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Abstract 
This paper takes as a starting point Walter Vincenti's seminal book, "What Engineers Know and How They 
Know It," and explores the implications for interactive system design of some of his observations on 
engineering knowledge. In particular, it discusses the obstacles designers face in accessing relevant 
knowledge, and their consequent difficulties in engaging in design. The paper suggests that a crucial step in 
building knowledge about interactive system design knowledge is the establishment of critical parameters 
concerning the human activity that the application supports. It concludes with a discussion of the implications 
for innovative system design. 

1 Introduction 
Those who design and build software systems for direct use by people and organisations play 
an increasingly important role in society. These are, almost universally, interactive systems 
that are operated directly by their users via the system's user interface Their designers must 
try to respond to users' demands for improved services and productivity by developing new 
applications. They must be prepared to follow up, when their designs are successful, with 
more powerful and reliable systems that keep pace with users' expanding needs. There is 
constant pressure on the designers of interactive systems to do more and to do it better. 

In this paper I am concerned, not so much with whether software engineers are doing a good 
enough job of designing interactive systems, but how in the first place they can acquire the 
knowledge they need to do their job. In effect, I take as my starting point a paraphrase of a 
remark of Walter Vincenti's [27]: what software engineers do depends on what they know. 
My interest is to understand what software designers need to know, where this knowledge is 
to be found, whether there are significant barriers to the growth of knowledge about 
interactive systems and, if so, what effects these barriers might have. 

To address this topic, I have chosen to try to apply general theories about engineering design 
knowledge to the special case of software design. There are dangers in adopting this 
approach, for it is not unanimously accepted that software design can be treated as an 
engineering exercise [29]. However, I try in the course of this paper to provide evidence that 
my approach is a sound one, and that it is valid to talk about interactive system design as 
"software engineering." 

I therefore begin by outlining a basic taxonomy of engineering design knowledge, and then 
provide some evidence that it applies to software design. When applied to the design of 
interactive systems it yields interesting results, especially when contrasted with the design of 
embedded software, i.e., the non-interactive systems and components that support interactive 
software. I conclude that it is particularly hard for designers of interactive systems to acquire 
the knowledge they need. I have some final comments on how this affects innovation in 
interactive applications. 
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2 A taxonomy of engineering design knowledge 
As I have pointed out, the question of how growth in engineering knowledge occurs is in 
effect two questions: what kinds of knowledge do engineers depend upon, and what causes 
this knowledge to accumulate? My first task is therefore to answer the first sub-question, by 
enumerating some major categories of engineering design knowledge, and elaborating on the 
categories in discussing how they contribute to design. I then compare the taxonomy with the 
findings from studies of software designers' knowledge. 

2.1 A taxonomy 

As a first cut at the categorization of engineering knowledge, I offer the following five 
categories, drawn from a number of previous analyses of engineering design [24, 23, 27]: 

1 Domain knowledge relating primarily to designed artefacts and their constituent 
technologies 

2 Domain knowledge relating primarily to environments in which artefacts are used 
3 Knowledge of representations, particularly those applied to describing aspects of the 

domain 
4 Known techniques for analysing the design or for simulating the proposed artefact's 

behaviour 
5 Knowledge of the critical parameters against which the artefact's performance is 

measured. 

The list is not exhaustive. It deliberately omits two categories of knowledge that play roles in 
software design, namely knowledge of procedures and processes, and general knowhow and 
rules of thumb. I do not regard this omission as crucial to the arguments I will lay out here. 

2.2 Fitting the taxonomy to descriptions of engineering design 

Accounts of engineering design refer frequently to the five categories of knowledge listed 
above. Henry Petroski [21], for example, describes structural engineering design thus (my 
own category numbers in brackets): "As each hypothetical arrangement of parts [1] is 
sketched either literally or figuratively on the calculation pad or computer screen [3], the 
candidate structure must be checked by analysis [4]. The analysis consists of a series of 
questions about the behavior of the parts under the imagined conditions of use after 
construction [2]." In a similar vein, Rogers identifies the engineer's need "to determine the 
size and shape of a piece of equipment [1] to perform a specified duty [5], or to predict the 
performance of the design [4] when it is called upon to function under other operating 
conditions [2]" [23]. 

A particularly thorough treatment of design can be found in Herbert Simon's book 77?*? 
Sciences of the Artificial, in which he identifies roles for all of the taxonomy's components 
[24]. He places particular emphasis on the distinction between the "inner" environment of 
design—the substance and organization of the artifact itself [1]—and the "outer" environment 
in which the artefact operates [2]. He goes on to discuss designers' frequent difficulty in 
predicting how their designs will behave [4], the influence of choice of representation on 
design problem solving [3] and so-called "figures of merit" that permit comparison between 
designs [5]. 
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2.3 How the taxonomy fits software design 

Do these accounts of engineering design apply to the design of software? Or is software 
design fundamentally different in its knowledge requirements? Answers to these questions can 
be found in the studies of programmers and software designers by Adelson and Soloway [1], 
Visser [28], Guindon [12] and others. To a large extent the studies confirm that software 
designers do rely on the same five categories of knowledge and, in this respect, go about their 
work like other engineering designers. 

For example, reliance on knowledge of existing designs can be seen in virtually every study of 
software design. Designers tend to start with a schema or model of the solution, which they 
construct from past experience or from a supplied solution. If the problem is familiar to them, 
the schema is likely to be well-formed and easily specified [1]. If the problem is unfamiliar, 
software designers are still likely to reuse an existing tested design, even though its adaptation 
to the new problem may be timeconsuming [12]. 

Software designers also rely on their knowledge of the environment of use. Like the engineers 
described by Petroski and Rogers, they apply their knowledge to constructing scenarios of use, 
which are then used in simulating the performance of the design. Guindon, for example, 
describes how designers of a lift control system created hypothetical configurations of the lifts 
for the purpose of testing designs [12]. Scenario-based simulation can be observed helping the 
designer to understand the behaviour of the system as a whole. Not surprisingly, designers 
who lack familiarity with the environment of use have difficulties constructing scenarios and 
are less able to simulate their designs' performance [1]. 

Knowledge of notations and other representations can also be seen contributing to software 
design. Experienced designers will often search among the notations familiar to them in order 
to choose one suitable for the problem [12]. If they are less experienced, they may go to the 
extreme of adopting a familiar notation to prepare the design, subsequently translating the 
finished design to the required notation [28]. 

2.4 Where the taxonomy falls short 

There is plenty of evidence, therefore, of software designers' reliance on domain knowledge 
and on familiarity with representations; but what about techniques for analysis and simulation, 
and what about critical parameters? These kinds of knowledge are also in evidence, but not in 
great quantities. 

The designers studied by Adelson and others showed no inclination to apply analytical 
techniques to the evaluation of their designs. Their simulation methods can only be regarded 
as primitive. They relied on simple inspections and scenario walkthroughs, whose purpose 
was just to check the functioning of the designs, and not to predict their performance. The 
almost total lack of attention to performance analysis is surprising, because programmers are 
known to take pride in squeezing speed improvements out of programs. 

Software designers also showed little awareness of critical performance parameters. No 
"figures of merit" are mentioned in the studies; instead designers appear to adopt their own 
preferred evaluation criteria, such as reliability or simplicity. They use these to guide the 
choice of solution, but never apply any overall performance targets [12]. 

Again, the reason may lie in the designers' lack of experience with similar problems. Although 
presented with a precise problem definition, they mostly tended to continue elaborating on the 
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stated requirements and constraints during design, illustrating software designers' well-known 
proclivity for "requirements drift." By continually adjusting the functional requirements for the 
system, they lost track of critical performance parameters as potential design targets. 

3 Software designers' acquisition of knowledge 
On the basis that it is valid to apply the knowledge taxonomy to software design, I will now 
look at the means available to software designers to acquire the knowledge they need. This is 
an exercise that has been carried out before, e.g., by Denning [7] and Curtis et al. [6]. 
However, these studies have not distinguished between the design of embedded software and 
interactive systems. Do designers in these two areas face the same problems in accessing 
information? 

In answering these questions I have had to switch to a more subjective approach, because 
there is so little published information on how software designers acquire knowledge. I hope 
nevertheless to convince readers that the two problems of information access, concerning 
embedded software and interactive systems respectively, are significantly different problems, 
because of fundamental differences in the nature of the information. 

3.1 Knowledge in support of embedded software design 

What do the designers of embedded software need to know? And how can they come about 
this knowledge? To answer these questions I will look in turn at the taxonomy's five main 
categories of knowledge. 

Domain knowledge about embedded software artefacts can be acquired from published 
accounts. Textbooks lay out a range of solutions, traditionally as coded algorithms but 
increasingly as object descriptions [9]. There are journals and conferences devoted to specific 
types of software systems, such as operating systems, distributed systems, image processing, 
computer graphics, databases, and so forth. Articles and papers describe new algorithms and 
compare them with past solutions. By reading this literature the software designer can gain 
familiarity with a range of designs, from which he or she can develop a schema for a new 
design problem. The fact that designs are presented as algorithms or patterns assists this 
process. 

The same literature provides examples of the environments in which embedded software 
artefacts are used, because these environments are software systems too. They may not 
always be described to the same level of detail as are components, but they support the 
generation of scenarios for use in testing the design of the embedded component. A superficial 
knowledge of a CAD system will, for example, enable the designer of a graphics package to 
simulate the latter's performance in generating a display. 

The representations needed in embedded software design are essentially those for the 
specification of software. They include programming languages, data representations, state-
transition notations and the various other graphical notations offered by the software 
engineering methodologies [14]. Software designers get to know these representations early 
in their careers. 

Techniques for the analysis of embedded software designs form a less explicit part of the 
designer's knowledge. There are, as I pointed out earlier, techniques for inspecting code and 
conducting walk-through analyses [2]. More rigorous methods of algorithmic analysis are also 
available, although empirical evidence suggests that these are used comparatively rarely. From 
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these analyses the designer can gain a rough idea of the software system's performance. 
However, an alternative to analysis is always available, in the form of prototyping and testing. 
Through a combination of these, the designer is generally able to evaluate the design to an 
adequate level. 

Finally, the critical parameters against which embedded software is tested appear to be widely 
understood. A number of universal parameters are applied to most software designs: speed of 
execution, reliability, use of resources. Speed, often the primary consideration, may be 
measured in terms of performance of standard benchmarks, or in terms of dimensions of the 
problem domain; thus speed may be proportional to n2 or log(w). The existence of critical 
parameters that are tacitly agreed among designers, and localised to the embedded component 
in question, enables designers to set and achieve specific performance targets. 

3.2 Knowledge in support of interactive system design 

For the designer of an interactive system, acquisition of relevant knowledge is a very different 
matter. Again, the differences can be appreciated by looking at each type of knowledge in 
turn. 

Like embedded systems, interactive systems are described in the literature. Furthermore, and 
unlike most embedded systems, they can sometimes be experienced first-hand, for example in 
the form of cash machines and on-line library catalogues; and some of them can even be 
purchased in computer stores for personal use. In a sense, therefore, knowledge about 
interactive systems is particularly accessible to designers. However, the availability of this 
knowledge is distinctly uneven: if the application cannot be purchased or accessed publicly, 
information about it is likely to be very hard to obtain. The "organisational" systems used by 
banks, police services, hospitals, government offices and military personnel are kept under 
wraps for the most part. Very few descriptions can be found in the literature, and then they 
are usually very superficial. Even the most celebrated organisational applications, such as the 
SAGE air defence system and the Sabre airline reservation system, have been documented to 
only a most perfunctory degree [8, 5]. As a result, designers' knowledge is steeply skewed 
towards those designs that are readily accessible. 

The environments in which interactive systems are used are environments of human activity, 
altogether different from the software-systems environments in which embedded components 
are used. Learning about these environments is, again, relatively easy when access to the 
environments is itself easy. However, the difficulty here for the designer is to know what are 
suitable scenarios against which to test the design. It is tempting for the designer to say, "This 
is how / would use the system," but this carries a risk of applying a scenario that is weighted in 
the system's favour. Discovering patterns of behaviour in application environments is a 
specialised task, and few software designers have the skill or the time to carry it out. As a 
result there is a constant danger that interactive software will be designed on a basis of 
relatively superficial knowledge of the environment of use. 

One of the barriers to disseminating domain information about interactive systems is the 
relative lack of suitable representations. The designs of interactive systems are difficult to 
describe because they involve many linked software components and have complex, dynamic 
user interfaces. The notations for describing such systems are less well developed, in 
comparison with the notations for algorithms and software objects. So even when details of 
interactive systems are published, weaknesses in the descriptive representations may prevent 
designers from finding out what they need to know. For example, when details of the Xerox 
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Star system were made public in a number of articles [13, 25, 26], the descriptions appear to 
have been inadequate for those who tried to replicate what Xerox had built [30]. 

Designers of interactive systems are poorly equipped with analytical tools. The techniques 
available to the embedded software designer do not apply here, because the problem is to 
analyse and predict the behaviour of an interactive system in the hand of its users. This is a 
complex domain of analysis, and there is a tendency for analysis to be timeconsuming and 
difficult to learn. Some simple methods have been developed, including Keystroke-Level 
Analysis and Cognitive Walkthroughs [3, 22, 17]. However, they do not appear to have 
achieved widespread use. 

Perhaps the most pervasive problem for the designers of interactive systems is the lack of 
known critical parameters, analogous to the execution-speed parameters that govern the 
design of most embedded software components. In the case of specialised applications, such 
as cash machines, critical parameters do tend to be known within the organisations that 
develop them, but are unavailable to other designers. A well-documented example of this is 
the study, known as "Project Ernestine," of workstations for toll-and assistance operators, or 
TAOs [11]. In this application the time taken by the TAO to complete each call is a critical 
parameter in the workstation's design; however, the times are different for each type of call, 
and information about times and call-types is considered confidential by telephone companies 
[10]. Each application has its own critical parameters; in many cases, the research has not yet 
been done to establish what they are. 

In summary, therefore, the design of interactive systems is significantly less well provided with 
essential information, and levels of knowledge in designers are bound to be lower as a result. 
Particular problems are patchiness in knowledge of existing designs, superficial knowledge 
about application environments, and an almost complete dearth of knowledge about the critical 
parameters that apply to individual applications. 

3.3 Is this engineering? 

With so many barriers in the way of acquiring knowledge, we might find it hard to view 
interactive system design as an engineering activity. After all, if engineering design is a 
knowledge-dependent activity, and the knowledge is unavailable, can engineering design be 
said to take place? 

The answer lies, I believe, in the evidence that application designers try, in almost every case, 
to access the information they need to design and build systems in an organised way; and this 
organised use of available knowledge is the ultimate stamp of the engineer [23]. Even if they 
abandon the search for information in some areas, e.g., for information regarding existing 
solutions to the problem at hand, they will still attempt to search methodically for it in others. 
They will not start from scratch unless there is no alternative. I would claim, therefore, that 
we are discussing a design practice that exhibits the main features of an engineering activity. 
As such, we can compare it with other engineering practices and use them as a basis for 
understanding how interactive system design might develop into a stronger discipline. 

3.4 The search for critical parameters 

I have mentioned the problem of identifying critical parameters for interactive systems, and I 
will wrap up this section by expanding on this problem and suggesting how it might be 
attacked. 
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The essence of a critical parameter is that it provides a basis for quantifying a requirement. 
Vincenti quotes an example in his study of the development of requirements for aircraft flying 
qualities [27]. By means of extensive testing, engineers were able to isolate the parameter 
stick force per g acceleration as a basic determinant of maneuverability. Once this parameter 
had been identified, and accepted by the aircraft industry, it became a standard means of 
specifying flying qualities. Vincenti quotes figures of six pounds per g on fighter-type aircraft 
and up to 50 pounds per g on bombers and transports. He adds, "Aeronautical engineers 
today express amazement that any meneuverability criterion besides stick force per g ever 
existed." One of the hallmarks of engineering is, I claim, this tendency for critical parameters 
to become tacitly and universally accepted [18]. 

As I have said, critical parameters are different for each application. The parameter governing 
the design of TAO workstations—call-completion time—cannot be assumed to apply to calls 
to directory-assistance or ambulance-service operators [15]. The reason for this variation lies 
in the dependence of application-design parameters on the supported activity. If the activity 
changes, critical parameters may no longer apply. 

In comparison with other fields of engineering, very little research has been done into 
establishing critical parameters for software systems, of any category. As regards embedded 
systems, the tendency has been to assume that the standard parameters—speed, reliability, use 
of resources, etc.—apply in all cases. In the design of interactive systems, the main concern 
has been to provide adequate functionality (where "adequate" can mean "more than the 
competitor's"). A secondary concern has been usability; but the establishment of an interactive 
system's usability often includes deciding what to measure, and different parameters—not 
necessarily critical to the application—may be selected on an arbitrary basis for each usability 
evaluation. 

The difficulty of determining critical parameters for interactive systems should not be 
underestimated. The concept that human activity is sufficiently repeatable to allow 
measurement of recurring parameters may seem controversial; some might argue that such 
parameters cannot be found, or cannot be used as a basis for design. Certainly my own 
experience has been that deliberate attempts to find them often fail, and that the parameters 
sometimes emerge in the course of looking for something else [19]. The strongest arguments 
for their existence are that they have been detected in some applications, e.g., in TAO 
activities [11], and that people's ability to plan their activities suggests an ability to make their 
own estimates of how long the activities will take [20]. If we can tap into this tacit 
knowledge, we may be able to discover the critical parameters we need to know. 

Difficult though critical parameters are to determine, there is a strong argument for trying to 
do so, because critical parameters lie at the root of the acquisition of software engineering 
design knowledge. They provide a basis for enhancing designs, for without them the decision 
as to whether enhancement has been achieved becomes arbitrary. They also provide a means 
of selecting scenarios for testing designs: if the scenario is couched in terms of critical 
parameters, e.g., it describes a task whose performance-time is critical, then it will provide a 
valid basis for testing. Critical parameters also help us to understand what kinds of analyses 
we need to carry out, and therefore what tools need to be developed. I would suggest, 
therefore, that if more attention is paid to the identification of these parameters, faster progress 
may be achieved towards providing interactive system designers with the knowledge they need 
to do their job. I will conclude with some remarks on this point. 
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4 Thoughts on innovation in interactive systems 
To work in the computer field is to experience unceasing innovation on a massive scale. This 
is true whether one works in hardware, embedded software, interactive systems or some other 
related area. In a sense, innovations must proceed in tandem in all areas because advances in 
one area depend on advances in another. 

What does it mean, then, if one area—interactive systems—experiences particular difficulties 
in acquiring essential knowledge? How can this area keep pace with the rest? I have worked 
in the interactive systems area for some years, and have meanwhile kept an eye on 
developments in other areas, and my sense is that innovations in interactive systems do not 
keep pace with the rest, in the true sense. Although novel ideas for interactive systems are 
generated at the same rate as in other areas, or even faster [16], the innovation process by 
which these ideas are brought into general use often falters. 

Innovation is indeed a process, not an instantaneous "eureka"-type event. Ideas for new 
designs do not work perfectly first time, unless they are very minor enhancements to existing 
designs. The ideas for interactive systems that flood the computer business tend to be 
relatively radical. They offer totally new ways to do things, e.g., to access library books, to 
hold meetings, to carry out surgical operations. Ideas of this kind tend to bring with them a 
host of side-effects and performance problems, which need to be worked out over time. The 
goal of this innovative process is, as Constant has put it, to reduce the original "radical 
technology" to a generally accepted and established "normal technology" [4]. During the 
innovative process, designers and users alike are motivated by the prospect of gaining an 
advantage over the previous technology. Thus reading books on-line should be advantageous 
in comparison with reading them on paper, holding a videoconference should offer advantages 
over holding it face-to-face, remote surgery should be preferable, at least some of the time, to 
traditional surgery. 

As I have pointed out, knowing whether we have improved on an existing design involves 
knowing the critical parameters for that design problem; and in the design of interactive 
applications the critical parameters are generally unknown. There is also a need to know 
about existing designs, and about techniques for analysing and predicting their performance. 
The lack of these forms of knowledge has two undesirable effects. 

First, radical ideas way be pursued when existing solutions could easily be improved. A new 
idea for an interactive system has an attraction all of its own; because it is new, it generates 
interest in its further development. But it may not offer any real advantages over existing 
systems. There may be simple ways of enhancing an existing design. We may not know 
enough about the existing design to tell. Unless we know the critical parameters against which 
to assess the two approaches, and are familiar with the other design, we cannot make an 
informed choice here. 

Second, the innovative process may degrade rather than improve performance. Innovation 
involves a long series of design changes. Since the critical parameters are unknown, there is 
no way to tell whether the design is being changed for the better. Even if they are known, 
analytical techniques may be inadequate, as in the case of Project Ernestine [10]. What can 
designers do in these circumstances? One common recourse is to add features, because these 
are seen as "improvements" in the competitive sense. Interactive systems thus gradually 
become more feature-rich and resource-demanding; but do they offer improved support to 
their users? 
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There is a solution to these problems, in the form of research to build the kinds of knowledge 
that I have suggested is so hard for interactive system designers to acquire. Foremost among 
these is to establish the critical parameters of interactive applications. In tandem, work is 
needed to develop analytical models for similating and predicting the outcomes of design. 
Efforts need to be made to document existing applications. As I have said, these are hard 
areas of research; but they have the potential to offer considerable benefits. I believe they 
could enable the process of innovation in interactive systems to proceed a lot better than it 
currently does. 
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