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Abstract: In forensic comparison of facial video data, often only the best quality
frontal face frames are selected, and hence potentially useful video data is ignored. To
improve 2D facial comparison for law enforcement and forensic investigation, we in-
troduce a model-free 3D shape reconstruction algorithm based on 2D landmarks. The
algorithm uses around 20 landmarks on the face and combines the structure informa-
tion of multiple frames. Model based 3D reconstruction methods, such as Morphable
Models, reconstruct a 3D face shape model that is strongly biased towards the average
face. Therefore, we don’t use statistical face shape models in our model-free approach.
The 3D landmark reconstruction algorithm simultaneously estimates the shape, pose
and position of the face, based only on the fact that all images in the sequence are
recorded using a single calibrated camera. The algorithm iteratively updates the re-
construction by including new frames, while maintaining the consistency of the recon-
struction. We demonstrate the convergence properties of the method reflected in the
2D reprojection error and the 3D error with respect to a ground truth model. We show
that the quality of the reconstruction depends on the level of noise in the landmarks. In
follow-up experiments we show that our method is able to reconstruct the 3D structure
of a face, using a styrofoam head and real video data. The results of the real face data
show the same behavior as the results of the simulated data, which indicates that our
method is capable of reconstructing real facial structures, depending on the noise of
the landmarks.

1 Introduction

One of the unsolved issues in forensic comparison of facial data is the comparison with

‘wild’ photo or video data. Law enforcement services are constrained to work with the

case material provided, and unlike researchers, they are not able to use recordings from

a controlled environment. Among the most difficult problems of ‘wild’ photo materials

are the non-frontal poses of faces and low resolution facial images, because often material

of overview cameras is used for facial comparison. Automatic face recognition software

can only handle 2D facial data under a small pose angle. At the moment the accuracy

of automatic face comparison algorithms degrades quickly for faces under large pose.
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As a consequence often only the best quality frontal face frames are selected, and hence

much video data is ignored. Law enforcement services are still in search of the ‘tools’ to

compare non frontal faces. However, these ‘tools’ should treat the video data in such a way

that no supplementary information is added to the video data. Reconstruction methods,

such as Morphable Models [BV99], reconstruct a 3D face shape model that is strongly

biased towards the average face. Such reconstructions could lead to unacceptable forensic

conclusions. In the proposed method we try to avoid this situation caused by facial models.

In this paper we introduce a model-free 3D shape reconstruction algorithm based on 2D

landmarks, so no additional statistical face models or average face models will be used.

We assume that the calibration parameters of the camera, such as focal length, principal

point and skew, are available. Any recording is assumed to contain a subset of frames

with different views of a face without variation in facial expression. Our final goal is to

reconstruct the face in 3D. We use around 20 landmarks on the face to estimate the shape

of the face together with the pose and the position of the face for each view. We present

three different experiments. In our first experiment we use simulated data to demonstrate

the convergence properties of the method reflected in the 2D reprojection error and the

3D error with respect to a ground truth model. In the second experiment we continue our

work in [DSV13] and we explore the strength of our method more extensively on realistic

face shape data with a styrofoam head model. In our last experiment we use real video

sequences for our reconstruction. Note that our reconstructed 3D models only contain

shape information and no texture information. This paper continues with section 2 where

we give a background on the methods and notations used in this paper. In section 3 we

introduce and explain our proposed algorithm. In section 4 we show the performance of

our algorithm in several experiments. Then we end up with the conclusion in section 5.

2 Background

Our problem, in which the face of the suspect is moving in front of a static camera, is

equivalent to a problem where the camera is moving and the suspect is static. So for each

view i = 1..N we have to find the external camera parameters of that specific view. The

static shape of the face can be described by j = 1..M 3D landmarks. We will use M 2D

landmarks with known correspondences to the 3D landmarks in all N views to obtain a

3D reconstruction of the landmarks on the face. Our camera is described by the pinhole

camera model [HZ04], where a 3D point Q is projected on the image plane in 2D point q.

The point projection equation is usually written as q = P · Q, where P contains both the

calibration parameters of the camera and the rotation and translation of a view.

We prefer a method in which we can add additional views to the current solution to im-

prove the reconstruction. To be able to find such a method, we should search for a method

that starts with one pair of views and then provides an iterative solution or a solution that

merges groups of views. The method described in [Har93] is able to estimate the rotation

and translation parameters for one pair of views. This method expresses the relation be-

tween calibrated views in the essential matrix. The essential matrix can be estimated from

corresponding landmarks in two views using a robust MSAC method (M-estimator SAm-
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ple Consensus) method [TZ00]. Once we determined the relation between two views, the

relative rotations and translation parameters can be estimated for both views. This method

provides four solutions for the rotation and translation parameters, see Equation 2.1, but

only one of these solutions is posing the points in front of the camera:

P̂1 =
[

UWV ⊤ | +u3

]

P̂2 =
[

UW⊤V ⊤ | +u3

]

P̂3 =
[

UWV ⊤ | −u3

]

P̂4 =
[

UW⊤V ⊤ | −u3

]
(2.1)

where the rotation matrix defined by U , W and V is based on the result of a singular value

decomposition of the essential matrix. The matrix W is a matrix that mirrors one of the

axes. The translation u3 is the last column of U , see [HZ04] [Har93]. This solution has 5

degrees of freedom, 3 for the rotation and only 2 for the translation, because the equation is

determined up to an unknown scale. The rotation and translation parameters are extracted

directly from the essential matrix of one pair of views. Then, we can estimate the structure

by linear triangulation of one pair of views [HZ04]:

A =









xp3⊤ − p1⊤

yp3⊤ − p2⊤

x′p′3⊤ − p′1⊤

y′p′3⊤ − p′2⊤









(2.2)

where pi⊤ are the rows of P in the first view and x, y are the x- and y-values of the pro-

jection of point Q in the first view. The other parameters are the corresponding values of

the second view. The point Q can be found by solving AQ = 0. This method reconstructs

only the visible points in one pair of views. The method can be extended to more than 2

views by including more equations from additional views in A. In our case we have a low

number of landmarks, so the reconstruction based on two views gives a poor estimation of

the shape. Therefore, we extend the algorithm using multiple views to overcome the prob-

lems of noise and the low number of landmarks. We introduce an algorithm that iteratively

updates the reconstruction by including new views, while maintaining the consistency of

the reconstruction for a low number of landmarks. The quality of the reconstruction can

be determined by the 2D RMS reprojection error E2D:

E2D =

√

√

√

√

1

MN

M
∑

i=1

N
∑

j=1

∥qij − P̂i · Q̂j∥2 (2.3)

where index i represents a view 1..N and j represents a point 1..M , P̂ contains the external

camera parameters of each view and Q̂ contains a collection of homogeneous 3D points.

The homogeneous 2D vector qij represents the known projections including the noise on

the landmarks.

3 Reconstruction Algorithm

In this section we describe the proposed algorithm for the reconstruction of the structure

of the face based on 2D projections. In short the algorithm finds an initial pair of views
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with a low reprojection error. Based on this pair of views we obtain a linear estimation of

the structure. Then we start an iterative procedure in which we add one new view in every

step of the procedure. After adding the new view, the current selection of views and the

current structure estimation are optimized. The result of the reconstruction algorithm is

an estimation of the 3D positions of the landmarks and an estimation of the rotation and

translation parameters of each view.

The best initial estimate for the structure is found by calculating the reprojection error

for every possible pair of views in the dataset and to select the pair with the minimum

reprojection error. To calculate the reprojection error we need to know the rotation and

translation parameters of each view. These values (except for the scale) can be extracted

from the Essential Matrix, see Equation 2.1. The essential matrix can be estimated, in

turn, from the projections using a robust MSAC method (M-estimator SAmple Consensus)

[TZ00]. Knowing the rotation and translation parameters of a pair of views, allows us to

estimate the structure for this pair of views. Based on this structure we can calculate the

reprojection error for this pair of views. However, also the reprojection errors of the other

views are important for consistency during the optimization. So, to find the best pair of

views we choose a reference view and calculate all rotations and translation relative to

the reference view. Then we calculate the reprojection error of the total set of views for

every view as reference. A second criterion for the selection of the best pair of views is the

number of landmarks that could be reconstructed, because not only the reprojection error

is important, but also the number of visible corresponding landmarks in the initial pair of

views. Our selection criterion is now to find the pair of views with the maximum number

of corresponding landmarks in two views and a minimal reprojection error for the total

set of views. We choose to obtain the subset of 25% of the solutions containing the most

reconstructed points over all views. From this subset we select the pair with the lowest

reprojection error over all views. This solution provides us a solution that is sufficient for

initialization of our iterative optimization. We calculate an initial linear estimation of the

structure based on the selected pair of views.

In the optimization step one new view is added in each iteration to keep all views in

our current estimation consistent with the estimated structure. The selection of the new

candidate view is based on the convergence behavior of the candidate view. The view with

the lowest reprojection error after 10 optimization iterations, is chosen as the next view.

This candidate selection is necessary to prevent the algorithm from failing in the first few

iterations. Based on the new selection of views, a linear estimation of the structure is

obtained, see Equation 2.2. Then the reprojection error of both the rotation and translation

parameters and the structure are minimized using the Levenberg-Marquardt algorithm. To

prevent overfitting, we used only 30 Levenberg-Marquardt iterations for each optimization

step, which performs properly for the minimization. Finally, the rotation and translation

parameters of the views that were not in the selection set are optimized to maintain the

consistency of the total set of views. The iterative optimization procedure continues until

all views are added and optimized.
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4 Experiments

The goal of the first experiment on simulated data is to determine the influence of the

number of views on the reconstruction, and to investigate the convergence properties of

our algorithm. We create a random point cloud of 25 3D points and obtain a set of 100

projections of this point cloud with variation in rotation and translation. The calibration

information and a random selection of the projections are used in the reconstruction al-

gorithm. We performed two experiments in which we added a different level of Gaussian

zero-mean noise to the projections, with a standard deviation of 1.0 and 2.0 pixels respec-

tively. The size of the face in each frame is around 250-350 pixels. The noise is added

independently to the x- and y-coordinates of the projections. Finally we used a random

mask to hide 30% of the data to imitate the hidden landmarks on a face. We use our re-

construction algorithm to estimate the 3D structure. The quality of the reconstruction will

be determined by the 2D RMS reprojection error E2D, see Equation 2.3. All landmarks

that were not visible, were left out of the equation, so MN is defined as the total number

of visible landmarks summed over all views. After reconstruction the 3D RMS error E3D

between the reconstruction and the ground truth point cloud can be calculated with:

E3D = argmin
H

√

√

√

√

1

M

M
∑

j=1

∥Qj −HQ̂j∥2 (4.1)

where H is a rigid 3D transformation which aligns the ground truth point cloud Q with the

reconstruction Q̂ and j is the index of a point. The experiment is repeated 100 times with

different instances of noise to investigate the robustness of the algorithm.
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Figure 1: 2D and 3D error of the reconstructions using noise with a standard deviation of 1.0 pixels.

The graphs in Figure 1 show the expected behavior for Gaussian noise with a standard

deviation of 1.0 pixels. The more views are added, the more robust the reconstruction

is. If the shape is estimated perfectly, then we would expect the 2D reprojection error to

converge to the level of noise added. The 2D reprojection error converges to an asymptote

of
√
2 $ 1.41, which is the expected level of noise, see the left graph of Figure 1. Another

observation we make is that the number of views above 30 has little influence on both the

2D and the 3D average error. The robustness of the algorithm is only slowly increasing for

more than 30 views, see the right graph of Figure 1. So adding more than 30 views seems

to have only a small impact on both the quality and robustness of the algorithm.
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Figure 2: 2D and 3D error of the reconstructions using noise with a standard deviation of 2.0 pixels.

If the level of Gaussian noise is doubled to a standard deviation of 2.0 pixels, the behavior

is similar to the previous experiment. The asymptote here is
√
8 $ 2.83, see the left graph

in Figure 2. Adding more views has less effect on the robustness of the reconstruction

algorithm, but it still has a decreasing effect on the average reprojection error. When more

views are added, the average 3D error also decreases slowly, though the robustness of

the algorithm seems not to increase. For more than 35 views, the system shows even more

variation in the 3D errors than for 35 views, see Figure 2. This can be explained by the fact

that the more views are added, the higher the change for heavy outliers in the projections.

Since none of the selected views are skipped, outliers might severely decrease the result of

the reconstruction. The reconstruction is assumed to be failed, if the reprojection error is

above 5.0 pixels. For the experiment with Gaussian noise with a standard deviation of 1.0

pixels and more than 30 views, the algorithm converges to a solution in about 99% of the

cases. In the case of a standard deviation of 2.0 pixels, the algorithm only converges in 75%

of the cases. So the algorithm seems stable for Gaussian noise with a standard deviation

of 1.0 pixels, but becomes less stable for Gaussian noise with a standard deviation of 2.0

pixels or above.

The goal of the second experiment with the styrofoam head is to determine whether the

algorithm is capable of working with manually labeled face data. We acquired a 3D model

of a styrofoam head with 22 colored pins located on the face. An orthogonal view of the

styrofoam model can be seen in the left image in Figure 3. We choose a virtual camera and

we extract the calibration data from this camera. We created 51 renderings of the model

with different rotation and translation parameters, see Figure 3. All visible landmarks

are labeled manually in all renderings. In contrast to the previous experiment, no noise

was added to the projections, leaving us with only the noise of the manual landmarking.

The reconstruction is based on the calibration data and subsets of the renderings. The

3D points of the ground truth model are also manually labeled on the 3D model of the

styrofoam head, which, in contrast to the previous experiment, could influence the 3D

error. The experiment is repeated 100 times for each number of views to determine the

robustness of the algorithm.

The second experiment shows the same behavior as the experiment with Gaussian noise

with a standard deviation of 1.0 pixels. Adding more views increases the quality of the 3D

reconstruction, but for more than 40 views, in this case, the gain is very low for both the

2D and 3D error. The asymptote for the 2D error is around 2.0 pixels, which is somewhere
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Figure 3: Left: Orthogonal view of the 3D styrofoam head model. Middle: One of the rendered 2D
views of the model. Right: The reconstructed 3D landmarks with added edges for visibility.
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Figure 4: 2D and 3D error of the styrofoam face reconstructions.

between the results of the first two experiments. This noise level is similar to a
√
2 $ 1.41

pixels error in both x- and y-coordinates, which is probably the accuracy of the manual

landmarking of the 2D dataset. A rough estimation gives us a head size of 300 mm and the

size of the head in the frames is around 500 pixels. So each pixel represents 0.6 mm. Our

method is able to estimate the landmarks with (2.16 · 0.6 =) 1.3 mm precision on average.

The average 3D error is 1.22, which is around 0.7% of the size of the head. The results are

in line with the results of the first experiment on simulated data. This second experiment

shows that our algorithm has similar convergence properties and errors to the experiment

on the simulated data, and can therefore be applied on manually labeled realistic face data.

In this last experiment we show that our algorithm can handle real video data using a cali-

brated camera. We acquired 100 frames of several volunteers in which they slowly moved

and rotated their heads in front of a camera. We annotated 20 landmarks in each frame

in a semi-automatic manner. Finally we calibrated our camera with 20 frames of a planar

calibration board, which provided us the camera calibration data. In the next experiment

we use a selection of 50 frames to reconstruct the structure of the face. Since we don’t

have 3D ground truth data of our landmarks, we will only use the 2D reprojection error

and visual inspection to express the quality of the reconstruction. We ran the experiment

two times, with different subsets of views: one using the 50 even frames and another using

the 50 odd frames of the first volunteer.

Figure 5: Left: Two 3D reconstructions of the first volunteer based on different subsets of views.
Right: Aligned 3D models of the two reconstruction.
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The 2D reprojection error for the even set was 2.13 and the reprojection error of the odd

set was 2.54, where the size of the frames is similar to the styrofoam experiment. These

results are completely in line with the results of the styrofoam experiment, see the left

graph in Figure 4. There is a small variation in the 2D error, but nevertheless the variation

seems acceptable compared to the previous results. Visual inspection of the 3D structure

shows that both 3D structures are close to each other, see Figure 5. So even with real

video data, including calibration, and landmarking, our algorithm is able to reconstruct the

position of the 3D landmarks of the face.

5 Conclusion and Future Work

The experiment on the simulated point cloud shows that the quality of our reconstruction

depends on the level of noise in the projections. For a small level of noise, around 1.0

pixels, the convergence and robustness of the algorithm seem sufficient. For a larger level

of noise the system might become unstable, and even not converge to a useful solution.

For Gaussian noise with a standard deviation of 2.0 pixels the algorithm only converges in

75% of the cases. The minimum number of views needed to get sufficient quality for the

reconstruction is around 30 views. More views can improve the reconstruction, but this

will only give a small improvement. In the second experiment, we showed that manual

landmarking leads to an error comparable to a Gaussian noise with a standard deviation

of 1.4 pixels. The results of the styrofoam experiment were in line with the simulated

reconstructions with Gaussian noise. The third experiment with real video data shows

results similar to the styrofoam experiment. The visual inspection of the 3D structure and

the 2D reprojection errors indicate that the algorithm is capable of reconstructing real facial

structures. In future work we will include the texture information in the reconstruction

to get a full 3D model of the face. The full reconstruction allows us to perform facial

recognition experiments on 2D faces under pose.
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