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Abstract: The quality of the extracted gait silhouettes can hinder the performance
and practicability of gait recognition algorithms. In this paper, we propose a frame-
work that integrates a feature fusion approach to improve recognition rate under this
situation. Specifically, we first generate a dataset containing gait silhouettes with vari-
ous qualities based on the CASIA Dataset B. We then fuse gallery data with different
qualities and project data into embedded subspaces. We perform classification based
on the Euclidean distances between fused gallery features and probe features. Experi-
mental results show that the proposed framework can provide important improvements
on recognition rate.

1 Introduction

As the only biometric source that can be acquired at a distance, gait recognition has drawn

great attention over the past decade. Various algorithms have been proposed for individ-

ual gait recognition, which can be classified as model-based or model-free approaches.

Model-based approaches rely on the extraction of parameters from the subjects’ body and

walking cycle to construct a structural model of human motion [WZW+12]. Model-free

approaches, on the other hand, rely on spatio-temporal representations of gait, which may

be directly obtained from the acquired gait sequences. These approaches, in general, pro-

vide high recognition accuracy with low computational cost, as they usually use binary

silhouette images to represent gait sequences.

Unfortunately, gait is not as reliable as other biometric traits such as fingerprints and iris

[HB06][SPL+05]. Factors such as age, clothes, walking surfaces, viewing angles, and

health condition may result in poor recognition performance. Furthermore, recognition

efficiency may be hindered if the associated gallery and probe gait silhouettes are acquired

under different situations. The quality of the gait silhouette can be influenced, for example,

by the background environment when capturing gait sequences and the accuracy of the
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segmentation method used to detect the gait silhouette. A detailed review of gait databases

and algorithms can be found in [MMN+15].

The effect of the gait silhouette quality on the performance and practicability of model-free

gait recognition algorithms is an important issue that has been less intensively studied and

only a limited number of solutions are reported in the literature. Sarkar et al. [SPL+05]

discuss several cases when gait silhouette segmentation errors occur in the HumanID Gait

Challenge Problem data set due to the shadow of the individuals, varying lighting condi-

tions and moving objects in the background. In [LS05], Liu and Sarkar observe that the

drop in gait silhouette segmentation quality may lead to a decrease in recognition accuracy.

They also observe that if gallery and probe gait sequences are captured under the same con-

ditions, and are segmented by the same method, the recognition accuracy may be high even

if the data quality is poor. Zhang et al. [ZPCF10] address the issue of poor recognition

accuracy when low-resolution gait silhouettes are used. The authors propose to combine

super-resolution with multi-linear tensor-based learning without parameters (SRMTP) to

overcome this problem. However, they test their algorithm on artificial dataset, and thus

the issue of silhouette quality remains unexplored in practical scenarios. Recently Shaikh

et al. [SSC14] propose a partial silhouette-based approach that extracts the hand dynamics

as gait signatures, and claim to be efficient on incomplete or distorted silhouettes. How-

ever, no result is provided about the performance on low-quality silhouette.

In this work, we consider the situation in which the gait data related to an individual to be

recognised (probe data) are not captured under ideal conditions, and therefore the associ-

ated gait silhouettes may be noisy and inaccurately segmented; whereas the stored gait data

(gallery data) are well segmented, or vice versa. This is a common situation encountered

in practice; for example, when the probe data is captured using CCTV cameras at low res-

olution and poor quality, but the gallery data is previously captured under ideal conditions

and it is not feasible to re-capture the probe data under the same ideal conditions. Based

on this scenario, we employ various segmentation algorithms to generate different silhou-

ette quality data using sequences from the CASIA Dataset B. A subspace learning method

is then used to find a low dimension feature subspace. A fusion strategy is employed to

fuse gallery data of different quality levels, and the fused gallery data is then matched with

the probe data in the feature space. We employ two popular subspace learning methods,

namely, Linear Discriminant Analysis (LDA) [WC11], and Locality Preserving Projection

(LPP) [BHK97], to confirm the improvement brought by fusion approach. Experimental

results show that the fusion strategy attains high recognition accuracy, making it a promis-

ing solution to reduce the negative effects of poor gait silhouette quality on individual

recognition.

The rest of the paper is organized as follows. Section 2 briefly reviews the subspace learn-

ing methods used in this work. Section 3 details the proposed framework. Section 4

presents the experimental results and related discussions. Finally, Section 5 draws conclu-

sions.
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2 Subspace learning methods

Gait Energy Image (GEI) [HB06] is an effective gait representation for individual recog-

nition as it reduces computational cost as well as storage space. This work employs such

GEIs. Let us assume there are N gait silhouettes, represented as binary images, in one gait

period. A GEI G(x, y) is defined as G (x, y) = 1

N

∑N

k=1
Ik(x, y), where Ik(x, y) is the

kth binary image, and (x, y) denotes the pixel coordinates. Examples of GEIs are shown

at the rightmost column of Fig. 2.

Consider n GEI samples that are stored as d-dimensional column vectors in a matrix

X = {x1, ...,xn}, xi ∈ R
d, i ∈ {1, 2, ..., n}. Let W be the transformation matrix

that projects the original space onto an r-dimensional subspace, where d 1 r. The new

feature matrix in the subspace is denoted as Y = {y1, ...,yn}, where yi ∈ R
r. The

transformation matrix for each element is given by yi = WTxi, i ∈ {1, ..., n}. Matrix W
varies according to the subspace learning method used.

2.1 Dimentionality Reduction: PCA

PCA is used as an approach to avoid singularities in further covariance matrix calculations

[WC11], for example in LDA and LPP. PCA seeks a compact representation of patterns in

a feature subspace. The columns of the PCA transformation matrix WPCA are calculated

by solving the eigen-decomposition problem λiei = Sei, where λi and ei are the corre-

sponding eigenvalues and eigenvectors, respectively, and S = 1

n

∑n

i=1
(xi − µ)(xi − µ)⊤

is the covariance matrix of the original sample matrix X , where µ is the sample mean,

µ = 1

n

∑

xi, i ∈ {1, 2, ..., n}. Matrix WPCA is then composed by column eigen-

vectors corresponding the rth highest eigenvalues; WPCA = {e1
′, e2

′, ..., er
′}, where

ej
′, j ∈ [1, r] is the jth eigenvector.

2.2 Discriminant Analysis: LDA

Compared to PCA, LDA embeds discriminant power between different classes in the fea-

ture subspace, which makes it a supervised subspace learning method suitable for multi-

class learning problems. Assuming there are c classes in X , with nl samples in subset Xl,

l ∈ {1, 2, ..., c}, so that n =
∑c

l=1
nl; the within-class scatter matrix SW is then defined

as: SW =
∑c

l=1

∑

x∈Xl
(x − µl)(x − µl)

⊤, and the between-class scatter matrix SB is

defined as: SB =
∑c

l=1
(µl − µ)(µl − µ)⊤, where µl is the mean of the samples in class

l, and µ is the mean of all samples. In order to maximize between-class scatter while

minimizing within-class scatter after projection, the following criterion is used:

WLDA = argmax
W

|W⊤SBW |

|W⊤SWW |
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where WLDA is the transformation matrix, whose columns are the generalised eigenvec-

tors {e1, e2, ..., er} that correspond to the largest eigenvalues in SBWLDA = λiSWWLDA.

2.3 Manifold Learning Method: LPP

LPP tends to preserve the local data structure after projecting the data onto a subspace
[HN03]. It first constructs an adjacency graph G to model the local structure of the sam-
ples. The adjacency graph has n nodes, with node i corresponding to xi in X. A pair
of nodes i and j are connected if xi and xj are close in the space. The elements of the
weighted similarity matrix A, which specifies the similarities among nodes in G, are for-
mulated as follows:

Aij =







exp
(

−‖xi−xj‖
2

t

)

, if nodes i and j are connected,

0, otherwise.
(1)

The heat kernel parameter t ∈ R can be determined empirically; if t is very large,

exp
(

−‖xi − xj‖
2/t

)

= 1 and matrix A comprises binary weights. Two possible ways

exist to determine if nodes are close:

1. K nearest neighbours: if xi is among the K nearest neighbours of xj, or vice versa;

2. ε-nearest neighbours: if ‖xi − xj‖
2 < ε, ε ∈ R.

The eigen-decomposition problem of LPP is generalized as

XLX⊤WLPP = λXDX⊤WLPP ,

where D is a diagonal matrix with Dii =
∑

j Aij , and L is the Laplacian matrix L =
D − A. The Laplacian of the graph is an approximation of the Laplace-Beltrami oper-
ator. The transformation matrix WLPP = {e1, e2, ..., er}, and {λ1, λ2, ..., λr} are the
corresponding r smallest eigenvalues. The feature subspace created by WLPP can pre-
serve an intrinsic geometric structure of the manifold samples [HN03][HYH+05][BN03].
LPP can perform supervised learning by assigning a weight equal to 0 to all between-class
similarity matrix values. The total similarity matrix A is then given as follows:

A =







A1 · · · 0

...
. . . 0

0 0 Ac






(2)

In our experiments, we employ supervised LPP.

3 Proposed Framework

The block diagram of the proposed framework is shown in Fig. 1. We first generate the

GEIs with different qualities for the training, gallery and probe data. Using the train-

ing data, we compute the transformation matrix corresponding to the subspace learning
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Figure 1: Block diagram of the proposed framework.

Table 1: Gait silhouette quality levels and the corresponding notations

Quality Segmentation approach used

Q.1
Approach 1: BS method using Otsu’s

threshold

Q.2
Approach 2: Normalised BS method

plus dilation & erosion

Q.3
Approach 3: BS method with small

threshold

Q.4
Approach 4: Frame differentiation

plus dilation & erosion

Q.5 Approach 5: GMM & EM method

Q.6 Approach 6: LMedS method

method. We fuse gallery data with a set of weights computed by least square fitting. Fused

gallery data and probe data are transformed into fused gallery features and probe features

in a lower dimension space. Finally, we measure the similarities between fused gallery

features and probe features.

3.1 Segmentation algorithms

In order to create gait silhouettes of different qualities, we combine different background

subtraction (BS) methods with de-noising methods to create four different silhouette seg-

mentation approaches. We also employ the Gaussian Mixture Model and Expectation

Maximization(GMM and EM) method [SPL+05], and Least Median of Squares (LMedS)

method [WTNH03], as additional segmentation approaches. The segmented silhouettes

obtained by each of these approaches is used to generate binary images (and GEIs) at a

specific quality. The quality levels and the corresponding segmentation approaches used
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Figure 2: Sample gait silhouette binary images and their corresponding GEIs (right -most column)
computed at six different qualities for the same subject.

are listed in Table 1. The segmentation approaches are explained in the following para-

graphs.

Approach 1: A pixel is marked as foreground if |It −Bt| > threshold, where It refers to

an image with both foreground and background objects and Bt contains only background

objects. The threshold is set using Otsu’s method[SS04].

Approach 2: The background image is normalized to eliminate the negative effects of

noise, i.e. |It − avgBt| > threshold, where avgBt = Bt/
∑

pi,j , pi,j refers to the value

of pixel i, j in Bt. The threshold is set using Otsu’s method. As the obtained foreground

may comprise several disconnected regions, dilation and erosion operations are performed

to generate the final foreground.

Approach 3: A small threshold is used in order to introduce a distinct contrast in the

segmented silhouettes and to include more background objects in the foreground; namely

|It −Bt| > threshold/3. The threshold is set using Otsu’s method.

Approach 4: Frame differentiation is used to mark the moving foreground pixels, It −
It−1 > threshold, where the threshold is set using Otsu’s method. In addition, dilation

and erosion operations are used in order to connect the disconnected regions comprising

the foreground.

Approach 5: The GMM and EM method, as introduced in the baseline algorithm of Sarkar

et al. [SPL+05].

Approach 6: The LMedS method, as is introduced in [WTNH03], and provided in the

CASIA B dataset.

Six silhouette qualities are generated for each gait sequence, including the original silhou-

ette provided by CASIA B dataset denoted as Q.6, as summarized in Table 1. This different

qualities allow representing differences between the quality of the probe and gallery data.

For each quality, we compute the corresponding GEIs following the work of Han et al.

[HB06]. Fig. 2 shows visual samples of silhouettes and corresponding GEIs computed for

the different qualities.

54



3.2 Feature extraction

Different subspace learning methods may be used to project the data onto a feature sub-

space. In this work, to avoid singularity problems in computation, we employ PCA be-

fore implementing LDA, or LPP. The generated transformation matrix Wtrans is then

Wtrans = W⊤
s W⊤

PCA, where s ∈ {LDA,LPP}.

3.3 Similarity computation

The feature sets after projection are:

{ĝ} : ĝi = WtransGi

{p̂} : p̂j = WtransPj

(3)

where i = {1, 2, ..., n1}, j = {1, 2, ..., n2}, and n1, n2 are the total number of GEIs in

gallery and probe data sets, respectively. The centroid of class l in {ĝ} is calculated as

mgl =
1

nl

∑

ĝ∈ĝl
ĝi, where ĝl is the set of gallery feature vectors in class l. The centroid

of class l in {p̂} is calculated in the same way and is denoted as mpl. The classifier is then

defined as:

D(mgl,mpi) = ‖mpi −mgl‖, i = 1, 2, ...c. (4)

If D(mgl,mpl) = minci=1 D(mgl,mpi), the probe feature vector is assigned to the right

class label.

4 Experimental evaluation

In order to evaluate the framework, we use the gait sequences of CASIA B dataset to

generate the GEIs at different qualities. CASIA B dataset comprises video sequences

for 124 individuals. The frame size is 320×240, and the frame rate is 25 fps. As this

work aims at studying the effect of gait silhouette quality on recognition, other factors

that may influence the recognition performance are excluded. Therefore, only normal

gait sequences are chosen form CASIA B, without the factors of carrying bags, different

clothes, different view angles, etc.

4.1 Evaluation without subspace learning

We first evaluate the performance with no dimensionality reduction or subspace learning

method. The matching rates in percentage are tabulated in Table 2. Two observations can

be drawn from the table:
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Table 2: Matching rates between gallery data (G) and probe data (P) without dimensionality reduc-
tion and subspace learning. (%)

G

P
Q.1 Q.2 Q.3 Q.4 Q.5 Q.6

Q.1 85 12 7 10 80 70

Q.2 12 67 17 8 10 35

Q.3 17 15 78 5 17 8

Q.4 15 8 5 38 18 15

Q.5 83 12 7 13 83 63

Q.6 58 25 5 10 43 97

1. The entries in the main diagonal represent the matching results between gallery and

probe data of the same quality. These values are usually the highest values in each

row which shows that when both gallery and probe data have the same quality, even

if the quality is poor, the best matching results are attained. In our experiment, it

is shown that silhouettes of quality Q.1 and Q.5 have smaller distances (i.e., the

matching rate between them is relatively high), which means the quality is similar,

even though the segmentation algorithms are totally different.

2. The entries outside the main diagonal show that the discrepancy in gait silhouette

quality between gallery and probe data indeed decreases the recognition accuracy.

In some cases, the matching rate between data segmented using the same algorithm

can also be very low, which indicates that the segmentation algorithm may be inap-

propriate for the video source (see for example Q.4 matched with Q.4).

4.2 Evaluation with subspace learning

Tables 3 and 4 tabulate the average matching rates in percentage, after using PCA+LDA

and PCA+LPP respectively. It is important to recall that in practical cases, the quality

of the gallery and probe data may differ. It is then important for recognition algorithms

to maintain a high accuracy even in this situation. Therefore, we measure the similarity

between each individual in the probe data set against all individuals in the gallery data set

for all qualities except for the quality of the probe data. This scenario corresponds to the

empty entries in Table 3 and Table 4. These two tables show that by using dimensionality

reduction plus a subspace learning method, matching rates can be considerably improved.

Note that LPP can effectively deal with poor quality matching, i.e., qualities different from

Q.6, while LDA appears to perform better than LPP with high quality matching, i.e., Q.6

data.
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Table 3: Matching rates between gallery data (G) and probe data (P) using PCA+LDA (%)

G

P
Q.1 Q.2 Q.3 Q.4 Q.5 Q.6

Q.1 73.3 63.3 28.3 93.3 95

Q.2 85 86.7 31.7 75 90

Q.3 71.7 73.3 28.3 70 83.3

Q.4 61.7 51.7 71.7 58.3 70

Q.5 95 73.3 63.3 23.3 96.7

Q.6 85 70 66.7 28.3 85

4.3 Evaluation with fusion strategy

We propose to further improve the performance of subspace learning methods by fusing

gallery data before matching with probe data features. Specially, we fuse the multi GEI

representation of the gallery subjects, which consists of various quality levels, into one

GEI representation.

Before feature space transformation, we compute a set of weights to be used in fusion

strategy. In this experiment, for each probe data of a specific quality, there are gallery

data of 5 different qualities available for fusion. For example, for probe data of quality

Q.1, we fuse gallery data of all qualities except quality Q.1. The set of weights for fusion

are computed using least squares fitting. Specifically, we aim to find the combination

of weights for the gallery data centroids, i.e., gallery data of different qualities, that best

match the centroid of the probe data of a specific quality. Let us denote the set of GEI

vectors in the gallery set as G = {g1,g2, ...,gn}, for n different qualities. Let us also

denote the probe GEI vector as p. The set of weights w = {w1, w2, ..., wn} for the gallery

data of n different qualities is then computed as follows:

w = argmin
w

‖G ∗w⊤ − p‖. (5)

These weights are then used to fuse gallery data into Gf :

Gf =
n
∑

i

gi ∗ wi, i ∈ {1, 2, ..., n}. (6)

After fusion, the gallery data is projected into the feature space, where similarities are

measured between probe and the fused gallery features. The results of this experiment are

shown in Table 5. In this table, for comparison, we average the column rates of Table 3

and 4, and denote them as ’LDA’ and ’LPP’ respectively.
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Table 4: Matching rates between gallery data (G) and probe data (P) using PCA+LPP (%)

G

P
Q.1 Q.2 Q.3 Q.4 Q.5 Q.6

Q.1 71.7 75 28.3 96.7 93.3

Q.2 83.3 85 35 83.3 93.3

Q.3 78.3 73.3 26.7 75 83.3

Q.4 66.7 53.3 63.3 66.7 65

Q.5 96.7 68.3 68.3 26.7 93.3

Q.6 88.3 65 66.7 20 91.7

Table 5: Average matching rate of six different quality gallery data (G) and probe data (P) us-
ing PCA+LDA (LDA) and PCA+LPP (LPP), and the matching rate of fused gallery data using
PCA+LDA with feature fusion (LDAF) and PCA+LPP with feature fusion (LPPF)(%)

G

P
Q.1 Q.2 Q.3 Q.4 Q.5 Q.6 Average

LDA 81 72 74 32 79 88 68.2

LDAF 75 78.3 93.3 35 93.3 95 78.3

LPP 84 72 75 31 85 90 69.4

LPPF 78.3 75 90 31.7 95 95 77.5

4.4 Discussions

In cases when the data quality in the gallery set is different from that of the data in the

probe set, the performance of recognition algorithms may be poor, making it hard to chose

a dependable classifier. The fusion strategy proposed in this work finds the combination

of gallery data that has a minimum distance to the probe data. This is done by finding

a set of weights using least square fitting, which is efficient and parameter-free. In our

experiment design, we assume that the silhouette quality of probe data does not match any

of the quality in gallery data, which would be more frequently occurred for practical cases.

As show in Table 5, this strategy can considerably improve recognition performance under

such circumstances. It is important to mention that by introducing least square fitting, the

multi-quality gallery data is fused to best fit the probe data, which is similar to the case

where gallery and probe data are equally segmented, i.e. the diagonal data in Table 2.

5 Conclusion

This paper presented a framework for GEI-based gait recognition for cases when a dis-

crepancy in quality between gallery and probe data exists. The motivation is to tackle the

problem where gallery and probe data are segmented using different algorithms. To this

end, we generate GEIs with different qualities in order to represent segmentation inaccura-

cies commonly encountered when dealing with low quality data. To perform recognition,
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we study the use of subspace learning methods after dimensionality reduction by PCA.

Simulation experiments on the CASIA B dataset using LDA and LPP indicate that gait

recognition is indeed affected if the quality of the probe data set differs from that of the

gallery data set. Results also suggest that important improvements in matching rate may

be attained when subspace learning methods are used, since the feature subspace finds the

best projection to match probe with gallery features of the same quality level. The paper

also presented a fusion strategy that fuses gallery data of different qualities before fea-

ture space transformation. Experiments showed that this fusion strategy, which employs a

number of weights, can further improve matching rates.
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