takes Ω(n/

√
B) I/Os in the worst-case [MM02]. What this means in practice

will be discussed in Section 4.

Parametrized approximations: In the following, we review a recent parametrized ap-
proach by Meyer [Mey08] to trade approximation quality with sub-BFS I/O time, which
we will also experimentally evaluate in Section 4. The problem of computing an approx-
imate diameter of the input graph G (with n nodes and m edges) is reduced to that of
computing exact shortest paths on a weighted graph G
 with O(n/k) nodes and O(m)
edges. Graph G
 is computed using a static external memory BFS [MM02] like prepro-
cessing as follows: We first choose each node to be a master node with a probability 1/k.
Additionally, we select every k-th node in the Euler-tour traversal around an arbitrary span-
ning tree of G, to also be a master node. Thereafter, we grow the clusters “in parallel”. In
each round, each master node tries to capture all unvisited neighbors of the current cluster.
This is done by first sorting the nodes at the fringes of the clusters and then scanning the
adjacency-lists of the nodes in the yet unexplored graph. Ties are broken arbitrarily.
Let C(u) be the cluster containing u. An edge {u, v} ∈ G results in an edge {C(u), C(v)} ∈
G
 if C(u) �= C(v). The weight of the created edge {C(u), C(v)} is dc(u) + 1 + dc(v),
where dc(u) is the distance of u from its cluster center. We remove the parallel edges by
keeping only the lightest edge between C(u) and C(v). We run single source shortest path
(SSSP) from an arbitrary node s in G
 and output the maximum distance from s to any
other node in G
. Note that this is a constant-factor approximation to the weighted diam-
eter of G
. Meyer [Mey08] showed that the expected weighted diameter of G
 satisfies
DG� = O(

√
k ·DG).

Since each k-th node on the Euler tour is a master node, each node u ∈ G is at most dis-
tance k away from a master node and the clusters are grown for at most k rounds. As each
cluster growing round requires O(scan(m)) I/Os to scan the adjacency lists of unexplored
graph and each node appears only once as a fringe node of some cluster leading to a total
of O(sort(n)) I/Os, the total complexity of computing G
 is O(k ·scan(n+m)+sort(n+
m)+ST (n,m)) I/Os, where ST (n,m) is the I/O complexity of computing a spanning tree
of an n node and m edge undirected graph: O(sort(n +m)) I/Os randomized [ABW02]
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and O(sort(n) log log n·B
m ) I/Os with a deterministic spanning tree algorithm [ABT04].

Computing single source shortest path on a graph with O(n/k) nodes and O(m) edges
with the ratio between maximum and minimum edge weight being k requires
O(

�
n·m
k·B log2 k + sort(n+m) + ST (n,m)) I/Os [MZ03]. The total I/O complexity for

this algorithm is thus O(
�
(n·mk·B log2 k+k ·scan(n+m)+sort(n+m)+ST (n,m)) I/Os.

Spanning tree heuristics: While the parametrized approximation discussed above still
offers some (expected) approximation guarantees one might also go to the extreme: omit
any kind of guarantee and just rely on an I/O-efficient heuristic. While (at least in theory)
BFS computations on sparse graphs tend to spend much more I/O than spanning tree com-
putations it is natural to ask if one could use a spanning tree rather than a BFS traversal for
approximating the diameter. Unfortunately, the diameter of a spanning tree can be very far
from the diameter of the graph. For instance, consider a cycle graph u1 . . . un−1 of n− 1
nodes and edges and a special node s with edges to all nodes of the cycle. The diameter
of a spanning tree {s, u1}, {u1, u2}, . . . , {un−1, un} is n − 1 while the diameter of the
original graph is 2. Unfortunately, even the diameter of a random spanning tree can be
very far away from the diameter of the graph. For instance, Rényi and Szekeres [RS67]
showed that the expected diameter of a random spanning tree in the complete graph Kn is
O(

√
n).

A simpler way to use randomization in this context is to consider the minimum spanning
tree in the original graph with edge weights assigned independently and uniformly from
the range (0, 1]. However, even the diameter of such a spanning tree can be quite large
compared to the diameter of the graph. Nevertheless, our heuristic based on initial work
by Brudaru [Bru07] takes this spanning tree as the base case and iteratively refines it to
approximate a BFS tree rooted at some arbitrary node s. Let Ti be the spanning tree af-
ter the i-th iteration (minimum spanning tree with random weights being T0) and hi(u)
be the distance of node u from s in Ti. Each iteration consists of carefully selecting the
edges for Ti+1 such that for each node u, hi+1(u) ≤ hi(u) and for at least one node v,
hi+1(v) < hi(v), thus, eventually the sequence T0, T1, . . . , Ti converges to a BFS tree
with root s.

An iteration consists of scanning the list of edges of the original graph and for each node
u, selecting the edge {v, u} such that hi(v) is minimum. This is done independently for
all nodes. Note that although some neighbors of u may have found a shorter path to s in
the course of this iteration, this is completely ignored as using this information naively
may require random I/Os.

3 Implementation details

For our experimental study we implemented or modified three approaches: (i) we mod-
ified the external memory BFS [ADM06] to use double sweep lower bound, (ii) we re-
implemented the spanning tree heuristics from Section 2, and (iii) we engineered a simpli-
fied version of the parametrized approximation algorithm from Section 2. Our C++ code
uses the external memory library STXXL [DKS08] ver. 1.3.1 for algorithms like sorting
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and data structures like priority queues. An additional benefit of using STXXL is the
streaming interface of various algorithms that allows us to make extensive use of pipelin-
ing to save a factor of 2–3 in the total I/O volume.

Implementation of the parametrized approximation: The data structures and graph
generators used in our code are similar to those of BFS implementation of Ajwani et
al. [ADM06]. This was done to ensure better comparison with the external memory BFS
implementations. Also, we use their pipelined randomized clustering implementation in
our approach to compute the clustering of the input graph.
Notwithstanding the theoretical description of the parametrized approximation approach
in [Mey08] and Section 2 we omitted to choose extra masters deterministically and only
rely on the randomly chosen master vertices. We then create a condensed graph based on
this clustering using a constant number of sorting and scanning rounds. If the condensed
graph fits internally, we use an internal memory SSSP sub-routine that we implemented
using STL. Otherwise, we use our adaptation of the semi-external memory SSSP sub-
routine by Meyer and Osipov [MO09], SE SSSP for short, to compute the diameter of
the weighted condensed graph. Note that this code requires at least one bit per vertex of
the condensed graph in internal memory and also drops strict performance guarantees for
non-random edge weights, which occur in our application. We refer to our implementation
of the parameterized approximation algorithm as PAR APPROX.
Both SSSP-subroutines (internal or semi-external) apply the double sweep lower bound
ideas [MLH09] to find a source which guarantees reasonable values for the resulting di-
ameter.

Implementation of the spanning tree heuristics: In her original work [Bru07], Brudaru
implemented these heuristics in internal memory using the LEDA library and also created
an external memory prototype. We re-implemented the heuristics to maximally utilize the
pipelining and other features offered by STXXL.

4 Experimental results

The goal of our experiments is (i) to determine the trade-off between approximation quality
and running time (dominated by I/Os) and (ii) to ascertain if the diameter for massive
sparse graphs can be computed in a reasonable time (e. g. overnight running on a standard
desktop PC). Our hope is that the insights learned during these experiments will assist a
practitioner to determine the right technique for computing the diameter of a given graph.

Graph classes: We chose three different graph classes: one real-world graph with log-
arithmic diameter and two synthetic graph classes with diameter Θ(

√
n) and Θ(n). The

real-world graph sk-2005 has around 50 million vertices, about 1.8 billion edges and is
based on a web-crawl. It was selected for better comparison with DSLB UP BOUND of
Crescenzi et al. [CGI+10] and because it has a known diameter of 40.
The synthetic x-level graphs are similar to the B-level random graphs in [ADM06]. The
graph consists of x levels, each having n

x vertices (except for level 0 which contains only
one vertex). The edges are randomly distributed between consecutive levels, such that
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these x levels approximate the BFS levels if BFS were performed from the source vertex
in level 0. We selected x =

√
n and x = Θ(n) to generate

√
n and Θ(n)-level graphs with

228 vertices and around 1 billion edges for our experiments. The generated graphs have
1,127,310,556 edges (

√
n-level graph) and 903,876,452 (Θ(n)-level graph).

To elicit the worst-case approximation ratio from the PAR APPROX approach, we also
generated another graph from a class with three parameters: k1, k2 and k3 satisfying
n = k3 · (k1 + k2). It consists of a list of length k3. There are k3 node-disjoint lists
of length k1 incident on each vertex of the original list (of size k3). Each of the k3 lists
have a fan-out of k2 at the other end. The main idea behind this graph class is as follows:
for appropriately chosen kj values, there are most masters of PAR APPROX in the fans
and only few masters in the lists so that many clusters meet with large edge weights at the
original list of length k3, thus blowing up the weighted diameter of the condensed graph
significantly.
We randomize the layout of the synthetic graphs on the disk to ensure that the disk layout
does not reveal any additional information that is exploitable. However, we use the order-
ing provided with sk-2005 graph for fair comparison with results reported in the literature.

Configuration: We performed our experiments on two different architectures.
(i) To determine the behavior of different techniques in an external memory setting, we
used a machine with an Intel dual core E6750 processor @ 2.66 GHz, 4 GB internal mem-
ory (around 3.5 GB free), 4 hard-disks with 500 GB each as external memory for STXXL,
and a separate disk for the operating system, application and storing data, logfiles etc. The
operation system was Debian GNU/Linux amd64 ‘wheezy’ (testing) with kernel 3.0. The
programs were compiled with GCC 4.4 in C++0x mode using optimization level 3.
(ii) For running the heuristics of Crescenzi et al. [CGI+10] in internal memory, we used a
machine (part of the HPC cluster at Goethe University) with 4 quad-core AMD OpteronTM

processor 8384 @ 2.7 GHz (only one core was used) and 64 GB internal memory. Note
that the purpose of these experiments is to determine the quality of approximation with
their approach and to ascertain if it can be matched in an external memory setting. The
running time of an approach on this machine is no indication of the running time in an
external memory setting.

Selecting the correct number of master vertices for PAR APPROX: Theoretically, as
we increase the number of master vertices, the maximum distance d between them should
decrease. This should help to reduce the running time of the clustering phase and improve
the approximation quality (as the condensed graph better captures the structure of the orig-
inal graph and the factor 2 · d added to the calculated diameter is low). The penalty paid
for this is the increased I/O time for external memory SSSP. Varying the number of master
vertices gives a trade-off between approximation ratio and the running time.
However, most worst-case efficient external memory SSSP approaches are impractically
sophisticated. As such, we have to rely on internal and semi-external memory SSSP
(SE SSSP). This imposes additional constraints on the maximum number of master ver-
tices as for using the internal memory SSSP, the condensed graph should fit internally,
while for using SE SSSP the number of master vertices should be less than the main mem-
ory size in bits.
When using the internal memory SSSP, we would like to choose the largest number of
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master nodes such that the condensed graph fits internally. However, identifying this num-
ber is a non-trivial task because the graph density of the condensed graph depends on the
structure of the input graph. The condensed graph of a random graph is significantly more
dense than the one for a list graph. Therefore, we would like to select the number of master
vertices based on the structure of the graph – fewer master vertices for random graphs than
for Θ(n)-level graphs. However, selecting the number of master vertices on the basis of
graph type requires a priori information about the graph class, which runs contrary to our
objective of analyzing a given graph by determining its diameter.
Thus, we have two alternatives: We can either start with a small (e. g., O(

√
M)) number

of master vertices such that the condensed graph is guaranteed to fit internally. Thereafter,
we can adaptively compute the correct number of master vertices by increasing the number
if the running time for the clustering is too high (and aborting and redoing the run with
the new number) or by decreasing the number if the resultant condensed graph does not fit
internally.
The other alternative is to choose a large number of master vertices and use SE SSSP on
the condensed graph. This is almost always faster than EM BFS DSLB. We can then re-
duce the number of master vertices to get a trade-off between approximation quality and
runtime. We have used both of these alternatives in our experimental study.

Results: First we present the results of three different approaches: External memory BFS
with double sweep lower bound (EM BFS DSLB), the spanning tree heuristic (SPAN) and
the fringe approach from Crescenzi et al. with dslb method [CGI+10] (DSLB UP BOUND).
The external BFS and the internal DSLB UP BOUND showed similar results. For sk-2005
we got a lower bound of 39 instead of 40. With a second experiment with a different care-
fully chosen source we have found the lower bound of 40, too.
For DSLB UP BOUND, we used ten iterations in one experiment. The other applications
we executed with only one iteration.
The results of the SPAN heuristic were not that close to the real diameter and have a
taller spread. The numbers in Table 1 are the resulting heights of the trees multiplied
with factor of two as an upper bound. We do not report the detailed running times of

EM BFS DSLB SPAN DSLB UP BOUND
sk-2005 39 60 40√

n-level graph 16,385 46,262 16,385
Θ(n)-level graph 67,108,864 86,488,096 67,108,864

worst case for PAR APPROX 2,440,341 3982472 2,440,341

Table 1: Diameters approximated by various approaches. Exact diameters are marked in boldface.

DSLB UP BOUND, since it was only executed on the big 64 GB internal memory ma-
chine and was merely used to get hold of the exact diameters. As can be seen in Table 2, the
SPAN heuristic was often slower than EM BFS DSLB. Only for the

√
n-level graph we

obtained a better running time behavior. In correspondence with the results in [ADM06],
graphs sk-2005 (with a low diameter) and Θ(n)-level (which is similar to a single chain)
are easier for external BFS than the

√
n-level graph (which shares some characteristics

with grid graphs).

Results for the PAR APPROX implementation: To learn more about the behavior of
our new approach we ran a couple of different test scenarios. In Table 3 we report on the
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EM BFS DSLB SPAN
sk-2005 5.27 7.65√

n-level graph 10.64 7.74
Θ(n)-level graph 4.75 4.81

worst case for PAR APPROX 1.66 3.34

Table 2: Running times (in hours) for EM BFS DSLB and SPAN.

results when the condensed graph G
 fits into internal memory. The running times are
dominated by the clustering. The internal-memory SSSP for G
 usually took only a few
seconds.
As for sk-2005, PAR APPROX was up to 10 times faster than EM BFS DSLB and SPAN.
Interestingly, the best approximation guarantee (42 vs. 40 exact) was obtained for small
numbers of master nodes. Running time and approximation deteriorate with more mas-
ters. We verified this phenomenon on the machine with 64 GB internal memory and more
samples. When between ten and twenty percent of the original graph nodes are chosen
as master vertices for sk-2005, there is a point where the approximation bound improves
again. We saw this behavior more or less pronounced for other real world graphs tested
in [CGI+10], too.
The results for the Θ(

√
n)-level graph showed just the opposite trend: best running times

(up to 12 times faster than EM BFS DSLB) and approximation bounds (only 0.14 % away
from the exact diameter but nearly three times better than SPAN) were obtained for the
largest possible number of masters.
While for graphs with smaller diameter like sk-2005 a small number of master vertices
like 214 produces good running times, for the Θ(n)-level graph applying too few master
nodes would be dangerous: with a diameter of over 900 millions and only 214 master
nodes, more than 50,000 phases of the parallel cluster growing would be needed. The
estimated time for this clustering is around a month. Fortunately, the condensed graph G


from Θ(n)-level graph is rather small even for a high number of master vertices: G
 fits
into internal memory on a 4 GB machine until 225 master vertices. While the approxima-
tion guarantee is still within 1 %, the running time gain for 224 masters is only a factor of
four.
Expectedly bad approximations bounds could be identified for our worst-case graph, es-
pecially with parameters k1 = 10 and k2 = 100 for n = 228, resulting in a diameter of
about 2.44 million for n = 228. With 220 master nodes, the PAR APPROX overestimated
the real diameter by more than a factor of five.

As can be seen in Table 3 for high diameter graph classes we need – and can afford –
a lot of master vertices, but for Θ(

√
n)-level inputs or Θ(n)-level inputs the resulting

condensed graphs are too dense to be used in internal memory. Hence, we tested the
behavior of PAR APPROX for three different numbers of master vertices with SE SSSP.
The results in Table 4 show that also with SE SSSP as a subroutine PAR APPROX is
faster than EM BFS DSLB but not very much. Nevertheless, what is also important, the
resulting diameters are still very close to the real diameters.

PAR APPROX vs. SPAN vs. EM BFS DSLB: If the quality of the diameter approxi-
mation is most important then EM BFS DSLB could be the first choice. EM BFS DSLB
produced reasonable results for all three graph classes sk-2005, Θ(

√
n)-level, and Θ(n)
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masters ∼ 28 ∼ 210 ∼ 212 ∼ 214 ∼ 216 ∼ 218 ∼ 220 ∼ 222 ∼ 224

sk-2005
computed approx. diameter 42 51 68 79 106 113 98 119

approximation ratio 1.05 1.28 1.70 1.98 2.65 2.83 2.45 2.98
time [h] 0.46 0.51 0.62 0.68 0.73 0.76 0.78 0.77

d 12 13 17 17 17 22 18 16√
n-level

computed approx. diameter 16,836 16,519 16,413 16,409 16,408
approximation ratio 1.0275 1.0082 1.0017 1.0015 1.0014

time [h] 4.29 1.30 0.87 0.87 0.85
d 156 35 15 13 12

Θ(n)-level
diameter 67,118,479 67,128,342 67,233,297 67,717,702

approx. ratio 1.00014 1.00029 1.00185 1.00907
time [h] 41.60 12.33 3.68 1.26

d 3444 814 233 60
worst case

computed approx. diameter 3,643,615 6,729,783 13,461,919 11,265,297 4,399,657
approximation ratio 1.49 2.76 5.52 4.62 1.80

time [h] 5.12 1.87 0.92 0.73 0.58
d 449 144 50 28 22

Table 3: Results of PAR APPROX for different numbers of master vertices, when the condensed
graph fits into internal memory. d is the maximum distance between two master vertices.

masters ∼ 222 ∼ 224 ∼ 226

sk-2005
computed approx. diameter 119 90

approximation ratio 2.98 2.25
time [h] 1.09 (0.32) 2.78 (1.73)

d 16 13
vertices in G� 4,193,085 16,774,091
edges in G� 58,008,681 298,868,555√
n-level graph

computed approx. diameter 16,407 16,403 16,401
approximation ratio 1.0013 1.0011 1.0010

time [h] 6.96 (5.51) 8.38 (6.80) 9.41 (7.72)
d 10 8 7

vertices in G� 4,195,701 16,774,408 67,105,247
edges in G� 702,067,655 858,741,691 924,712,355

Θ(n)-level graph
computed approx. diameter 67,233,297 67,717,702 67,515,826

approximation ratio 1.00185 1.00907 1.00606
time [h] 3.94 (0.06) 1.6 (0.29) 2.47 (1.68)

d 233 60 16
vertices in G� 4,195,701 16,774,408 67,105,247
edges in G� 4,305,371 21,392,325 155,525,706

Table 4: Results of PAR APPROX with semi-external SSSP. The running times for SE SSSP (times
for clustering with BFS Phase I, sending weights to edges, 2 x SSSP) are reported in brackets.

level. It would have done so for the (k1, k2, k3) worst-case graph too, since that graph is
just a tree. But if the running time is also important then rather PAR APPROX should be
chosen. It is faster than EM BFS DSLB in each tested case (sometimes more than a factor
of ten) and its diameter approximation for each graph class was typically rather close – ex-
cept for the carefully constructed worst-case graph. The spanning tree heuristic, however,
could not convince in this test.
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5 Conclusion

Our experiments have shown that the parametrized diameter approximation method is in
fact faster than plain external-memory BFS and typically produces much better approxima-
tion bounds than the theory predicts. Nevertheless, it turns out that it is currently not suited
as a section guide between different BFS approaches: as soon as the condensed graph does
not fit into main memory, the overhead to run the semi-external memory SSSP is not worth
the subsequent savings of a carefully chosen BFS approach. In fact, this is mostly a prob-
lem of the current interface in our SE SSSP implementation, which causes some extra
sorting steps for data conversion. For the future we plan to improve the SE SSSP code in
order to avoid these losses.
We are also interested in more sophisticated methods to condense the input graph. Cur-
rently, more master vertices speed-up the reduction time but result in a condensed graph
that typically does not fit into main-memory, thus causing more I/O for the subsequent
SSSP. Hierarchical clustering seems to be the natural choice but as the condensed graphs
become weighted already after the first round, the parallel cluster growing of the next
rounds needs to appropriately handle these weights, too. Currently, this step relies on the
fact that the edges are unweighted.
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Abstract: We investigate the relation between the spectral sets (i. e., the sets of eigen-
values, disregarding multiplicities) of two d-dimensional networks popular in parallel
computing: the Cube-Connected Cycles network CCC(d) and the Shuffle-Exchange
network SE(d). We completely characterize their spectral sets. Additionally, it turns
out that for any odd d, the SE(d)-eigenvalues set is precisely the same as the CCC(d)-
eigenvalues set. For any even d, however, the SE(d)-eigenvalues form a proper subset
of the set of CCC(d)-eigenvalues.

1 Introduction

Background. Popular Hypercubic networks used as parallel machines are the Butterfly
network, the Cube-Connected Cycles network, the Shuffle-Exchange network and the De-
Bruijn network. For a collection of their properties and many algorithms for them, see,
e. g., [Lei92]. In particular, these constant-degree networks are able to execute so-called
normal hypercube algorithms with only constant slowdown if compared to the execution
time on the hypercube which has non-constant degree ([Lei92]).

Among the characteristic parameters of networks, the eigenvalues of their adjacency ma-
trices are very important (e. g., see [CDS95, Chu97, BK05] for comprehensive studies).
They reflect many structural properties of the network. For instance, from the eigenvalues
it can immediately be decided whether the network is bipartite (see Proposition 4 below).
Expansion properties, bisection problems, the mixing time of Markov chains and the com-
putation of the isoperimetric number [DT98, Bül97] are fields of application of eigenvalues
in algorithmic graph theory.

In the area of parallel computing, there is a direct connection between the eigenvalues
and the routing number [ACG94]. Further applications can be found in the analysis of
parallel load-balancing algorithms [RSW98] and in the design of interconnection net-
works [EKM03].

The set of eigenvalues is called the spectral set. In the spectrum of a graph, additionally the
multiplicities of the eigenvalues are considered. For formal definitions, see Subsec. 2.2.
Previously, only the full spectral sets of the DeBruijn network [DT98] and the two variants
of the Butterfly network [EKM03, Sch01] have been known.
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New results. In this paper, we exactly characterize the spectral sets of the Cube-Con-
nected Cycles CCC(d) and the Shuffle-Exchange network SE(d) in terms of the spectra
of cycles with self-loops that have weights from {−1,+1} (see Theorems 1 and 2).

It turns out (see Theorem 3) that for any odd d the set of the SE(d)-eigenvalues is precisely
the same as the set of the CCC(d)-eigenvalues. For any even d, however, the SE(d)-
eigenvalues form a proper subset of the set of CCC(d)-eigenvalues. The odd case is
particularly remarkable because the networks differ in the number of vertices by a factor
of d, and hence, the eigenvalues have different multiplicities. Also, there is no obvious way
of identifying the eigenvalues bijectively. In fact, corresponding eigenvalues can only be
found on scattered cycles of the networks, and a new argument on the involved eigenspaces
is necessary in order to find all CCC(d)-eigenvalues in the eigenvalue set of SE(d), if d is
odd. For an instructive (counter-)example for d = 6, see Sec. 6.

If d is even, −3 that is an eigenvalue of CCC(d) is not an eigenvalue of SE(d). In fact,
when d becomes larger, the size of the difference set increases. Let Δd = |SpS(CCC(d))\
SpS(SE(d))| denote the number of eigenvalues of CCC(d) that are not eigenvalues of
SE(d). In terms of Δd, the result of this paper can be stated as: if d is odd, Δd = 0, and
Δd ≥ 1, if d is even. Explicit computation shows for even d, d ≤ 20:

d 4 6 8 10 12 14 16 18 20
Δd 1 3 1 9 7 42 21 179 160

Known results. We briefly mention some known spectral sets, denoted by SpS(.):

Let L(n1, . . . , nd) denote the d-dimensional n1 × · · · × nd-array. Then

SpS(L(n1, . . . , nd)) =

�
2

d�
i=1

cos
� πji
ni + 1


 ��� 1 ≤ ji ≤ ni for i ∈ {1, . . . , d}
�

.

In the following, Ln := L(n) denotes the linear array of length n.

Let Θ(n1, . . . , nd) denote the d-dimensional n1 × · · · × nd-torus. Then

SpS(Θ(n1, . . . , nd)) =

�
2

d�
i=1

cos
�2πji

ni


 ��� 0 ≤ ji ≤ ni − 1 for i ∈ {1, . . . , d}
�

.

As the adjacency matrices of tori are block-circulant there is a comparatively simple way
to compute their spectra (see Proposition 1 in Subsec. 2.2). In the following, Cn := Θ(n)
denotes the cycle of length n.

Interestingly, the spectral sets of other popular networks can be expressed in terms of linear
arrays Ln and cycles Cn (in the following, a · Mk denotes the product of the adjacency
matrix Mk and the scalar a). For the d-dimensional Butterfly network BF(d) (for proofs,
see [Sch01, EKM03]),

SpS(BF(d)) =
d+1�
k=0

SpS(2Lk) .
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Similarly, for the Butterfly network with wrap-around edges [Sch01, EKM03, CFGM03],
SpS(W-BF(d)) = SpS(2Cd) ∪

�d
k=0 SpS(2Lk). Let DB(D, d) denote the D-ary d-di-

mensional DeBruijn graph. Then (for a proof, see [DT98]),

SpS(DB(D, d)) = SpS(D · C1) ∪
d�

τ=1

SpS(D · Lτ ) .

Organization of paper. The paper is organized as follows: In the next section, we define
the networks to be investigated, give the necessary definitions regarding graph spectra, and
state important properties. In Sections 3 and 4, we exactly characterize the spectra of the
Cube-Connected Cycles network and the Shuffle-Exchange network. In Sec. 5, we prove
that, if d is odd, the sets of eigenvalues are identical, whereas, if d is even, the set of
eigenvalues of SE(d) is a proper subset of the set of eigenvalues of CCC(d). That there
is no simple correspondence between the eigenvalues of CCC(d) and SE(d is exemplified
in Sec. 6.

2 Preliminaries

In this section, we introduce the Cube-Connected Cycles network and the Shuffle-Exchange
network. We present some of their properties, present tools for computing their eigenval-
ues, and introduce some necessary notations.

2.1 CCC(d), SE(d), and Their Properties

The d-dimensional Cube-Connected Cycles network CCC(d) has been introduced by
Preparata and Vuillemin in [PV81]. It is the undirected graph with vertex set V = {(j, a) |
1 ≤ j ≤ d, a ∈ {0, 1}d} and edge set E = {{(j, a), ((j mod d+ 1, a)} | 1 ≤ j ≤ d, a ∈
{0, 1}d} ∪ {{(j, a), (j, a[j])} | 1 ≤ j ≤ d, a = (ad, . . . , aj , . . . , a1) ∈ {0, 1}d, a[j] =
(ad, . . . , 1− aj , . . . , a1)}. CCC(d) has d · 2d vertices and is 3-regular.

The d-dimensional Shuffle-Exchange network SE(d) has been introduced by Stone [Sto71].
It is the undirected graph with vertex set V = {0, 1}d and edge set E = {{a, a[1]} | a ∈
{0, 1}d} ∪ {{a, cyc(a)} | a ∈ {0, 1}d, cyc(ad, . . . , a2, a1) = (a1, ad, . . . , a2)}. The
edges of the first subset are called exchange edges, the edges of the second subset are
called shuffle edges. Here, we also consider multiple shuffle edges such that SE(d) is also
3-regular.

CCC(3) and SE(3) are shown in Fig. 1 and 2, resp. Note the self-loops at vertices 000
and 111 of SE(3) that ensure SE(d) being 3-regular.

Note that for d being even, CCC(d) is bipartite [LPS+98]. The cycles of CCC(d) are
characterized directly by the corresponding sequence a.

Cycles in SE(d) are more complex to describe. Let S be a set of integers. Let a =
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(ak, . . . , a1) ∈ Sk. a is an aperiodic S-sequence if there is no t > 1 and b with a = bt. a is
a Lyndon S-sequence [CFL58] if it is an aperiodic S-sequence and the lexicographically
smallest under all sequences obtained by cyclically shifting a.

The shuffle edges of SE(d) form disjoint shuffle cycles. Every cycle is uniquely charac-
terized by a Lyndon {0, 1}-sequence. In this paper, using the correspondence 0 �→ +1
and 1 �→ −1, we shall say that every shuffle cycle is characterized by a different Lyndon
{−1,+1}-sequence and that every possible Lyndon {−1,+1}-sequence of length k with
k being a divisor of d characterizes a different shuffle cycle.

2.2 Eigenvalues, Spectral Sets, and Computation Tools

Let A be the adjacency matrix of an undirected graph G = (V,E) (with multiple edges
allowed; the entry aij is the number of edges between nodes i and j). In the rest of this
paper, we identify G and A. Let n = |V | denote the number of vertices, and let In
denote the n × n unit matrix. Then the polynomial χ(A; z) = det(z · In − A) is the
characteristic polynomial of G, and the set SpS(G) = {λ | χ(A;λ) = 0} is the spectral
set of roots of χ(A; z). Such a root is called eigenvalue. In this paper, we do not consider
the multiplicities of the eigenvalues.

Let A and B be two matrices. The Kronecker product A ⊗ B is the matrix one obtains
from A by replacing entry aij by aij ·B.

A (q · p) × (q · p) matrix B is called (p, q)-block circulant iff there are p × p matrices
B1, . . . , Bq such that

B =

���
B1 B2 · · · Bq

Bq B1 · · · Bq−1

...
...

. . .
...

B2 B3 · · · B1

��� =: �B1, B2, · · · , Bq� .

If p = 1, B is called circulant. Block circulant matrices are well studied (e. g., see [Dav79]).
In particular, there is a nice way to determine χ(B; z) and to compute SpS(B). Let
ωq = e2πi/q = cos(2π/q) + i · sin(2π/q) be a primitive q-th root of unity. Let B(x) =�q

k=1 x
k−1 ·Bk. The following proposition on the characteristic polynomial and the spec-

tral set of block circulant matrices is very useful for the computation of the spectral sets of
neatly constructed graphs.

Proposition 1 ([Dav79]) Let B = �B1, . . . , Bq� be a (p, q)-block circulant matrix. Then

χ(B; z) =

q−1�
j=0

χ(B(ωj
q); z) =

q−1�
j=0

χ
� q�

k=1

ωj·(k−1)
q ·Bk; z



.

For the spectral set, this means

SpS(B) =

q−1�
j=0

SpS
� q�

k=1

ωj·(k−1)
q ·Bk



.
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E. g., as the n-cycle Cn is (1, n)-block circulant with Cn = �0, 1, 0 . . . , 0, 1�, SpS(Cn) =

{ωj
n + ω

(n−1)j
n | 0 ≤ j ≤ n − 1} = {2 cos(2πj/n) | 0 ≤ j ≤ n − 1}. Similarly,

the spectra of d-dimensional tori can be computed in this way resulting in the spectral set
mentioned in Sec. 1.

Proposition 1 can be used directly to prove the following useful observation.

Proposition 2 Let G and X be p×p square matrices. For the (p, 2)-block circulant matrix
�G,X�, we have χ(�G,X�; z) = χ(G+X; z) · χ(G−X; z).

Proposition 3 Let B = �B1, . . . , Bq� be a real (p, q)-block circulant matrix with
Bq−j+1 = BT

j , 1 ≤ j ≤ q. Then the following holds.

(a) B(ω−j
q ) = B(ωj

q)
T, B(ωj

q) is self-adjoint, 1 ≤ j ≤ q.

(b) χ(B(ω−j
q ); z) = χ(B(ωj

q)
T; z).

(c) If q is odd, then there is a polynomial g(z) such that χ(B; z) = χ(B(1); z) · g(z)2

(d) If q is even, then there is a polynomial g(z) such that

χ(B; z) = χ(B(1); z) · χ(B(−1); z) · g(z)2

(e) By (c) and (d), all eigenvalues of B that do not come from B(1) and B(−1) occur
in pairs and belong to two-dimensional eigenspaces.

For the proof of Proposition 3, (a) and (b) can be shown directly, and for (c) and (d), use
Proposition 1, (b) and that ω−j

q = ωq−j
q , for all j.

The following well known facts will be essential for the proof that the spectral sets of
CCC(d) and SE(d) are different if d is even.

Proposition 4 Let G be a connected graph with maximal degree Δ.

(a) [Bol98, p. 263] G is regular iff Δ ∈ SpS(G).

(b) [Bol98, p. 263] If −Δ ∈ SpS(G), then G is regular and bipartite.

(c) [BK05, p. 379] G is bipartite iff for all λ ∈ SpS(G), also −λ ∈ SpS(G).

2.3 Further Notation

For a sequence s = (sk, . . . , s1) ∈ ZZk, and k ≤ n, let Dn[s] be the n×n-diagonal matrix
with s1, . . . , sk, 0, . . . , 0 in the main diagonal. In particular, In = Dn[1

n] is the identity
matrix.

Cn = �0, 1, 0, . . . , 0, 1� denotes the circulant adjacency matrix of the cycle of length n.
For a sequence s = (sk, . . . , s1) ∈ ZZk, and k ≤ n, Cn[s] = Cn +Dn[s]. For reasons of
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consistency, we need a special definition for the cases n = 1 and n = 2: C1[s] = (2 + s)

and C2[s2, s1] =

	
s1 2
2 s2

�
.

Ln = (lij) denotes the n × n-adjacency matrix of the linear array of length n. It is
identical to Cn except for the entries l1n = ln1 = 0 (instead of being 1). Ln[s] is defined
analogously to Cn[s].

3 The Spectral Set of CCC(d)

In order to compute the spectral set of CCC(d), we generalize the notion of cube-connect-
edness.

Let d be a non-negative integer, and let G be a graph with n, n ≥ d, nodes, numbered
from 1 through n. The d-dimensional Cube-Connected G-network is the graph CC(G, d)
with vertex set {1, . . . , n} × {0, 1}d. Two nodes (i, a) and (j, a) are adjacent iff i and j
are adjacent in G. Furthermore, two nodes (i, a) and (i, b) are adjacent iff a and b differ
exactly at the ith bit. So, CC(G, d) consists of 2d copies of G that are interconnected in a
hypercubic way. Using the length-d cycle Cd as G, we have with CC(Cd, d) the famous
Cube-Connected Cycles network.

Let s = (sd, . . . , s1) ∈ {−1,+1}d. The graph G[s] is obtained from G by adding a
self-loop with weight si to node i, for all i ∈ {1, . . . , d}.

Theorem 1 Let G be a graph with n, n ≥ d, nodes. Then

χ(CC(G, d); z) =
�

s∈{−1,+1}d

χ(G[s]; z) .

Proof. Let Rn,d be the n×n matrix with all entries being 0 except for rdd which is 1, and
let Xd−1 = I2d−1 ⊗ Rn,d. Then the adjacency matrix of CC(G, d) can be expressed as
follows:

CC(G, d) =

	
CC(G, d− 1) Xd−1

Xd−1 CC(G, d− 1)

�
By Proposition 2, this means that the characteristic polynomial of the whole graph can be
expressed as follows:

χ(CC(G, d); z) = χ(CC(G, d− 1) +Xd−1; z) · χ(CC(G, d− 1)−Xd−1; z)

= χ(CC(G[0d−1, 1], d− 1); z) · χ(CC(G[0d−1,−1], d− 1); z) (1)

=
�

s∈{−1,+1}d−1

χ(G[s, 1]; z) ·
�

s∈{−1,+1}d−1

SpS(G[s,−1]; z) (2)

For (1), note that CC(G, d− 1)±Xd−1 is a copy of CC(G, d− 1) where all nodes (d, a)
get a self-loop added with weight −1,+1. (2) follows by induction. ✷ (Theorem 1)

By choosing G being the d-cycle Cd, we obtain:
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Corollary 1 For CCC(d),

χ(CCC(d); z) =
�

s∈{−1,+1}d

χ(Cd[s]; z)

SpS(CCC(d)) =
�

s∈{−1,+1}d

SpS(Cd[s]) .

Hence, the spectral set of CCC(d) is exactly the union of the spectral sets of all d-cycles
where the nodes of the cycles are weighted with all possible {−1,+1}-sequences.

The application of Eq. (1) from the proof of Theorem 1 can be interpreted as editing the
original graph. The resulting graph has exactly the same spectrum as the original graph.
Fig.1 shows the corresponding graphs for d = 3, 2, 1, when CCC(3) is edited. In the end,
the are the 3-cycles with weighted self-loops. In the light of the editing, we call them
residual cycles.
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Figure 1: Editing the Cube-Connected Cycles network CCC(3).

Similarly, the spectrum of the Cube-Connected Lines network [Par86] can be characterized
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in terms of linear arrays Ld.

4 The Spectral Set of SE(d)

In order to obtain the adjacency matrix of SE(d), we describe the shuffle edges and the
exchange edges separately, i. e., SE(d) = Sh(d) + Ex(d).

Lemma 1 (a) Let U(d) =

	
1
0

�
⊗ I2d−1 ⊗ �

1 0
�
+

	
0
1

�
⊗ I2d−1 ⊗ �

0 1
�
.

Then, Sh(d) = U(d) + U(d)T.

(b) Ex(d) = I2d−1 ⊗
	
0 1
1 0

�
In order to prove Lemma 1, it suffices to identify the binary address a of a node with the
number (a)2 + 1.

Let Hd = 1
2d/2

·
	
1 1
1 −1

�⊗d

, where A⊗d denotes

d� �� �
A⊗ · · · ⊗A. Hd is the well-known

Hadamard matrix. Note that H−1
d = Hd.

Lemma 2 (a) H−1
d · Sh(d) ·Hd = Sh(d)

(b) H−1
d · Ex(d) ·Hd = I2d−1 ⊗

	
1 0
0 −1

�
.

For the proof, (b) can be shown easily by induction on d.

In order to show (a), a simple, but tedious computation shows that Hd commutes with both
U(d) and U(d)T, hence with Sh(d).

Theorem 2 For the Shuffle-Exchange network SE(d),

χ(SE(d); z) =
�
p,

p divisor of d

�
a ∈ {−1,+1}p,

a Lyndon {−1,+1}-sequence

χ(Cp[a]; z)

Proof. We have χ(SE(d); z) = χ(H−1
d · SE(d) ·Hd; z). By Lemma 2,

χ(SE(d); z) = χ(Sh(d) + I2d−1 ⊗
	
1 0
0 −1

�
; z)

So the shuffle cycles are left unchanged, the exchange edges disappear, and all nodes
get an additional −1,+1-self-loop, according to their binary addresses. Every shuffle
cycle is characterized by Lyndon {0, 1}-sequences. Now the weights of the vertices of the
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shuffle cycles are characterized by the respective Lyndon {−1,+1}-sequence, where 0s
are replaced with +1 and 1s with −1.

Recall the special definition of C1[a] and C2[a, b]. ✷ (Theorem 2)

As the computation of H−1
d ·SE(d)·Hd does not change the characteristic polynomial, this

computation can again be regarded as editing the original graph. This time, the exchange
edges are removed and their nodes receive an additional self-loop with weights −1,+1.
The result of editing SE(3) is shown in Fig. 2 Again, we call the obtained cycles residual
cycles.

3

−1

−1

−1

⇒

+1

+1

+1+1

+1

+1 +1

+1

−1
=

=
1

Figure 2: Result of editing the Shuffle Exchange network SE(3).

5 Spectral Relation between CCC and SE

The following Theorem shows the (surprisingly close) relation between the spectral set of
CCC(d) and SE(d):

Theorem 3 The spectral sets of the d-dimensional Cube-Connected Cycles network and
the Shuffle-Exchange network are equal if and only if d is odd. Otherwise, the spectral
set of the Shuffle-Exchange network is a proper subset of the spectral set of the Cube-
Connected Cycles network.

More formally, the following properties hold:
1. SpS(SE(d)) ⊆ SpS(CCC(d))
2. d odd: SpS(SE(d)) = SpS(CCC(d))
3. d even: SpS(SE(d)) � SpS(CCC(d)), since −3 ∈ SpS(CCC(d)) \ SpS(SE(d))

The rest of this section is devoted to the proof of Theorem 3. We start with the first case:

Proof of Theorem 3, part 1:

Take any factor χ(Cp[a]; z) from χ(SE(d); z), according to Theorem 2. There are two
cases to be distinguished: If p = d, then χ(Cp[a]; z) = χ(Cd[a]; z). Thus, by Corollary 1,
χ(Cp[a]; z) is a factor of χ(CCC(d); z). Consider now the case, that p < d. Let d =
p · q and let δij be the Kronecker delta, i. e., δij = 1 if i = j, and δij = 0 if i �= j.
Using the block circulant structure of Cd[aq], it can be seen that χ(Cp[a]; z) is a factor of
χ(Cd[aq]; z):
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Cd[aq] = �A0, A1, ..., Aq−1� is a block circulant matrix with A0 = Lp[a],
A1 = [δx,pδy,1]1≤x,y≤p, Aq−1 = AT

1 and A2 = · · · = Aq−2 = (0), such that Propositions
2 and 3 are satisfied. One can see that χ(Cp[a; z]) is a factor of χ(Cd[aq]; z) by noting
from Proposition 1 that

χ(Cd[aq]; z) =

q−1�
j=0

χ(A0 + ωj
qA1 + ω−j

q Aq−1; z) ,

hence χ(Cp[a; z]) = χ(A0 + ω0
q ·A1 + ω0

qAq−1; z) is also a factor of χ(CCC(d); z). ��
Proof of Theorem 3, part 2:

We already know that for all d, SpS(SE(d)) ⊆ SpS(CCC(d)). Thus, for odd d, it re-
mains to be shown that SpS(SE(d)) ⊇ SpS(CCC(d)). Take any factor χ(Cd[b]; z) from
χ(CCC(d); z), there are again two cases:

If b ∈ {−1,+1}d is aperiodic, then χ(Cd[b]; z) is a factor of χ(SE(d); z), since b is
already minimal with respect to periodicity, as presented in Theorem 2. If b ∈ {−1,+1}d
is periodic, then b = aq for some aperiodic a ∈ {−1,+1}p with d = p · q. Using
Proposition 3, we know that χ(Cd[b]; z) = χ(Cd[a]; z)·g(z)2. Note that the corresponding
eigenspace of the double eigenvalues that result from g(z)2 is two-dimensional.

A sequence b
 ∈ {−1,+1}d that differs from b in one single (arbitrary) position – w.l.o.g.
in the first position – is always aperiodic, thus χ(Cd(b); z) is a factor of χ(SE(d); z). We
show that the characteristic polynomial factors as

χ(Cd[b
]; z) = g(z) · h(z) ,

which proves this part of the Theorem:

Take any of the two-dimensional eigenspaces of Cd[b] belonging to some root λ of g(z).
The vectors which have 0 in their first component form a one-dimensional (at least) sub-
space of eigenvectors of Cd[b
] for the same eigenvalue λ, thus all these eigenvalues λ are
preserved in χ(Cd[b
]; z) with multiplicity of at least 1. ��
Note that because of Proposition 3(b) and (c) the above eigenspace argument only holds if
d is odd. A counterexample for d = 6 is presented in Sec. 6.

Proof of Theorem 3, part 3:

Let d be even. CCC(d) is 3-regular and bipartite [LPS+98]. So by Proposition 4, −3 ∈
SpS(CCC(d)).

If d is not a power of 2, then SE(d) contains cycles of odd length. Hence, SE(d) is not
bipartite, so by Proposition 4, −3 �∈ SpS(SE(d)). Even if d is a power of 2, then SE(d)
at least contains self-loops at the nodes 0d and 1d, so here SE(d) is not bipartite, which
means that −3 �∈ SpS(SE(d)). ��
Recall that −3 is not the only eigenvalue of CCC(d), d even and d ∈ {6, 10, 12, 14 . . .},
not occurring in the spectral set of SE(d) (see the remark on the number of different
eigenvalues in Sec. 1 and specifically the example in the next section).
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6 An Instructive Example on the Eigenvalues of CCC(6)

Here we demonstrate by an example that there might be no simple correspondence between
the eigenvalues of CCC(d) and SE(d), and that the eigenspace argument used in the proof
of Theorem 3 might be necessary.

Corollary 1 and Theorem 2 state that the spectra of CCC(d) and SE(d) consist of the
spectra of cycles where the vertices have self-loops with weights from {−1,+1}. As
SE(d) consists of cycles of different sizes, there is no direct correspondence between the
CCC-eigenvalues and the SE-eigenvalues.

For example, consider the case d = 6, and edit CCC(6) and SE(6) in order to get the
residual cycles with self-loops from {−1,+1}.

For CCC(6), the residual cycle C6[−1,+1,−1,+1,−1,+1] which corresponds to the
periodic binary sequence 010101 = (01)3 has the characteristic polynomial (z2−2)2(z2−
5).

For SE(6), the residual cycle C2[−1,+1] which corresponds to the non-periodic binary
sequence 01 has the characteristic polynomial z2 − 5. So it is at this moment not yet clear
whether the roots ±√

2 of z2 − 2 originating, among others, from the CCC-cycle 010101
are eigenvalues of SE(6). In this case, they are because the characteristic polynomial of
C6[−1,+1,−1,+1,+1,+1,+1, ] which corresponds to the non-periodic binary sequence
000101 is (z2 − 2)(z4 − 2z3 − 5z2 + 8z + 2).

On the other hand, for CCC(6), the residual cycle C6[−1,−1,+1,−1,−1,+1] which
corresponds to the binary sequence 011011 has the characteristic polynomial z(z−2)(z+
1)(z+2)(z2+z−4). The factor z2+z−4 does not occur in any characteristic polynomial
of the residual cycles of SE(6), so its roots − 1

2 ± 1
2

√
17 are not eigenvalues of SE(6), but

only of CCC(6).

7 Conclusion

In this paper, we completely characterized the spectral sets of CCC(d) and SE(d) (The-
orems 1 and 2, resp.). In order to compute the eigenvalues, we used a “graph editing”
technique that illustrates the computation process.

Curiously, it turns out (Theorem 3) that the eigenvalue sets are identical if d is odd. If
d is even, the set of eigenvalues of SE(d) is a proper subset of the set of eigenvalues
of CCC(d). In order to show this result, we had to use the corresponding eigenspaces
because there is no simple correspondence between the cycles of the residual graphs.
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Flexible Scheduling and Thread Allocation

for Synchronous Parallel Tasks
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Abstract: We describe a task model and dynamic scheduling and resource allocation
mechanism for synchronous parallel tasks to be executed on SPMD-programmed syn-
chronous shared-memory MIMD parallel architectures with uniform, unit-time mem-
ory access and strict memory consistency, also known in the literature as PRAMs
(Parallel Random Access Machines).

Our task model provides a two-tier programming model for PRAMs that flexibly
combines SPMD and fork-join parallelism within the same application. It offers flex-
ibility by dynamic scheduling and late resource binding while preserving the PRAM
execution properties within each task, the only limitation being that the maximum
number of threads that can be assigned to a task is limited to what the underlying
architecture provides. In particular, our approach opens for automatic performance
tuning at run-time by controlling the thread allocation for tasks based on run-time
predictions.

By a prototype implementation of a synchronous parallel task API in the SPMD-
based PRAM language Fork and experimental evaluation with example programs on
the SBPRAM simulator, we show that a realization of the task model on a SPMD-
programmable PRAM machine is feasible with moderate runtime overhead per task.

1 Introduction

During the recent years, computer architectures available on the consumer market have

switched from single-core architectures to multi-cores, and it is reasonable to assume that

we enter the many-core era in the near future. The reason for this change is that hardware

manufacturers try to keep up with the demand of more computation power and at the

same time consume less energy. As a consequence, speed-up of legacy, single-threaded

computer programs does not come for free any more but requires rewriting to leverage

many cores. Even worse is that, even where providing a shared memory abstraction, these

new architectures mainly follow NUMA and SMP designs that lack features that could

ease parallel programming, such as strong memory consistency or deterministic execution.

To ease the burden for both application programmers and compiler engineers, some archi-

tecture projects [PBB+02, For10, WV08] are working towards supporting more powerful,

deterministic parallel programming models such as the PRAM model [FW78, KKT01].

The PRAM model is often considered as only a theoretical programming model, but al-

ready in the 1990s it has been realized in hardware, albeit not on a single chip, e.g. the SB-

PRAM [PBB+02, KKT01]. In a current project by VTT Oulu (Finland) a new architecture
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called Replica is being developed. It supports both PRAM and NUMA mode, and features

massively hardware-multithreaded configurable very long instruction word (VLIW) pro-

cessor cores with chained functional units and a powerful 2D mesh on-chip combining

network providing uniform access to on-chip distributed shared memory. Replica will be

realized in hardware and is the successor of the Total Eclipse architecture [For10].

PRAMs are instruction-level synchronous MIMD parallel architectures with shared mem-

ory and are traditionally programmed in the SPMD execution style using PRAM languages

such as Fork [KKT01, KS97a], e [For04] etc. that map the naturally available tight syn-

chronization of the underlying hardware to the expression and statement level, allowing to

reduce explicit synchronization in the code while maintaining deterministic parallel exe-

cution.1 While following the SPMD style across the whole machine gives full control over

the assignment of computation to execution resources, it becomes cumbersome for more

irregular application scenarios that require adaptive resource allocation strategies.

In this work, we show how a flexible MIMD task model allowing multithreaded PRAM

tasks, can be realized on top of a SPMD programmed PRAM platform. The data-driven,

dynamic scheduling principle of our task model is inspired by current single-threaded task

programming models such as StarPU and StarSs. Our work is part of a pre-study for

some features of the Replica architecture’s runtime system. As the Replica simulator and

software toolchain is not completely finished yet, we use the similar SBPRAM simulator

and Fork toolchain [KKT01] for the prototype implementation and evaluation.

2 Principle

We are given a PRAM with p hardware threads and with a low-level programming model

based on SPMD execution style, i.e., all p threads execute main from the beginning

and the hardware itself does not provide for dynamic creation and deletion of additional

threads2. Hence, a software layer on top of a low-level programming environment will

be responsible for providing a task-based programming model. In the following, we pro-

pose a task-based programming model with non-preemptive dynamic scheduling, where

the tasks can be serial or PRAM-style synchronous parallel computations and thus might

require one or several threads of the underlying PRAM machine for execution.

Thread pool A program that uses synchronous parallel tasks or asynchronous sequential

tasks (or both) should in the beginning have a single thread initialize the task system by

calling init tasksystem(); and then send a subset of the available hardware threads

as worker threads into a central shared thread pool TP, where they wait for work. A thread

joins the thread pool by calling join threadpool(). If no tasks have been created

yet at this time, at least one thread should continue execution to create work for the others,

and may still join the thread pool later, thereby becoming an additional worker thread.

1The strict memory consistency model of PRAMs is the strongest possible shared memory consistency model,

it is even stronger than sequential consistency.
2In the following, thread means hardware thread (also known as virtual processor) unless otherwise stated.
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typedef struct vector {

int vid; // unique ID for debugging purposes

int state; // 0 = data not ready, 1 = data valid

void *pdata; // address of the wrapped payload data array

int n_elems; // number of elements

int type; // element type field, refers to type table

struct sptaskdescriptor *consumers[MAXCONSUMERSPERVECTOR];

int n_consumers; // number of registered consumer tasks

} Vector;

Figure 1: Implementation of the Vector container in the C-based PRAM language Fork.

The program terminates successfully (by each thread calling exit(0)) if all p worker

threads are waiting idle in the thread pool and there is no task left in the task queue (see

below). A global counter holding the current number of threads waiting idle in TP can

easily be maintained using atomic prefix-add operations.

Containers A container is a wrapper data structure that encapsulates aggregate user data

such as an array together with metadata such as information about its size, type and state

(invalid/ready), and manages memory access information such as where its most recent

contents is currently located if there are multiple kinds of memory in the system. In par-

ticular, containers can, on such systems, provide consistent access to data on request (i.e.,

a call to the container’s flush operation) by enforcing a write-back to the default memory

location. On a PRAM this latter feature is actually not required, while it can be useful on

a NUMA system as it provides an object-based distributed shared memory.

The most common container, and the only one that we support by now, is Vector, in-

spired by the corresponding container type in the C++ STL. For the C-based PRAM lan-

guage Fork, our Vector is internally defined as shown in Figure 1. However, following

a modular design style, the application programmer (API user) should not access these

fields directly but use predefined access functions and macros instead, some of which will

be described in the following.

In C++, Vector is generic in the element data type. In the C-based Fork language, we

have to represent the element type explicitly using a type field. The consumers are

those task instances (see later) that take this operand container with access mode ”in”.

The function Vector *new Vector(void *array, int length, int type

); allocates a new Vector container for array of length elements. The payload data

array is not copied, only a pointer to it is stored in the container. Hence, it is possible

that multiple containers point to the same payload data. This is a way to avoid unnecessary

copying; it is the programmer’s responsibility that this sharing of payload data does not

lead to data races. An example will be given at the end of this section.

The state of a vector v can be set as follows. A task is blocked until all its argument

containers are in ready state. Tasks waiting for an argument container to become valid

are registered in the container so they can be notified. setREADY(v) sets v to state

valid; this operation is used for containers holding input data to a task-based computation.
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typedef struct sptaskdescriptor {

int tid; // Rank in Frozen Queue FQ

void (* func)( int argc, Vector **argv, Vector *ret );

sync void (* sfunc)( sh int argc, sh Vector **argv, sh Vector *ret );

int argc; // number of arguments

Vector **args; // dynam. allocated shared array of argument containers

Vector *retvalue; // container that holds the return value

int minnthreads, maxnthreads; // lower and upper bound for #threads

int *shmem; // pointer to shmem, initially 0

int shmemsize;

int nthreads; // actual number of threads running this task as a group

} sptask;

Figure 2: Data structure for a SP-task descriptor in C/Fork. One such entry exists for each

task in the global shared heap memory.

setREADYandpromote(v) additionally notifies the consumer tasks that depend on v,

and promotes these to READY state where v was the last awaited argument.

Tasks can also return data in a container, which usually is then used as input to subsequent,

data-dependent tasks. Also in this case, the consumers will be notified and promoted to

READY state as applicable. Depending on the type of return data, one of the following

three versions of YIELD should be used:

• YIELD VALUE(ret,type,value) copies scalar base-type data to (the first

element of) a (pre-allocated) payload array in a (pre-allocated) Vector ret.

• YIELD PTR(ret,ptr) replaces the payload array field in the Vector ret by

the new array pointed to by ptr.

• YIELD VOID(ret) is a variant of YIELD with no assigned return value. This is

useful for in-place updates of the payload array; we will later see an example of this.

SP-functions and SP-tasks Synchronous parallel functions (SP-functions) are executed

by the calling group of hardware threads in lock-step mode, hence the execution will be

deterministic (assuming that the resolution of possible concurrent write access conflicts is

deterministic, too).

We define synchronous parallel tasks (SP-tasks) as instantiations (invocations) of such

synchronous parallel functions by a group of threads. The special case of invocations

of SP-tasks by a single-thread group is the ordinary sequential task model known from

classical scheduling theory. SP-tasks are a special case of malleable tasks, which can be

executed by an arbitrary number of threads but are internally not necessarily synchronous.

Tasks are, at runtime, represented by a task descriptor, a data structure defined in Figure 2,

which contains the key parameters of a task, such as the SP-function to be called, the

argument vector and return value, minimum and maximum specified thread allocation (or

default values if unspecified), and also some non-public administrative entries such as the

task state. The shmemsize field holds the size of the shared memory block shmem to be
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allocated to the task before execution; it must be 0 for an asynchronous task and > 0 for a

synchronous task to accommodate its group stack and heap.

These task properties are set upon creation (see below) or derived automatically; it is

not intended to change them during execution (e.g., no reallocation of its shared memory

segment while the task is running). In future work we may add some get functions or

macros to allow for querying of certain task properties.

Creating new tasks and SP-tasks At the run-time system programming level, task de-

scriptors for asynchronous and synchronous tasks are created explicitly by the constructors

sptask *new_task ( void (*foo)(int, Vector **, Vector *),

int argc, Vector **args, Vector *ret );

sptask *new_stask ( sync void (*foo)(sh int, sh Vector **, sh Vector *),

int argc, Vector **args, Vector *ret,

int minp, int maxp, int shmemsize );

which take a function name and its arguments. The static type checking of synchronicity

and sharity in Fork requires different constructors for synchronous and asynchronous tasks.

minp and maxp specify the minimum and maximum number of threads to be used for this

task. The implementation enforces at runtime that the value for minp is at least 1, and

that of maxp is automatically truncated to the maximum available number of workers if it

is too large. Hence, it is safe (but possibly not most efficient) to oversize maxp.

A task (synchronous or asynchronous) t can be spawned explicitly by a spawn operation:

spawn task(t) creates a task descriptor with the parameters given by t and enqueues

it to a central scheduler for execution concurrently with the continuation of the spawning

thread; control returns thus immediately to the spawning thread.

Lifecycle, scheduling and synchronization of tasks During its lifecycle, a task’s state

changes from new to ready to running to terminated. When spawned, created tasks receive

a unique task ID (tid field) and are sent to a frozen queue FQ of tasks that are not yet

data ready. Once all its input arguments (containers) are in ready state, a task is promoted

to ready state and enqueued in a central shared task queue TQ, from where idle worker

threads fetch new work for execution. All synchronization between SP-tasks is data driven.

From the task queue TQ, idle threads fetch their next task for execution. An asynchronous

task will be assigned to exactly one thread. For synchronous tasks, at least minnthreads

and at most maxnthreads idle threads will be collected, barrier-synchronized and as-

signed as a synchronous group to the execution of the task’s SP-function. Once the task

terminates, the task status will be changed to TERMINATED.

For now, we implemented for SP-tasks the thread assignment policy FIFO-FLEX, i.e., the

oldest task waiting in TQ will be assigned threads first, and dispatched as soon as at least

minnthreads have been assigned; as multiple threads can become idle (almost) simul-

taneously, it is possible that, implementation defined, more threads, up to maxnthreads

in total, could be allocated when the task starts execution. Further available threads will

be reassigned to the next task(s). The current implementation is blocking, i.e., only one
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#include <fork.h>

#include "forktasks.h"

#define N_A 2048 // (max) array size

sh int A[N_A];

sh Vector *s, *r;

// ... some minor details omitted

void main( void )

{

... // read / initialize array A

if ($==0)

init_tasksystem();

barrier;

if ($==0) {

sptask *t;

s = new_Vector( A, N_A );

r = new_Vector( A, N_A ); // in-place

t = new_stask( msort, 1, &s, r, 1, 1, 1000 );

setREADY( s );

spawn_task( t ); // spawn the initial task (msort)

}

barrier;

join_threadpool();

// once all work has been done, the workers return here

}

Figure 3: Mergesort example, the main program. The hardware thread (PRAM processor)

with rank 0 initializes the task system and creates two vector containers s and r that both

share the same payload array A of size N A, for in-place sorting by the SP-task msort

that takes s as input operand and r as output operand. After this task has been spawned,

all hardware threads join the thread pool where they are assigned work. The code for the

SP-tasks msort and merge can be found in Figures 4 and 5, respectively.

task can be assigned and dispatched at a time. In future extensions of this work, additional

thread assignment policies such as smallest-task first or best-fit could be tried. Adaptive

thread allocation as in [EKC06, KL08] could be tried as well.

Example Figures 3, 4 and 5 show an implementation of recursive parallel mergesort

with explicitly parallel tasks. For mergesort there are two types of tasks required: msort,

recursive mergesort tasks that form the divide step in the recursion tree, which create new

subtasks with their containers in each instance (see Figure 4), and merge, the tasks form-

ing the combine step, merging two subsolutions into one (see Figure 5). The instances of

these tasks are connected by data flow edges via container objects. See the figure captions

for further explanation of the code. The values used in the new stask() calls for minp

(1) and maxp (1) are motivated by the fact that msort tasks themselves do not perform

much work but unfold the tree of merge tasks where almost all of the computational work

is done. A merge task of size n with a (not work-optimal) fully parallel implementation

can use up to M(n) = n threads. In fact, this value M is a performance tuning parameter.
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sync void msort ( sh int argc, sh Vector **argp, sh Vector *ret )

// invariant: the Vector’s are allocated by caller

{

seq {

Vector src = (Vector *)argp[0]; // container passed in

int *arr = ((int *)(src->pdata)); // payload array

int n = src->n_elems;

if (n<=1) {

// may call qsort(arr,n) here if threshold > 1

YIELD_VOID( ret ); // return data in place

}

else {

sptask *t1, *t2, *t3;

Vector **s = (Vector**)shmalloc(2*sizeof(Vector*));

Vector **r = (Vector**)shmalloc(2*sizeof(Vector*));

s[0] = new_Vector( arr, n/2 );

s[1] = new_Vector( &(arr[n/2]), n-n/2 );

r[0] = new_Vector( arr, n/2 );

r[1] = new_Vector( &(arr[n/2]), n-n/2 );

t1 = new_stask( msort, 1, s, r[0], 1, 1, 1000 );

t2 = new_stask( msort, 1, s+1, r[1], 1, 1, 1000 );

setREADY( s[0] );

setREADY( s[1] );

spawn_task( t1 );

spawn_task( t2 );

// synchronization on r1 and r2 is automatic by scheduler

t3 = new_stask( merge, 2, r, ret, 1, M(n), 1000 );

spawn_task( t3 ); // delegates the writing of ret

}}}

s[1]s[0]

argp[0]

r[0] r[1]

msort

ret

msort

merge

msort

Figure 4: Mergesort example (cont.), code for the msort (mergesort) tasks. A msort

task takes 1 argument, passed in argp[0]: the vector to be sorted. It returns the sorted

vector in ret, with the same payload data for in-place sorting. In the else branch, a new

level of the task graph is unfolded. Fresh vector container objects (s[0], s[1], r[0],

r[1]) are dynamically allocated for all intermediate operands of created subtasks, see

the illustration, while the payload array space can be reused, thus avoiding copying and

memory management. The data flow dependencies between the msort subtasks t1, t2

and the merge subtask t3 are given explicitly by the container references.

3 Implementation Details

A prototype of a runtime system and API has been implemented in Fork for the SBPRAM,

for which we use the cycle-accurate instruction-level simulator pramsim.

Our implementation uses for the general case (mixed-mode parallelism, i.e. allowing both

synchronous parallel and asynchronous sequential tasks to occur in the same application)

two central, blocking, shared task queues as main data structure for the frozen queue

and for the ready queue, respectively, which are implemented as bounded buffers of size

O(maxT ) where maxT is the maximum number of tasks that could be active simulta-

neously; this parameter can be adapted if necessary. The queue implementations make

extensive use of the SBPRAM’s nonblocking, constant-time multiprefix-add operations.
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sync void merge ( sh int argc, sh Vector **argp, sh Vector *ret )

// invariant: the Vector’s are allocated by caller

{

sh Vector *s1 = (Vector *)argp[0], *s2 = (Vector *)argp[1];

sh int *arr1 = (int *)(s1->pdata), *arr2 = (int *)(s2->pdata);

sh int n1 = s1->n_elems, n2 = s2->n_elems;

/* ... merge arr1 and arr2 in place, code omitted */

seq

YIELD_VOID( ret ); // as ret also points to arr1

}

Figure 5: Mergesort example (cont.), code for the merge tasks. Merge tasks take two

input parameters, namely two vector containers passed in argp, pointing to two adjacent

subarrays in an array where they are to be merged in-place. The result vector container

points to the first subarray head (arr1). Once the subarrays have been merged, the ret

vector container is advanced to ready state by YIELD VOID.

Each new synchronous parallel task is, upon dispatch, allocated a new shared stack seg-

ment from global shared heap memory, which it keeps during its lifetime and releases

upon termination. The code for startup and finalization of parallel tasks is (as already for

ordinary Fork programs) written in SBPRAM assembler because some hardware thread

(PRAM processor) registers for addressing the new shared stack segment must be saved

and set up resp. restored properly.

For mixed-mode parallel applications, dispatch of data-ready tasks is, in the current pro-

totype, serialized because the implementation needs to make sure that lower and upper

bounds for allocating available threads to all ready tasks in the FIFO-FLEX scheduler are

properly addressed as stated by each individual parallel task. Simpler (non-individual)

task allocation policies or less fair dispatch schemes might allow for a more efficient, non-

serializing implementation, which is a subject for future extension.

For programs that use asynchronous tasks only, we have an alternative implementation

with lower overhead and a completely parallel (and non-blocking) task queue.

4 Experimental Evaluation

Sequential tasks only We use Fibonacci (the computation of the N th Fibonacci number

by the well-known recursive algorithm) as a very simple example that contains almost no

computation, hence it reflects very well the overhead that is incurred by the task manage-

ment system. Table 1 (left) shows runtime results taken on the SBPRAM simulator (given

in thousand SBPRAM clock cycles) for N = 17 with different numbers of SBPRAM

processors and for the two implementations of the shared task queue data structures: (i)

blocking get task and nonblocking insert, and (ii) completely non-blocking. Fib(17) re-

cursively unfolds 7751 tasks in total, and creates 10335 operand containers. The task

queue buffers were dimensioned with 8K entries each. The average overhead per task is

about 2000 clock cycles with the nonblocking task queue and only slightly higher with
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Table 1: Test runs for Fibonacci number calculation (left) and Mergesort (right), all times

are in thousand SBPRAM clock cycles.

Overall execution time for computing the

17th Fibonacci number, creating 7751 tasks.

Hardw. Time w. Blo- Time with Non-

Thr. cking TQ (i) blocking TQ (ii)

1 16086 14148

2 8158 7090

4 4466 3579

8 2839 1842

16 2209 1068

32 2120 926

64 2099 897

128 2080 893

256 2056 892

Overall execution time for Mergesort of 2048 in-

tegers, creating 6143 tasks and 8191 vectors. M

denotes the choice for the upper bound maxp for

merge tasks of size N .

HW Time (blocking TQ)

Thr. M = N/2 = N/4 = N/8 M = 1 seq.

1 25033 25037 25039 24935 18912

2 13615 13118 12855 12933 9686

4 7189 6764 6532 6992 5016

8 4158 3730 3796 4312 2990

16 2572 2320 2425 3265 2244

32 2116 2006 2000 3104 2166

64 1896 1858 1829 3077 2147

128 1799 1777 1793 3065 2135

the blocking one. Note that program execution (and timing) on SBPRAM is completely

deterministic, therefore a single test run per scenario is sufficient for the measurements.

One fundamental problem that this example reveals is that Fibonacci creates the tasks

in a LIFO way, i.e., the earliest-created task is executed last of all, hence the maximum

number of tasks that (could be) simultaneously alive almost equals the overall number of

tasks, requiring an equally large dimensioning of the task queue data structures to avoid

overflow and possibly also (too) many containers that are alive simultaneously. Similar

behavior will be encountered with many divide-and-conquer algorithms, too. Where space

becomes a critical resource, recursive programs thus might need to be reformulated in

order to limit the amount of simultaneously alive tasks and containers.

Mergesort Our second example is the parallel mergesort program as shown above. Mer-

gesort (msort) tasks are set up to use exactly 1 worker thread, and merge tasks use at

least one and up to N workers for merging of size-N vectors. Results are shown in Table 1

(right) for a Mergesort of 2048 integers and different PRAM sizes. As 6143 tasks are

generated, the average granularity is approximately 3000 instructions per task with serial

(”seq.”) and 4000 with parallel merging, including the dispatch overhead of about 2000

instructions. This makes also clear that the granularity is too fine for most of the tasks,

as the overhead dominates. Coarsening the task granularity, e.g. by replacing spawning of

light-weight msort tasks with inlined computation, is a way of tuning performance; this

can be an issue for future work on auto-tuning optimizations.

We experimented with different choices for the upper limit M of the number of threads

for merge calls using fully parallel merging, which is not work-optimal. M is a tuning

parameter; we found empirically that e.g. M = N/4 and M = N/8 work better than

M = N , M = N/2, M = log2 N or M = 1. As expected, these do basically not differ in

the case of a single worker thread. Using a sequential merge routine (work-optimal) leads

to lower cost for small machine sizes but does not scale beyond 16 threads.
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5 Related work

The synchronous parallel task concept is inspired by the join statement of Fork [KS97b,

KKT01]. The main difference is that join is intended to implement synchronous paral-

lel critical sections, so there will, at any time, be at most one instantiation of any syn-

chronous parallel function (join body) running, while here several instances of the same

SP-function could run simultaneously on disjoint thread subsets. The concept of parallel

critical sections is motivated by the need of protecting certain code sections against race

conditions caused by unsynchronized concurrent updates. While strict sequentialization

using mutex locks is an option, the deterministic synchronous execution of PRAM systems

opens for another more scalable way of avoiding race conditions. The join construct was

demonstrated in Fork for parallel heap memory allocation and accelerated I/O processing

[KKT01], operations that otherwise require mutual exclusion of individual threads.

The optimization of thread allocation to synchronous tasks was solved by Eriksson et al.

[EKC06] for the special case where subtasks generated by recursive calls in parallel divide-

and-conquer computations were executed in-line, either in parallel on disjoint thread sub-

groups or in serial by the entire thread group. Execution time of tasks is predicted from

closed formulas that depend on problem and group size, and that are calibrated from tim-

ing data on the target machine (here, SBPRAM). Here, we generalize over this work by

decoupling the subtask execution from the caller task, adding more flexibility and possibly

sacrificing predictability.

StarPU [ATN10] is a run-time system for single-threaded and multi-threaded (but non-

PRAM) tasks that can execute on different kinds of execution units such as CPU cores,

GPUs or other programmable accelerators. In contrast to our model, StarPU does not

support nested or recursive tasks. StarPU tasks are serial3 and run on a single CPU or

single GPU; support for multi-CPU OpenMP tasks is an issue of ongoing work. StarPU

keeps track of each task’s recent execution time history depending on input sizes, such that

future decisions can be based on preditions made from collected history data.

StarSs (Star-superscalar) [PBAL09] is a family of languages and runtime systems imple-

mented for different kinds of parallel target platforms, such as CellSs, GPUSs, OMPSs,

ClusterSs. Similarly as StarPU, the StarSs model extends sequential computing by dis-

covering and scheduling data-ready sequential tasks, which are defined by invocations of

specific user functions, at run-time to some available execution unit, such as an idle CPU

core, a GPU or a Cell SPU. While StarPU uses a specific API, StarSs uses language ex-

tensions to mark up task functions with their input and output parameters.

Wimmer and Träff [WT11b, WT11a] have considered multiple-thread allocation in a work-

stealing scenario on distributed task queues, in order to gather a set of several threads for

executing a parallel (but non-PRAM) algorithm. They use the concept of mixed-mode

parallelism to support both task-based algorithms, such as divide and conquer, and SPMD

(single program multiple data) algorithms in the same application where one task can

3GPU tasks in StarPU are of course internally massively parallel as they are run on many or all cores of a

GPU, but to the task scheduler they look like an ordinary serial task, and the entire GPU is treated as a single

resource for scheduling.
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spawn other tasks. Their approach is based on classical work-stealing with independently

working processors with their own queues where communication is only done when they

are out of work. Wimmer and Träff organize processor groups in a binary tree topology. At

level 0, each processor is in its own group; on higher levels they work together in groups

of groups, called teams. Creating a team is done by work stealing in a deterministic way

by visiting so-called partners on each level until work is found. The teams are needed to

execute parallel tasks that require more than one thread. A team can “live” longer than a

task, e.g. be used to execute tasks that need at most the number of threads available in the

team. The implementation uses standard lock free data structures. Apart from not being

limited to group sizes that are powers of two, a main difference from their work is that we

can afford the luxury of having a central shared work queue without time penalty since we

have a Combining CRCW PRAM architecture.

6 Conclusion

We have introduced and evaluated a task model for flexible dynamic scheduling and re-

source allocation mechanism for synchronous parallel tasks executing on a PRAM ar-

chitecture. Our proof-of-concept prototype implementation shows that we can realize it

with a low runtime overhead per task. It provides the option of dynamic task schedul-

ing and thread allocation on top of a SPMD-programmed PRAM machine that was mostly

designed for single-task applications. It combines the flexibility of task-based runtime sys-

tems with the power of SPMD-controlled, naturally synchronized PRAM execution within

the SP-tasks.

Future work will consider high-level programming support that avoids low-level coding of

calls to the run-time system API. Possible approaches include (1) high-level language con-

structs such as spawn, (2) a library of skeleton functions for frequently occuring parallel

algorithmic design patterns such as parallel divide-and-conquer, or (3) graphical program-

ming languages for specifying task graphs with parallel tasks (similarly to the illustration

in Fig. 4) from which Fork source code can be generated automatically [KSF10]. Ex-

periments with further thread allocation strategies and, in particular, static and dynamic

autotuning of thread allocation will be considered in future work. Finally, porting our

Fork-based prototype implementation to the new VTT Replica architecture and system

software can be done as soon as the complete toolchain is available.
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Informatik” – Theorie, Praxis, Evaluation.

P-23	 Thorsten Spitta, Jens Borchers, Harry M. 
Sneed (Hrsg.): Software Management 
2002 – Fortschritt durch Beständigkeit

P-24	 Rainer Eckstein, Robert Tolksdorf 
(Hrsg.): XMIDX 2003 – XML-
Technologien für Middleware – Middle-
ware für XML-Anwendungen

P-25	 Key Pousttchi, Klaus Turowski (Hrsg.): 
Mobile Commerce – Anwendungen und 
Perspektiven – 3. Workshop Mobile 
Commerce, Universität Augsburg, 
04.02.2003

P-26	 Gerhard Weikum, Harald Schöning, 
Erhard Rahm (Hrsg.): BTW 2003: Daten-
banksysteme für Business, Technologie 
und Web

P-27	 Michael Kroll, Hans-Gerd Lipinski, Kay 
Melzer (Hrsg.): Mobiles Computing in 
der Medizin

P-28	 Ulrich Reimer, Andreas Abecker, Steffen 
Staab, Gerd Stumme (Hrsg.): WM 2003: 
Professionelles Wissensmanagement – 
Er-fahrungen und Visionen

P-29	 Antje Düsterhöft, Bernhard Thalheim 
(Eds.): NLDB’2003: Natural Language 
Processing and Information Systems

P-30	 Mikhail Godlevsky, Stephen Liddle, 
Heinrich C. Mayr (Eds.): Information 
Systems Technology and its Applications

P-31	 Arslan Brömme, Christoph Busch (Eds.): 
BIOSIG 2003: Biometrics and Electronic 
Signatures

 GI-Edition Lecture Notes in Informatics



P-32	 Peter Hubwieser (Hrsg.): Informatische 
Fachkonzepte im Unterricht – INFOS 
2003

P-33	 Andreas Geyer-Schulz, Alfred Taudes 
(Hrsg.): Informationswirtschaft: Ein 
Sektor mit Zukunft

P-34	 Klaus Dittrich, Wolfgang König, Andreas 
Oberweis, Kai Rannenberg, Wolfgang 
Wahlster (Hrsg.): Informatik 2003 – 
Innovative Informatikanwendungen 	
(Band 1)

P-35	 Klaus Dittrich, Wolfgang König, Andreas 
Oberweis, Kai Rannenberg, Wolfgang 
Wahlster (Hrsg.): Informatik 2003 – 
Innovative Informatikanwendungen 	
(Band 2)

P-36	 Rüdiger Grimm, Hubert B. Keller, Kai 
Rannenberg (Hrsg.): Informatik 2003 – 
Mit Sicherheit Informatik

P-37	 Arndt Bode, Jörg Desel, Sabine Rath-
mayer, Martin Wessner (Hrsg.): DeLFI 
2003: e-Learning Fachtagung Informatik

P-38	 E.J. Sinz, M. Plaha, P. Neckel (Hrsg.): 
Modellierung betrieblicher Informations-
systeme – MobIS 2003

P-39	 Jens Nedon, Sandra Frings, Oliver Göbel 
(Hrsg.): IT-Incident Management & IT-
Forensics – IMF 2003

P-40	 Michael Rebstock (Hrsg.): Modellierung 
betrieblicher Informationssysteme – Mo-
bIS 2004

P-41	 Uwe Brinkschulte, Jürgen Becker, Diet-
mar Fey, Karl-Erwin Großpietsch, Chris-
tian Hochberger, Erik Maehle, Thomas 
Runkler (Edts.): ARCS 2004 – Organic 
and Pervasive Computing

P-42	 Key Pousttchi, Klaus Turowski (Hrsg.): 
Mobile Economy – Transaktionen und 
Prozesse, Anwendungen und Dienste

P-43	 Birgitta König-Ries, Michael Klein, 
Philipp Obreiter (Hrsg.): Persistance, 
Scalability, Transactions – Database Me-
chanisms for Mobile Applications

P-44	 Jan von Knop, Wilhelm Haverkamp, Eike 
Jessen (Hrsg.): Security, E-Learning. 
E-Services

P-45	 Bernhard Rumpe, Wofgang Hesse 
(Hrsg.): Modellierung 2004

P-46	 Ulrich Flegel, Michael Meier (Hrsg.): 
Detection of Intrusions of Malware & 
Vulnerability Assessment

P-47	 Alexander Prosser, Robert Krimmer 
(Hrsg.): Electronic Voting in Europe – 
Technology, Law, Politics and Society

P-48	 Anatoly Doroshenko, Terry Halpin, 
Stephen W. Liddle, Heinrich C. Mayr 
(Hrsg.): Information Systems Technology 
and its Applications

P-49	 G. Schiefer, P. Wagner, M. Morgenstern, 
U. Rickert (Hrsg.): Integration und Daten-
sicherheit – Anforderungen, Konflikte und 
Perspektiven

P-50	 Peter Dadam, Manfred Reichert (Hrsg.): 
INFORMATIK 2004 – Informatik ver-
bindet (Band 1) Beiträge der 34. Jahresta-
gung der Gesellschaft für Informatik e.V. 
(GI), 20.-24. September 2004 in Ulm 

P-51	 Peter Dadam, Manfred Reichert (Hrsg.): 
INFORMATIK 2004 – Informatik ver-
bindet (Band 2) Beiträge der 34. Jahresta-
gung der Gesellschaft für Informatik e.V. 
(GI), 20.-24. September 2004 in Ulm

P-52	 Gregor Engels, Silke Seehusen (Hrsg.): 
DELFI 2004 – Tagungsband der 2. 
e-Learning Fachtagung Informatik

P-53	 Robert Giegerich, Jens Stoye (Hrsg.): 
German Conference on Bioinformatics – 
GCB 2004

P-54	 Jens Borchers, Ralf Kneuper (Hrsg.): 
Softwaremanagement 2004 – Outsourcing 
und Integration

P-55	 Jan von Knop, Wilhelm Haverkamp, Eike 
Jessen (Hrsg.): E-Science und Grid Ad-
hoc-Netze Medienintegration

P-56	 Fernand Feltz, Andreas Oberweis, Benoit 
Otjacques (Hrsg.): EMISA 2004 – Infor-
mationssysteme im E-Business und 
E-Government

P-57	 Klaus Turowski (Hrsg.): Architekturen, 
Komponenten, Anwendungen

P-58	 Sami Beydeda, Volker Gruhn, Johannes 
Mayer, Ralf Reussner, Franz Schweiggert 
(Hrsg.): Testing of Component-Based 
Systems and Software Quality

P-59	 J. Felix Hampe, Franz Lehner, Key 
Pousttchi, Kai Ranneberg, Klaus 
Turowski (Hrsg.): Mobile Business – 
Processes, Platforms, Payments

P-60	 Steffen Friedrich (Hrsg.): Unterrichtskon-
zepte für inforrmatische Bildung

P-61	 Paul Müller, Reinhard Gotzhein, Jens B. 
Schmitt (Hrsg.): Kommunikation in ver-
teilten Systemen

P-62	 Federrath, Hannes (Hrsg.): „Sicherheit 
2005“ – Sicherheit – Schutz und Zuver-
lässigkeit

P-63	 Roland Kaschek, Heinrich C. Mayr, 
Stephen Liddle (Hrsg.): Information Sys-
tems – Technology and ist Applications



P-64	 Peter Liggesmeyer, Klaus Pohl, Michael 
Goedicke (Hrsg.): Software Engineering 
2005

P-65	 Gottfried Vossen, Frank Leymann, Peter 
Lockemann, Wolffried Stucky (Hrsg.): 
Datenbanksysteme in Business, Techno-
logie und Web

P-66	 Jörg M. Haake, Ulrike Lucke, Djamshid 
Tavangarian (Hrsg.): DeLFI 2005: 3. 
deutsche e-Learning Fachtagung Infor-
matik

P-67	 Armin B. Cremers, Rainer Manthey, 
Peter Martini, Volker Steinhage (Hrsg.): 
INFORMATIK 2005 – Informatik LIVE 
(Band 1)

P-68	 Armin B. Cremers, Rainer Manthey, 
Peter Martini, Volker Steinhage (Hrsg.): 
INFORMATIK 2005 – Informatik LIVE 
(Band 2)

P-69	 Robert Hirschfeld, Ryszard Kowalcyk, 
Andreas Polze, Matthias Weske (Hrsg.): 
NODe 2005, GSEM 2005

P-70	 Klaus Turowski, Johannes-Maria Zaha 
(Hrsg.): Component-oriented Enterprise 
Application (COAE 2005)

P-71	 Andrew Torda, Stefan Kurz, Matthias 
Rarey (Hrsg.): German Conference on 
Bioinformatics 2005

P-72	 Klaus P. Jantke, Klaus-Peter Fähnrich, 
Wolfgang S. Wittig (Hrsg.): Marktplatz 
Internet: Von e-Learning bis e-Payment

P-73	 Jan von Knop, Wilhelm Haverkamp, Eike 
Jessen (Hrsg.): “Heute schon das Morgen 
sehen“

P-74	 Christopher Wolf, Stefan Lucks, Po-Wah 
Yau (Hrsg.): WEWoRC 2005 – Western 
European Workshop on Research in 
Cryptology

P-75	 Jörg Desel, Ulrich Frank (Hrsg.): Enter-
prise Modelling and Information Systems 
Architecture

P-76	 Thomas Kirste, Birgitta König-Riess, Key 
Pousttchi, Klaus Turowski (Hrsg.): Mo-
bile Informationssysteme – Potentiale, 
Hindernisse, Einsatz

P-77	 Jana Dittmann (Hrsg.): SICHERHEIT 
2006

P-78	 K.-O. Wenkel, P. Wagner, M. Morgens-
tern, K. Luzi, P. Eisermann (Hrsg.): Land- 
und Ernährungswirtschaft im Wandel

P-79	 Bettina Biel, Matthias Book, Volker 
Gruhn (Hrsg.): Softwareengineering 2006

P-80	 Mareike Schoop, Christian Huemer, 
Michael Rebstock, Martin Bichler 
(Hrsg.): Service-Oriented Electronic 
Commerce

P-81	 Wolfgang Karl, Jürgen Becker, Karl-
Erwin Großpietsch, Christian Hochberger, 
Erik Maehle (Hrsg.): ARCS´06

P-82	 Heinrich C. Mayr, Ruth Breu (Hrsg.): 
Modellierung 2006

P-83	 Daniel Huson, Oliver Kohlbacher, Andrei 
Lupas, Kay Nieselt and Andreas Zell 
(eds.): German Conference on Bioinfor-
matics

P-84	 Dimitris Karagiannis, Heinrich C. Mayr, 
(Hrsg.): Information Systems Technology 
and its Applications

P-85	 Witold Abramowicz, Heinrich C. Mayr, 
(Hrsg.): Business Information Systems

P-86	 Robert Krimmer (Ed.): Electronic Voting 
2006

P-87	 Max Mühlhäuser, Guido Rößling, Ralf 
Steinmetz (Hrsg.): DELFI 2006: 4. 
e-Learning Fachtagung Informatik

P-88	 Robert Hirschfeld, Andreas Polze, 
Ryszard Kowalczyk (Hrsg.): NODe 2006, 
GSEM 2006

P-90	 Joachim Schelp, Robert Winter, Ulrich 
Frank, Bodo Rieger, Klaus Turowski 
(Hrsg.): Integration, Informationslogistik 
und Architektur

P-91	 Henrik Stormer, Andreas Meier, Michael 
Schumacher (Eds.): European Conference 
on eHealth 2006

P-92	 Fernand Feltz, Benoît Otjacques, Andreas 
Oberweis, Nicolas Poussing (Eds.): AIM 
2006

P-93	 Christian Hochberger, Rüdiger Liskowsky 
(Eds.): INFORMATIK 2006 – Informatik 
für Menschen, Band 1

P-94	 Christian Hochberger, Rüdiger Liskowsky 
(Eds.): INFORMATIK 2006 – Informatik 
für Menschen, Band 2

P-95	 Matthias Weske, Markus Nüttgens (Eds.): 
EMISA 2005: Methoden, Konzepte und 
Technologien für die Entwicklung von 
dienstbasierten Informationssystemen

P-96	 Saartje Brockmans, Jürgen Jung, York 
Sure (Eds.): Meta-Modelling and Ontolo-
gies

P-97	 Oliver Göbel, Dirk Schadt, Sandra Frings, 
Hardo Hase, Detlef Günther, Jens Nedon 
(Eds.): IT-Incident Mangament & IT-
Forensics – IMF 2006



P-98	 Hans Brandt-Pook, Werner Simonsmeier 
und Thorsten Spitta (Hrsg.): Beratung 
in der Softwareentwicklung – Modelle, 
Methoden, Best Practices

P-99	 Andreas Schwill, Carsten Schulte, Marco 
Thomas (Hrsg.): Didaktik der Informatik

P-100	 Peter Forbrig, Günter Siegel, Markus 
Schneider (Hrsg.): HDI 2006: Hochschul-
didaktik der Informatik

P-101	 Stefan Böttinger, Ludwig Theuvsen, 	
Susanne Rank, Marlies Morgenstern (Hrsg.): 
Agrarinformatik im Spannungsfeld 
zwischen Regionalisierung und globalen 
Wertschöpfungsketten

P-102	 Otto Spaniol (Eds.): Mobile Services and 
Personalized Environments

P-103	 Alfons Kemper, Harald Schöning, Thomas 
Rose, Matthias Jarke, Thomas Seidl, 
Christoph Quix, Christoph Brochhaus 
(Hrsg.): Datenbanksysteme in Business, 
Technologie und Web (BTW 2007)

P-104	 Birgitta König-Ries, Franz  Lehner, 
Rainer Malaka, Can Türker (Hrsg.)	
MMS 2007: Mobilität und mobile 
Informationssysteme

P-105	 Wolf-Gideon Bleek, Jörg Raasch, 	
Heinz Züllighoven (Hrsg.)	
Software Engineering 2007

P-106	 Wolf-Gideon Bleek, Henning Schwentner, 	
Heinz Züllighoven (Hrsg.)	
Software Engineering 2007 – 	
Beiträge zu den Workshops

P-107	 Heinrich C. Mayr,	
Dimitris Karagiannis (eds.)	
Information Systems	
Technology and its Applications

P-108	 Arslan Brömme, Christoph Busch,	
Detlef Hühnlein (eds.)	
BIOSIG 2007:	
Biometrics and	
Electronic Signatures

P-109	 Rainer Koschke, Otthein Herzog, Karl-
Heinz Rödiger, Marc Ronthaler (Hrsg.)	
INFORMATIK 2007	
Informatik trifft Logistik	
Band 1

P-110	 Rainer Koschke, Otthein Herzog, Karl-
Heinz Rödiger, Marc Ronthaler (Hrsg.)	
INFORMATIK 2007	
Informatik trifft Logistik	
Band 2

P-111	 Christian Eibl, Johannes Magenheim, 
Sigrid Schubert, Martin Wessner (Hrsg.)	
DeLFI 2007:	
5. e-Learning Fachtagung	
Informatik

P-112	 Sigrid Schubert (Hrsg.)	
Didaktik der Informatik in 	
Theorie und Praxis

P-113	 Sören Auer, Christian Bizer, Claudia 
Müller, Anna V. Zhdanova (Eds.)	
The Social Semantic Web 2007 	
Proceedings of the 1st Conference on 
Social Semantic Web (CSSW)

P-114	 Sandra Frings, Oliver Göbel, Detlef Günther, 
Hardo G. Hase, Jens Nedon, Dirk Schadt, 
Arslan Brömme (Eds.)	
IMF2007 IT-incident	
management & IT-forensics	
Proceedings of the 3rd International 
Conference on IT-Incident Management 
& IT-Forensics

P-115	 Claudia Falter, Alexander Schliep, 
Joachim Selbig, Martin Vingron and 	
Dirk Walther (Eds.)	
German conference on bioinformatics	
GCB 2007

P-116	 Witold Abramowicz, Leszek Maciszek 
(Eds.)	
Business Process and Services Computing	
1st International Working Conference on 
Business Process and Services Computing 
BPSC 2007

P-117	 Ryszard Kowalczyk (Ed.)	
Grid service engineering and manegement	
The 4th International Conference on Grid 
Service Engineering and Management 
GSEM 2007

P-118	 Andreas Hein, Wilfried Thoben, Hans-
Jürgen Appelrath, Peter Jensch (Eds.)	
European Conference on ehealth 2007

P-119	 Manfred Reichert, Stefan Strecker, Klaus 
Turowski (Eds.)	
Enterprise Modelling and Information 
Systems Architectures	
Concepts and Applications

P-120	 Adam Pawlak, Kurt Sandkuhl, 	
Wojciech Cholewa, 	
Leandro Soares Indrusiak (Eds.)	
Coordination of Collaborative 
Engineering - State of the Art and Future 
Challenges 

P-121	 Korbinian Herrmann, Bernd Bruegge (Hrsg.) 
Software Engineering 2008	
Fachtagung des GI-Fachbereichs 
Softwaretechnik 

P-122	 Walid Maalej, Bernd Bruegge (Hrsg.)	
Software Engineering 2008 - 
Workshopband	
Fachtagung des GI-Fachbereichs 
Softwaretechnik



P-123	 Michael H. Breitner, Martin Breunig, Elgar 
Fleisch, Ley Pousttchi, Klaus Turowski 
(Hrsg.) 
Mobile und Ubiquitäre 
Informationssysteme – Technologien, 
Prozesse, Marktfähigkeit	
Proceedings zur 3. Konferenz Mobile und 
Ubiquitäre Informationssysteme 	
(MMS 2008) 

P-124	 Wolfgang E. Nagel, Rolf Hoffmann, 
Andreas Koch (Eds.) 	
9th Workshop on Parallel Systems and 
Algorithms (PASA)	
Workshop  of the GI/ITG Speciel Interest 
Groups PARS and PARVA 

P-125	 Rolf A.E. Müller, Hans-H. Sundermeier, 	
Ludwig Theuvsen, Stephanie Schütze, 	
Marlies Morgenstern (Hrsg.) 
Unternehmens-IT:	
Führungsinstrument oder 
Verwaltungsbürde	
Referate der 28. GIL Jahrestagung  

P-126	 Rainer Gimnich, Uwe Kaiser, Jochen 
Quante, Andreas Winter (Hrsg.) 
10th Workshop Software Reengineering 
(WSR 2008)

P-127	 Thomas Kühne, Wolfgang Reisig,	
Friedrich Steimann (Hrsg.) 
Modellierung 2008

P-128	 Ammar Alkassar, Jörg Siekmann (Hrsg.)	
Sicherheit 2008	
Sicherheit, Schutz und Zuverlässigkeit	
Beiträge der 4. Jahrestagung des 
Fachbereichs Sicherheit der Gesellschaft	
für Informatik e.V. (GI)	
2.-4. April 2008	
Saarbrücken, Germany

P-129	 Wolfgang Hesse, Andreas Oberweis (Eds.)	
Sigsand-Europe 2008	
Proceedings of the Third AIS SIGSAND 
European Symposium on Analysis, 
Design, Use and Societal Impact of 
Information Systems

P-130	 Paul Müller, Bernhard Neumair,	
Gabi Dreo Rodosek (Hrsg.) 
1. DFN-Forum Kommunikations
technologien Beiträge der Fachtagung

P-131	 Robert Krimmer, Rüdiger Grimm (Eds.) 
3rd International Conference on Electronic 
Voting 2008	
Co-organized by Council of Europe, 
Gesellschaft für Informatik and E-Voting.
CC

P-132	 Silke Seehusen, Ulrike Lucke, 	
Stefan Fischer (Hrsg.) 
DeLFI 2008:	
Die 6. e-Learning Fachtagung Informatik

P-133	 Heinz-Gerd Hegering, Axel Lehmann, 
Hans Jürgen Ohlbach, Christian 
Scheideler (Hrsg.) 
INFORMATIK 2008	
Beherrschbare Systeme – dank Informatik 
Band 1

P-134	 Heinz-Gerd Hegering, Axel Lehmann, 
Hans Jürgen Ohlbach, Christian 
Scheideler (Hrsg.) 
INFORMATIK 2008	
Beherrschbare Systeme – dank Informatik 
Band 2

P-135	 Torsten Brinda, Michael Fothe,	
Peter Hubwieser, Kirsten Schlüter (Hrsg.) 
Didaktik der Informatik –	
Aktuelle Forschungsergebnisse

P-136	 Andreas Beyer, Michael Schroeder (Eds.) 
German Conference on Bioinformatics	
GCB 2008

P-137	 Arslan Brömme, Christoph Busch, Detlef 
Hühnlein (Eds.)	
BIOSIG 2008: Biometrics and Electronic 
Signatures

P-138	 Barbara Dinter, Robert Winter, Peter 
Chamoni, Norbert Gronau, Klaus 
Turowski (Hrsg.)	
Synergien durch Integration und 
Informationslogistik	
Proceedings zur DW2008

P-139	 Georg Herzwurm, Martin Mikusz (Hrsg.)‏	
Industrialisierung des Software-
Managements	
Fachtagung des GI-Fachausschusses 
Management der Anwendungsentwick
lung und -wartung im Fachbereich 
Wirtschaftsinformatik

P-140	 Oliver Göbel, Sandra Frings, Detlef 
Günther, Jens Nedon, Dirk Schadt (Eds.)‏	
IMF 2008 - IT Incident Management & 
IT Forensics

P-141	 Peter Loos, Markus Nüttgens, 	
Klaus Turowski, Dirk Werth (Hrsg.)	
Modellierung betrieblicher Informations
systeme (MobIS 2008)	
Modellierung zwischen SOA und 
Compliance Management

P-142	 R. Bill, P. Korduan,  L. Theuvsen, 	
M. Morgenstern (Hrsg.)	
Anforderungen an die Agrarinformatik 
durch Globalisierung und 
Klimaveränderung

P-143	 Peter Liggesmeyer, Gregor Engels, 	
Jürgen Münch, Jörg Dörr, 	
Norman Riegel  (Hrsg.)	
Software Engineering 2009	
Fachtagung des GI-Fachbereichs	
Softwaretechnik



P-144	 Johann-Christoph Freytag, Thomas Ruf,	
Wolfgang Lehner, Gottfried Vossen  
(Hrsg.)	
Datenbanksysteme in Business, 
Technologie und Web (BTW)

P-145	 Knut Hinkelmann, Holger Wache (Eds.)	
WM2009: 5th Conference on Professional 
Knowledge Management

P-146	 Markus Bick, Martin Breunig,	
Hagen Höpfner (Hrsg.)	
Mobile und Ubiquitäre 
Informationssysteme – Entwicklung, 
Implementierung und Anwendung	
4. Konferenz Mobile und Ubiquitäre 
Informationssysteme (MMS 2009)

P-147	 Witold Abramowicz, Leszek Maciaszek,	
Ryszard Kowalczyk, Andreas Speck (Eds.) 	
Business Process, Services Computing 
and Intelligent Service Management	
BPSC 2009 · ISM 2009 · YRW-MBP 
2009

P-148	 Christian Erfurth, Gerald Eichler,	
Volkmar Schau (Eds.)	
9th International Conference on Innovative 
Internet Community Systems	
I2CS 2009

P-149	 Paul Müller, Bernhard Neumair, 	
Gabi Dreo Rodosek (Hrsg.)	
2. DFN-Forum 
Kommunikationstechnologien 	
Beiträge der Fachtagung

P-150	 Jürgen Münch, Peter Liggesmeyer (Hrsg.)	
Software Engineering 	
2009 - Workshopband

P-151	 Armin Heinzl, Peter Dadam, Stefan Kirn, 	
Peter Lockemann (Eds.)	
PRIMIUM 	
Process Innovation for 	
Enterprise Software

P-152	 Jan Mendling, Stefanie Rinderle-Ma, 
	 Werner Esswein (Eds.)
	 Enterprise Modelling and Information 

Systems Architectures
	 Proceedings of the 3rd Int‘l Workshop 

EMISA 2009

P-153	 Andreas Schwill, 	
Nicolas Apostolopoulos (Hrsg.)	
Lernen im Digitalen Zeitalter 	
DeLFI 2009 – Die 7. E-Learning 
Fachtagung Informatik

P-154	 Stefan Fischer, Erik Maehle 	
Rüdiger Reischuk (Hrsg.)	
INFORMATIK 2009	
Im Focus das Leben

P-155	 Arslan Brömme, Christoph Busch,	
Detlef Hühnlein (Eds.) 	
BIOSIG 2009: 	
Biometrics and Electronic Signatures	
Proceedings of the Special Interest Group 
on Biometrics and Electronic Signatures

P-156	 Bernhard Koerber (Hrsg.)	
Zukunft braucht Herkunft 	
25 Jahre »INFOS – Informatik und 
Schule«

P-157	 Ivo Grosse, Steffen Neumann, 	
Stefan Posch, Falk Schreiber, 	
Peter Stadler (Eds.)	
German Conference on Bioinformatics 
2009

P-158	 W. Claupein, L. Theuvsen, A. Kämpf,	
M. Morgenstern (Hrsg.)	
Precision Agriculture	
Reloaded – Informationsgestützte	
Landwirtschaft

P-159	 Gregor Engels, Markus Luckey,	
Wilhelm Schäfer (Hrsg.)	
Software Engineering 2010

P-160	 Gregor Engels, Markus Luckey, 
Alexander Pretschner, Ralf Reussner 
(Hrsg.)	
Software Engineering 2010 – 
Workshopband	
(inkl. Doktorandensymposium)

P-161	 Gregor Engels, Dimitris Karagiannis	
Heinrich C. Mayr (Hrsg.)	
Modellierung 2010

P-162	 Maria A. Wimmer, Uwe Brinkhoff, 
Siegfried Kaiser, Dagmar Lück-
Schneider, Erich Schweighofer, 	
Andreas Wiebe (Hrsg.)	
Vernetzte IT für einen effektiven Staat	
Gemeinsame Fachtagung 
Verwaltungsinformatik (FTVI) und 	
Fachtagung Rechtsinformatik (FTRI) 2010

P-163	 Markus Bick, Stefan Eulgem, 	
Elgar Fleisch, J. Felix Hampe, 	
Birgitta König-Ries, Franz Lehner, 	
Key Pousttchi, Kai Rannenberg (Hrsg.)	
Mobile und Ubiquitäre 
Informationssysteme	
Technologien, Anwendungen und 
Dienste zur Unterstützung von mobiler 
Kollaboration

P-164	 Arslan Brömme, Christoph Busch (Eds.)	
BIOSIG 2010: Biometrics and Electronic 
Signatures Proceedings of the Special 
Interest Group on Biometrics and 
Electronic Signatures



P-165	 Gerald Eichler, Peter Kropf, 	
Ulrike Lechner, Phayung Meesad, 	
Herwig Unger (Eds.)	
10th International Conference on
Innovative Internet Community Systems 
(I2CS) – Jubilee Edition 2010 –

P-166	 Paul Müller, Bernhard Neumair, 	
Gabi Dreo Rodosek (Hrsg.)	
3. DFN-Forum Kommunikationstechnologien	
Beiträge der Fachtagung

P-167	 Robert Krimmer, Rüdiger Grimm (Eds.)	
4th International Conference on 
Electronic Voting 2010	
co-organized by the Council of Europe, 	
Gesellschaft für Informatik and 	
E-Voting.CC

P-168	 Ira Diethelm, Christina Dörge,	
Claudia Hildebrandt, 	
Carsten Schulte (Hrsg.)	
Didaktik der Informatik	
Möglichkeiten empirischer 
Forschungsmethoden und Perspektiven 
der Fachdidaktik

P-169	 Michael Kerres, Nadine Ojstersek	
Ulrik Schroeder, Ulrich Hoppe (Hrsg.)	
DeLFI 2010 - 8. Tagung 	
der Fachgruppe E-Learning 	
der Gesellschaft für Informatik e.V.

P-170	 Felix C. Freiling (Hrsg.)	
Sicherheit 2010	
Sicherheit, Schutz und Zuverlässigkeit

P-171	 Werner Esswein, Klaus Turowski, 	
Martin Juhrisch (Hrsg.)	
Modellierung betrieblicher 
Informationssysteme (MobIS 2010)	
Modellgestütztes Management

P-172	 Stefan Klink, Agnes Koschmider	
Marco Mevius, Andreas Oberweis (Hrsg.)	
EMISA 2010	
Einflussfaktoren auf die Entwicklung 
flexibler, integrierter Informationssysteme	
Beiträge des Workshops 
der GI-Fachgruppe EMISA 
(Entwicklungsmethoden für Infor- 
mationssysteme und deren Anwendung) 

P-173	 Dietmar Schomburg, 	
Andreas Grote (Eds.)	
German Conference on Bioinformatics 
2010

P-174	 Arslan Brömme, Torsten Eymann,	
Detlef Hühnlein,  Heiko Roßnagel,	
Paul Schmücker (Hrsg.)	
perspeGKtive 2010 	
Workshop „Innovative und sichere 
Informationstechnologie für das 
Gesundheitswesen von morgen“

P-175	 Klaus-Peter Fähnrich, 	
Bogdan Franczyk (Hrsg.)	
INFORMATIK  2010	
Service Science – Neue Perspektiven für 
die Informatik 	
Band 1

P-176	 Klaus-Peter Fähnrich, 	
Bogdan Franczyk (Hrsg.)	
INFORMATIK  2010	
Service Science – Neue Perspektiven für 
die Informatik 	
Band 2

P-177	 Witold Abramowicz, Rainer Alt, 	
Klaus-Peter Fähnrich, Bogdan Franczyk, 
Leszek A. Maciaszek (Eds.)	
INFORMATIK  2010	
Business Process and Service Science – 
Proceedings of ISSS and BPSC

P-178	 Wolfram Pietsch, Benedikt Krams (Hrsg.)
	 Vom Projekt zum Produkt
	 Fachtagung des GI-

Fachausschusses Management der 
Anwendungsentwicklung und -wartung 
im Fachbereich Wirtschafts-informatik 
(WI-MAW), Aachen, 2010

P-179	 Stefan Gruner, Bernhard Rumpe (Eds.)	
FM+AM`2010	
Second International Workshop on 
Formal Methods and Agile Methods

P-180	 Theo Härder, Wolfgang Lehner, 	
Bernhard Mitschang, Harald Schöning, 	
Holger Schwarz (Hrsg.)	
Datenbanksysteme für Business, 
Technologie und Web (BTW)	
14. Fachtagung des GI-Fachbereichs	
„Datenbanken und Informationssysteme“	
(DBIS)

P-181	 Michael Clasen, Otto Schätzel, 	
Brigitte Theuvsen (Hrsg.)	
Qualität und Effizienz durch 
informationsgestützte Landwirtschaft, 	
Fokus: Moderne Weinwirtschaft

P-182	 Ronald Maier (Hrsg.)	
6th Conference on Professional 
Knowledge Management	
From Knowledge to Action

P-183	 Ralf Reussner, Matthias Grund, Andreas 
Oberweis, Walter Tichy (Hrsg.)	
Software Engineering 2011 	
Fachtagung des GI-Fachbereichs 
Softwaretechnik

P-184	 Ralf Reussner, Alexander Pretschner, 
Stefan Jähnichen (Hrsg.)	
Software Engineering 2011 
Workshopband	
(inkl. Doktorandensymposium)



P-185	 Hagen Höpfner, Günther Specht,	
Thomas Ritz, Christian Bunse (Hrsg.)	
MMS 2011: Mobile und ubiquitäre 
Informationssysteme Proceedings zur 	
6. Konferenz Mobile und Ubiquitäre 
Informationssysteme (MMS 2011) 

P-186	 Gerald Eichler, Axel Küpper, 	
Volkmar Schau, Hacène Fouchal, 	
Herwig Unger (Eds.)	
11th International Conference on
Innovative Internet Community Systems 
(I2CS)

P-187	 Paul Müller, Bernhard Neumair,	
Gabi Dreo Rodosek (Hrsg.)	
4. DFN-Forum Kommunikations-	
technologien, Beiträge der Fachtagung	
20. Juni bis 21. Juni 2011 Bonn

P-188	 Holger Rohland, Andrea Kienle,	
Steffen Friedrich (Hrsg.)	
DeLFI 2011 – Die 9. e-Learning	
Fachtagung Informatik	
der Gesellschaft für Informatik e.V.	
5.–8. September 2011, Dresden

P-189	 Thomas, Marco (Hrsg.)	
Informatik in Bildung und Beruf	
INFOS 2011	
14. GI-Fachtagung Informatik und Schule

P-190	 Markus Nüttgens, Oliver Thomas, 	
Barbara Weber (Eds.)	
Enterprise Modelling and Information 
Systems Architectures (EMISA 2011)

P-191	 Arslan Brömme, Christoph Busch (Eds.)	
BIOSIG 2011 	
International Conference of the	
Biometrics Special Interest Group

P-192	 Hans-Ulrich Heiß, Peter Pepper, Holger 
Schlingloff,  Jörg Schneider (Hrsg.)	
INFORMATIK 2011	
Informatik schafft Communities

P-193	 Wolfgang Lehner, Gunther Piller (Hrsg.)	
IMDM 2011

P-194	 M. Clasen, G. Fröhlich, H. Bernhardt, 	
K. Hildebrand, B. Theuvsen (Hrsg.)	
Informationstechnologie für eine 
nachhaltige Landbewirtschaftung	
Fokus Forstwirtschaft

P-195	 Neeraj Suri, Michael Waidner (Hrsg.)	
Sicherheit 2012	
Sicherheit, Schutz und Zuverlässigkeit	
Beiträge der 6. Jahrestagung des 
Fachbereichs Sicherheit der 	
Gesellschaft für Informatik e.V. (GI)

P-198	 Stefan Jähnichen, Axel Küpper, 	
Sahin Albayrak (Hrsg.)	
Software Engineering 2012	
Fachtagung des GI-Fachbereichs 
Softwaretechnik

P-200	 Gero Mühl, Jan Richling, Andreas 
Herkersdorf (Hrsg.)	
ARCS 2012 Workshops
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