
Is it about Human(itie)s? Experiences from Software

Projects across three Faculties

Hagen Peukert1

Abstract: Considering the experience with software development in research projects in three
different faculties, it is argued here that the issue of underspeciĄcation and finding out what is
really wanted is not restricted to the Humanities. Rather, it occurs in Science and Social Science
seemingly at the same ratio. However, in absence of representational data, statements at which exact
shares the phenomenon really occurs, lead up the garden path. Hence, the question is raised whether
the focus of software development in the Humanities should shift to human per se describing the
fact that underspeciĄcation is a human trait of complex planning and problem solving behavior, but
independent from the facultyŠs epistemology. And possibly it comes to the fore in science more bluntly
and it is particularly apparent in the Humanities, i.e. less blended. In fact, any speciĄc account of
software development in the Humanities is misleading because the focus on the Humanities blends
the hermeneutics inherent in scientiĄc work in general.

Keywords: Digital Humanities; ScientiĄc Software Development; Epistemology

1 Introduction

Within the hermeneutic circle [Ga65], cognition and research evolve simultaneously to
higher levels of conception and eventually both, research question and its array of answer
attempts, merge into a coherent whole Ű the Ąnal state of explanation in the world of ideas.
If software is to be programmed assisting to achieve the project goals, then the speciĄcity of
the research question is reĆected in the evolution of the software functionality, which only
towards the end of the project, if at all, reaches the level of concreteness needed beforehand
and which software development presupposes compellingly so that the problem space can
be sufficiently described.

Left aside that intensive refactoring of software after the project is a solution that works
generally but does not help much if the software should produce results of a vaguely deĄned
problem space right from the inception, the question arises which is the best strategy to be
followed here: could software design patterns ever be developed to capture this process,
should methods such as agile programming are further optimized or both? More importantly,
however, is the question if the phenomenon is restricted to the Humanities? Given that

1 Universität Hamburg, Zentrum für Forschungsdatenmanagement, Monetastraße 4, 20146 Hamburg, Germany
hagen.peukert@uni-hamburg.de

cba doi:10.18420/inf2019_ws16

Draude, Lange, Sick (Hrsg.): INFORMATIK 2019 Workshops,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 157

https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/inf2019_ws16


the Heideggerian hermeneutics describe a general truth, one should then make similar
observations in all endeavors of scientiĄc experimentation [Se92]. In other words, it is not
characteristic to Humanities, but to all faculties in which genuine knowledge is generated.
So, the more plausible and correct zero hypothesis is not to simply claim that software
development in the Humanities is different, but to act on the assumption that scientiĄc
software development is similar throughout all faculties. In this case, it had to be shown that
Humanities software projects are signiĄcantly different from other faculties.

The argument brought forward in the paper at hand is supported by several software
projects in the faculties of Earth Science (Climate Research, Sea Ice Remote Sensing),
Linguistics (Quantitative Language Science, Diachronic Derivational Morphology), History
(Ancient History, Greek Epigraphy), Musicology (Historical Musicology, Opera Omnia
Critical Edition), and Education Science (Empirical Educational Research, Intercultural
and International Comparative Education) all located at Universität Hamburg. So three
different faculties Ű Science, Humanities, and Social Science Ű are object of the observations
presented here. The data considered stem from qualitative interviews [Pe15], experiences
from software projects [Pe19; Ar16; In17] and research projects [Pe18; Pe14].

While it is clear that the data is hard to evaluate since it does not allow to make any general
statements from an arbitrary and too small sample of different methods clearly biased
to Humanities projects, one has still to acknowledge that there is no reliable source of
representative studies on that topic at all that goes beyond anecdotal evidence. Studies looking
into scientiĄc software development and models can be found in engineering sciences and
in the area of high-performance computing, yet they do not address the differences across
faculties [NFS10; Ha09; SM08; Se08]. Claims such as Humanities projects enjoyed
a special status are likely be derived from individual observations as well, which are
neither systematically collected nor comprehensibly documented. And still, the fragmentary
data brought forward here contributes to the overall stock of investigations into this Ąeld
and the sum of all collected observations marks a justiĄed point of departure for systematic
and representative studies and analyses. As far as the data at hand is concerned, it merely
states the existence without assertions about its statistical signiĄcance and distribution.

2 Results

Tab. 1 gives a short summary of the key variables in the studied projects, whereas three
symbols correspond to the following categories: available (++), partly (+), nonexistent
(−). From the projects a few suggestions on what is important to focus on when carrying
out software projects in these areas of research can be derived in six points Ű some of which
support the suggestions made in the literature [Ha09; Se08].

First, whatever it is planned beforehand and put down as a requirement speciĄcation is subject
to sudden and permanent change. In addition, the once agreed requirement speciĄcation
is important for oneŠs own reference and for a task schedule, but it is not a document of

158 Hagen Peukert



Social Science Science Humanities

LiMA Remote sensing Opera omnia EDaK Morphilo

Systematic testing − ++ − − +

Documentation − + − ++ ++

Version control − − ++ − ++

Design patterns − − − − −

Handling of data ++ ++ + + +

Tab. 1: Evaluation of Software Projects

agreement to what should be done at which time. It is advisable to keep a separate document
as a speciĄcation with the versioning history of the software so that at each stage of software
release its corresponding requirement speciĄcation (that is valid only in that point in time)
is available.

Second, as implied in the previous paragraph, very short cycles in the developmental
process is highly advantageous. The sprints can be organized around single software features
internally, i.e. one feature in one cycle, and attributable to the requirements speciĄcation.
Yet not in line with all the literature, for the presentation at and feedback from the project
holders, it makes little sense to present single features. From the experience in all projects,
project leaders like to have clickable prototypes incorporating a collection of features that
correspond to the project deliverable (milestone) in the respective fund proposal.

Third, visualization in the form of screenshots or clickable forms is paramount to class
diagrams, entity relationship diagrams of all kinds, sequence diagrams, or any other kind
of UML representation all together. Efficiency measures have secondary status at the
intermediate stages before the Ąnal procurement. It makes sense to sit down and design the
layout with paper and pencil right at the project meetings. Most of the implicit knowledge will
become accessible in and around these discussions. Moreover, a staging server independent
of the programmerŠs development environment takes away a lot of the burden. On the
staging system, only the release bundles Ű best in the form of functional prototypes Ű should
be deployed; no development takes place there. These machines are accessible to the project
holders and the application developed so far can be tested before the feedback meeting
takes place.

Implicitly derivable from the other results is, fourth, extending the data model easily is more
important than the model efficiency. Since it is very likely that new data Ąelds (representing
variables) will be added while others will be deleted and the relation of the Ąelds to each
other will change all the time, a Ćat data model is a better starting point than an elaborated
structure with little Ćexibility.

Fifth, precaution should be given to rights and roles. Indeed the project leader has to
manage the projects progress and he or she needs to control the working processes. This is,

Is it about Human(itie)s? Experiences from Software Projects across three Faculties 159



however, different from the tasks carried out by the staff, in which the software program is
supposed to give assistance. A discussion with the entire project staff usually makes clear
that administrator rights do not reĆect the power hierarchy of the project, but mirror the
responsibilities of the tasks in a project. Priority is to be delegated to the project tasks and
not the power relations in the project.

Sixth, also not to be seen in the literature, the relation between effort and result should
be carefully considered. Even if a feature is technically doable, it does not mean it must
be put in the application. This is also true if the project leader makes a strong case by
referring to other commercial or non-commercial software, e.g. an application, in which
some software function is implemented. The cost of a feature often happens to be completely
underestimated. So to restrict expectation as well as to lower the cost of the Şnice-to-havesŤ
as selling features should be clearly communicated. This is different from blocking key
features!

In summary, these more direct consequences of experiencing software development across
the three faculties show a homogeneous picture, i.e. the faculty (and in a wider sense the
subject of investigation in that faculty) does not seem to be a dependent variable. Put
brieĆy, there is no faculty that shows a speciĄc problem, around which one could build a
predictive model. Possibly one would Ąnd the variable faculty to be on the same factor
as an intervening variable that is not further explored as of yet. As a Ąrst assumption, the
planning behavior and complex problem solving of humans in general [Kl93; St93] has a
lot to offer to be an intervening factor of that kind.

3 Conclusion

Surveying the software projects carried out in the Humanities and comparing them to best
practices in computer science, it becomes clear without question that current standards in
software development are widely ignored. However, doubts could be raised how best to
explain this phenomenon. The special status of the Humanities within the area of science and
its epistemology are stated as a possible cause. It is further suggested that new methods in
software development and design patterns are sought to be engineered to optimize software
development in Humanities projects. Yet, the other possibility is that the Humanities as such
have no signiĄcant causal effect, but it is really the human behavior and the general problem
solving mechanisms usually employed by human beings, that is, how humans approach
scientiĄc problems.

The epistemology in the Humanities then resembles the scientiĄc process of the genuine
unknown much closer than other faculties, in which the unknown is better known, i.e.
methods and procedures are similar and only adopted to similar problem spaces for which
the approximate boundaries of the solution, although not speciĄcally, can be roughly
provided.The important take-home message would thus be to focus on human traits and their
mechanisms of problem solving as brought forward by the literature on human-centered

160 Hagen Peukert



design rather than seeking the cause in the epistemological processes and the subject of the
Humanities.

It certainly would be enlightening to see if several follow-up projects to a given Humanities
project would still show the same pattern as opposed to the Ąrst attempt of a Humanities
research project. In other words, as a research question matures over time the state of
knowledge including the process knowledge and newly established methods underlie effects
of experience [Re02]. Thus, the coming of age of a project changes the planning procedure
that scientist are able to apply. Their acquaintance with similar recent project results will
coin their subsequent planning behavior and approaches to solve them.

To conclude, I would like to plead for Humanities projects as a model case to Ągure out which
methods are needed for software development in scientiĄc projects, in which, independent
of the faculty, the human capacities of foreseeing the complete array of possible outcomes
is limited resulting in less precise assumptions that in the course of time and experience
crystallize to a concrete heuristic.

References

[Ar16] Arbeitsbereich Alte Geschichte, 2016, url: https://www.epigraphik.uni-
hamburg.de.

[Ga65] Gadamer, H.-G.: Wahrheit und Methode : Grundzüge einer philosophischen
Hermeneutik. Mohr, Tübingen, 1965.

[Ha09] Hannay, J. E.; MacLeod, C.; Singer, J.; Langtangen, H. P.; Pfahl, D.; Wilson, G.:
How do scientists develop and use scientiĄc software? In: SECSE 09, ICSE
Workshop on Software Engineering in Computational Science and Engineering.
Pp. 1Ű8, May 2009.

[In17] Institut für Historische Musikwissenschaft, 2017, url: https://www.selle.
uni-hamburg.de.

[Kl93] Kluwe, R. H.: Knowledge and performance in complex problem solving. In
(Strube, G.; Wender, K.-F., eds.): The cognitive psychology of knowledge.
Elsevier, Amsterdam, pp. 401Ű423, 1993.

[NFS10] Nguyen-Hoan, L.; Flint, S.; Sankaranarayana, R.: A survey of scientiĄc software
development. In: Proceedings of the 2010 ACM-IEEE International Symposium
on Empirical Software Engineering and Measurement. Pp. 12Ű21, Sept. 2010.

[Pe14] Peukert, H.: The Morphilo Toolset: Handling the Diversity of English Historical
Texts. In (Ammermann, A.; Brock, A.; PĆaeging, J.; Schildhauer, P., eds.):
Facets of Linguistics: Proceedings of the 14th Norddeutsches Linguistisches
Kolloquium 2013. Peter Lang, Frankfurt, pp. 161Ű172, 2014.

Is it about Human(itie)s? Experiences from Software Projects across three Faculties 161



[Pe15] Peukert, H.: Softwareentwicklung am CliSAP Arbeitsbereich Meereisfern-
erkundung: Erkenntnisse eines qualitativen Interviews, 2015, url: https:
//www.dokserv.gwiss.uni-hamburg.de/receive/mir_mods_00000181.

[Pe18] Peukert, H.: Merging Community Knowledge and Self-Interest to Build Language
Resources: Architecture and Quality Management of a Take-and-Share-Approach
of Word Annotations. In (Burghardt, M.; Müller-Birn, C., eds.): INF-DH-2018.
Gesellschaft für Informatik, Frankfurt, 2018.

[Pe19] Peukert, H.: Auf dem Weg zu einer digitalen Forschungsumgebung: Die Entwick-
lung spezieller Werkzeuge für das Projekt- und Datenmanagement. In (Duarte, J.;
Gogolin, I.; Klinger, T.; Schnoor, B.; Trebbels, M., eds.): Sprachentwicklung im
Kontext von Mehrsprachigkeit Ű Hypothesen, Methoden, Forschungsperspek-
tiven. Springer, Berlin, in press, 2019.

[Re02] Renn, J.: Challenges from the Past. Innovative Structures for Science and the
Contribution of the History of Science. In (Renn, J., ed.): Innovative Structures
in Basic Research. Max-Planck-Gesellschaft, München, pp. 25Ű36, 2002.

[Se08] Segal, J.: Models of scientiĄc software development. In: SECSE 08, First
International Workshop on Software Engineering in Computational Science and
Engineering. May 2008.

[Se92] Seiffert, H.: Einführung in die Hermeneutik : die Lehre von der Interpretation in
den Fachwissenschaften. Francke, Tübingen, 1992.

[SM08] Segal, J.; Morris, C.: Developing scientiĄc software. IEEE software 25/4, pp. 18Ű
20, 2008.

[St93] Strauß, B.: Confoundations in complex problem solving. On the inĆuence of the
degree of correct solutions on problem solving in complex situations. Holos,
Bonn, 1993.

162 Hagen Peukert


