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Abstract: Cryptanalytic algorithms such as dictionary attacks, that test huge numbers
of keys to decrypt a ciphertext to a certain plaintext, need lots of computational re-
sources and efficient coding, but allow large scale parallelism such as many-cores plus
GPUs. Some attacks have profited from a bit-serial data representation, that allows
SIMD-like coding per thread and increases the degree of parallelism. We investigate
the question how to decide for distinct parts of such algorithms whether to code them
in a bit-serial or normal word-parallel manner. Given bit-serial and word-parallel vari-
ants for each part of the cryptographic algorithm, we benchmark the runtime of the
variants, and additionally the runtime of the conversion between the different data rep-
resentations. Then we model the resulting variant selection problem as a direct graph
— in the fashion of a global composition optimization problem — and find the op-
timal runtime by computing the shortest path from source to sink node. We evaluate
our approach with the Advanced Encryption Standard (AES) and demonstrate runtime
advantages.
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1 Introduction

In recent years, parallel computing often means heterogeneous parallel computing with
different processor architectures and accelerators such as GPUs. Finding the optimal allo-
cation of work to different execution units thus becomes a non-trivial optimization prob-
lem. This optimization problem is complicated by other aspects as well, such as e.g. the
best choice of a (parallel) sorting algorithm, which depends on the number of items to be
sorted, their pre-sorting state, and the available implementations of different variants of
sorting algorithms on the different execution units. In this manner, performance tuning
of parallel applications has become a complex optimization problem that must be solved
partly at algorithm design time, partly at compile time, and partly at execution time.

In the present work, we consider cryptographic applications like a dictionary attack (cf. e.g.
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[MvOV97]), that execute millions to billions of decrypt operations on the same piece of
ciphertext, but with different keys. Hence, these applications exhibit a tremendous amount
of independent parallelism. As many encryption algorithms evaluate boolean functions
during their execution, bit-serial (sometimes called bit-slice) computing in SIMD fashion
(see Sect. 2) has been used for long to increase parallelism, improve speed, and reduce
control-flow divergence on GPU architectures.

Our approach to further improve performance is to split a cryptographic algorithm into
distinct parts, and provide both a normal (i.e. word-parallel) and a bit-serial implementa-
tion variant for each part. Additionally, we employ a known routine for data conversion
between the two variants. Now, the application can be modelled in the fashion of a global
composition optimization problem [HK14] as a directed graph, where nodes are variants
attributed with their runtime, and arcs represent the flow of execution, and might be at-
tributed with the conversion runtime if an arc’s head and tail use different variants. By
finding the shortest path from source to sink, the best combination of variants is found.
To our knowledge, this represents a novel use for global composition of program variants,
and has never been used to optimize parallel cryptographic algorithms.

As a case study, we apply our approach to an implementation of the Advanced Encryption
Standard (AES) [Nat01], forecast an optimal mix of variants and demonstrate in experi-
ments that runtime advantages over both purely bit-serial and word-parallel implementa-
tions are indeed possible.

The remainder of this work is structured as follows. In Sect. 2, we summarize basics
about bit-serial computing, while Sect. 3 briefly reviews the global composition of program
variants. In Sect. 4, we briefly summarize the AES algorithm as the object of our case
study, apply the optimization algorithm from Sect. 3, and report our experimental results.
Section 5 concludes and gives an outlook to future work.

2 Bit-serial Computing

Bit-slice processors, i.e. processors with a data width much smaller than a normal word
width — in the extreme case called serial or bit-serial processors — have been known for
long, e.g. in the Connection Machine [KH89]. Typically, a number of these processors
work together in SIMD fashion to operate on data of normal width.

Also, the same concept has been known in software for decades. Biham [Bih97] “view(s)
the processor as a SIMD computer, i.e., as 64 parallel one-bit processors computing the
same instruction” and sees bit-serial computing mainly as a “non-standard representation”
of data. While this may sound strange at first glance, it ensures that all data bits are used by
parallelism, which is often not the case in normal computations, e.g. when the instructions
operate on bytes or even on single bits while evaluating a logical expression.

We illustrate this concept with three small examples: one that favors bit-serial computing,
one that favors normal data representation, and one where it depends on the circumstances
which one is better.
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Assume that we want to evaluate a boolean expression for many parameter values, e.g.
yi = ai ∧ bi for i = 0, 1, . . . , 31. Normally, we code

int i;
int y[32],a[32],b[32];
// ... set values in arrays a and b
for(i=0;i<32;i++) y[i] = a[i] & b[i];

and apply parallelism in the form of loop parallelization. Yet, if we transfer the lowest bits
from each array element a[i] into one variable as such that the bit from a[i] is the ith
bit in as, then we can simply write

int ys,as,bs;
// ... set values in as and bs
ys = as & bs;

If 216 evaluations are to be done, then with 32 threads, each thread would have to do 211 =
2048 evaluations in normal representation, but only 25 = 32 evaluations with bit-serial
representation. If surrounding operations are also expressed in this manner, conversion
of the representation is not necessary. Thus, bit-serial computing is advantageous in this
case.

As a second example, consider that we want to do additions on 32-bit integer variables.
The normal code is obvious and similar to the first example:

int i;
int y[32],a[32],b[32];
// ... set values in arrays a and b
for(i=0;i<32;i++) y[i] = a[i] + b[i];

In bit-serial representation, the data is organized in a manner orthogonal to the normal
representation: variable as[j] contains bit j of each variable a[i] in bit i. This is
illustrated in Fig. 1 for j = 0. Then, addition is performed bit by bit as in a full adder:

int j;
int ys[32],as[32],bs[32],cs[33];
// ... set arrays as and bs, and set array cs to 0
for(j=0;j<32;j++){ ys[j] = as[j] ˆ bs[j] ˆ cs[j];
cs[j+1] = (as[j] & bs[j]) | ((as[j] ˆ bs[j]) & cs[j]); }

Please note that the conversion between the normal and the bit-serial data representations
is nothing more than the transposition of a bit matrix with the variables a[i] and as[i]
(i = 0, . . . , 31) being the row vectors of the matrix and transposed matrix, respectively
(cf. Fig. 2). An efficient algorithm for bit transposition is given in [RSD06], and we will
use a variant in the sequel.
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Figure 1: Corresponding word-parallel and bit-serial data representations.

Obviously, bit-serial representation is not advantageous in this second case, as an addition
is replaced by 6 logical operations, and two assignments are used instead of one.

Finally, assume that we do a table lookup in a constant array defined over bytes.

int i;
uint8 y[32], a[32];
uint8 tab[256];
for(i=0;i<32;i++) y[i] = tab[a[i]];

Here, the bit-serial variant is not straightforward. If we use a 32-bit variable ys[0], that
contains the bit 0 of each variable y[i], then bit i of ys[0] will depend on all bits
of a[i] and on tab. Thus, a table for looking up ys[0] would be infeasibly large.
However, we can express the dependence of each bit of y[i] on the 8 bits of a[i] and
on tab by a boolean function in at most 8 variables, as tab is a constant array.

uint32 ys[8], as[8];
ys[0] = some boolean function on as[0] to as[7];
...
ys[7] = another boolean function on as[0] to as[7];

Hence, depending on the complexity of these boolean functions, the code might be slower
or faster than the original table lookup. For example, if tab[x] would give the number
of bits set in the binary representation of x (where 0 ≤ x ≤ 255), then ys[7] to ys[4]
would be 0, as the maximum number of bits set could be 8 (=00001000 in 8-bit binary),
and ys[3] = as[0] & ... & as[7].
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Figure 2: Graph with 4 program parts, each with 2 variants, taken from [HK14].

3 Global Optimization of Variants

To explain the global composition optimization, we use a very simple example. Consider
an application that proceeds in rounds, where each round consists of two code parts. Each
part is available in two variants A and B. The variants of each part consist of different
code, and different data representation, so that combining variant A of part 1 with variant
B of part 2 involves a conversion of the data representation between part 1 and 2, and
another conversion between part 2 and part 1 of the next round. In the following, ai and bi
denote the numbers of cycles for variants A and B of part i, respectively. Furthermore, c
denotes the number of cycles needed for a conversion in either direction.

If a1 < b1 and a2 < b2, then clearly variant A should be chosen. The same holds if variant
B is better in both parts. We consider the interesting case where a1 < b1 but b2 < a2.
Let us assume that the differences are identical, i.e. d = |a1 − b1| = |a2 − b2|. Then the
combination of variant A in part 1 and variant B in part 2 should be chosen if 2c < d,
because then

a1 + c+ b2 + c < a1 + a2 = b1 + b2 .

Clearly, the same idea can be used if |a1 − b1| 6= |a2 − b2|, but more cases have to be
considered to find the optimum. The idea can also be generalized to more than two parts
and to more than two variants per part.

This problem has been investigated as global composition optimization [HK14], and treats
the variant problem formally by modelling with a directed graph, where each variant for
each program part is a node, attributed with its runtime, and arcs represent the flow of
execution, where each variant of one part is connected to each variant of the following
part (i.e. piecewise complete bipartite). If an arc connects different variants, it is attributed
with the runtime of the conversion code. An example with 4 parts is depicted in Fig. 2
taken from [HK14]. The best combination of variants is found by computing the shortest
path from source to sink. Note that optimization can be done over several rounds [HK16],
so that performance improvements might even be possible if c > d/2.
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4 Case Study

An application domain where mainly boolean operations and table lookups are performed
is encryption. Thus, from the above, bit-serial representation looks advantageous. Also
fixed bit permutations, which frequently arise in encryption, are easy with bit-serial repre-
sentation as only the indices of the as variables have to be permuted accordingly. Biham
[Bih97] already demonstrated that bit-serial representation leads to more efficient imple-
mentation of the Data Encryption Standard (DES). Similar approaches has been imple-
mented for its successor Advanced Encryption Standard (AES) [KS09, RSD06].

We therefore illustrate the so far rather abstract idea of mixing word-parallel and bit-serial
program parts with Advanced Encryption Standard (AES) as a concrete example. AES is
a standard for a symmetric block cipher based on the Rijndael algorithm [DR00], chosen
in 2000 by NIST as the successor to DES and published in 2001 as a standard [Nat01].
Encryption of a data block consists of a number of rounds (10 to 14, depending on key
size), where each round consists of four steps operating on a 4× 4-matrix of bytes: byte-
wise substitution, rotating the matrix rows by different stepwidths, mix the columns by
multiplication with a constant matrix, and bitwise addition of the pre-computed round key
to the data matrix. The following pseudo-code illustrates the computations.

AES(uint8 w[4][4]){ // input byte matrix
for(rnd=0..9){ // 10 rounds for 128-bit key
for(i,j=0..3) w[i][j] = tab[w[i][j]]; // byte substitution
for(i,j=0..3) wtmp[i][j] = w[i][(j+step[j])%4]; // shift rows
for(i,j=0..3){ w[i][j] = 0;
for(k=0..3) w[i][j] += mul(cnst[i][k],wtmp[k][j]); } // mixcols

for(i,j=0..3) w[i][j] = w[i][j]ˆrndkey[rnd][i][j]; // add rndkey
}
return w; }

There have been high-performance AES implementations in software for 8-bit and 32-bit
microprocessors (e.g. the add-round-key step greatly profits on a 32-bit architecture), and
also implementations in hardware for ASICs and FPGAs. In addition, there have been
bit-serial implementations, where all steps have been expressed as evaluation of boolean
functions, so that 32 block encryptions can go on in parallel if 32-bit variables are used
[KS09, RSD06]. The reader might notice that the steps correspond closely to our code
examples from Sect. 2, and the cited implementations proceed like this, in particular they
give a formulation of the subbytes and mixcolumns steps expressed as boolean function
evaluation.

We have implemented both variants1 for a block and key size of 16 bytes and measured the
runtimes in Tab. 1 on a Lenovo W530 with Intel Core i7-3630QM (Ivybridge) quad-core
CPU (up to 2.4 GHz, with 3.4 GHz turbo), 20 GByte of RAM, Windows 7 operating and
OpenWatcom C compiler. We encrypt one block of 16 bytes for 10 million times, and
compute the resulting runtime. As the computation is independent of the concrete content
of the byte matrix w, we used the same block in all encryptions. We do not claim to have

1For the word-parallel variant, we multiplied the measured times by 32 to get comparable results.
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Part word-parallel bit-serial
subbytes 14337 38563
shiftrows 5788 0
mixcolumns 27908 5991
addroundkey 6427 10062
conversion 11856 11856

Table 1: Runtimes of bit-serial and word-parallel implementations of AES. Runtimes are given
without dimension, as they are computed with clock() over 10 million repetitions.

Figure 3: Flow graph of AES variants. Nodes and edges without mark have weight 0.

the fastest implementations for each part, but we strived to have a comparable level of code
quality, so that the comparison is fair.

We clearly see that for the first and fourth steps (subbytes and addroundkey) the word-
parallel variant is faster, while for the second and third steps (shiftrow and mixcolumns),
the bit-serial variant is faster. Figure 3 depicts the flow graph of the variants with the
shortest path highlighted2. Therefore, a mixed implementation looks like in the following
pseudo-code (wp=word-parallel, bs=bit-serial).

AES(uint8 w[4][4]){ // input byte matrix
for(rnd=0..9){ // 10 rounds for 128-bit key
for(i,j=0..3) w[i][j] = tab[w[i][j]]; // byte subst wp
bittranspose(w); // convert representation to bs
shiftrow+mixcolumnbitserial(w); // do next two steps bs
bittranspose(w); // convert representation back to wp
for(i,j=0..3) w[i][j]=w[i][j]ˆrndkey[rnd][i][j]; // add rndk. wp
}
return w; }

We need two conversions per round. We pack steps subbytes and addroundkey as part 1,
and shiftrow and mixcolumns as part 2, and see that for part 1, variant A (word-parallel)
is faster, while for part 2, variant B (bit-serial) is faster. We get

2Note that to get a complete picture, one also has to do the same with start and end in bit-serial representation.
This however leads not to a shorter path in this case.
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Figure 4: Runtimes of different code variants. Corresponding word-parallel (wp) and bit-serial (bs)
code parts have same color but word-parallel variants are dotted. Bit-serial shiftrows really has
runtime 0, but has been denoted by small rectangle for clarity.

Variant Runtime
a1 20764
a2 33696
atot 54460
b1 48625
b2 5991
btot 54616
c 11856

Thus, the bit-serial and word-parallel variants almost have the same runtimes atot and btot.
The optimal path (without conversion cost) is a1 and b2, the add-on for a pure variant is d =
27861 (or 27705, i.e. more or less the same for both variants). The double conversion cost
is 2c = 23712 which is lower, so that the runtime advantage of the mixed implementation
is about 4000 or 7.4%. Figure 4 illustrates the different runtimes.

While this improvement seems not to be very large, it illustrates that in some applications,
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it might be worthwhile to consider this choice. Please note that if conversion would be free
(or almost free by providing hardware instructions for bit matrix conversion), then speed
could almost be doubled.

5 Conclusions

We have presented a novel application of global composition of program variants: using
both bit-serial and word-parallel variants of algorithmic parts in symmetric encryption.
The bit-serial variants allow SIMD parallelism even within a single core, while the word-
parallel variants serialize the threads of computation but avoid the overhead of bit-serial
computation on data items when all bits of a word are needed.

Our case study demonstrates that the AES encryption algorithm can be accelerated com-
pared to purely bit-serial and word-parallel implementations by combining the best parts
of both. The massively parallel execution of AES frequently occurs for good and bad: in
high-performance environments where multiple communications are encrypted simultane-
ously, and in dictionary attacks where attackers try to find the password by decrypting a
known piece of text with all keys from a dictionary, exploiting the fact that many users still
employ existing expressions as a key or password.

Future work will comprise investigation of other use cases, as well as more advanced uses:
between computing on single bits (like in boolean function evaluation) and computing on
full words (like in ordinary arithmetic computation), there are lots of in-betweens, like e.g.
computations on bytes, that still could profit from SIMD parallelism. Such an approach
has already been investigated in the frame of multiple executions for fault-tolerance (cf.
[EFK09]), but not for performance improvement from parallelism.
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