Business Objectives Compliance Architecture Framework

Mechanisms for Controlling Architecture Artefacts

Christoph Moser Mathias Winklhofer Christian Kuplich
BOC Information Techn. BOC Information BOC Information Techn.
Consulting AG Systems GmbH Consulting GmbH
Wipplingerstr. 1 Wipplingerstr. 1 Vofstr. 22
A-1010 Vienna A-1010 Vienna D-10117 Berlin
Austria Austria Germany
christoph.moser@ mathias.winklhofer@ christian.kuplich@
boc-eu.com boc-eu.com boc-de.com

Abstract: At present, more and more IT organisations adopt new architectural
practices to effectively deal with the increasingly heterogeneous landscape of their
IT architectures. The efficient and integrated management of the various architec-
ture artefacts and their interdependencies - described in architecture models - is a
crucial success factor for these initiatives. This paper presents an approach for en-
suring architecture artefacts (as the main work products of enterprise architecture
management) are under appropriate control. Due to the emerging complexity of IT
architectures, the huge amount of crucial information as well as the requirement to
ensure conformity to regulations such as SOX and Basel II, the authors view this
as a field in need of an approach in order to control and manage this complexity.

1 Introduction

While Enterprise Architecture Management (EAM) frameworks like TOGAF [TOO06],
Zachman framework [ZS87], DoDAF [Do07] etc. provide guidelines for the designing,
planning, and implementation of EAM, they currently do not specify approaches for
controlling the various architecture artefacts. In fact they often only provide a rather
abstract view on the enterprise, without taking all the required architectural levels into
account. An example of a metamodel that consistently specifies the needed architecture
artefacts on different layers and in different views is presented in [Bo07]. However, con-
cepts for controlling Architecture Artefacts with regard to their state, validity in time as
well as concepts for versioning are not detailed.

Not least because of regulations such as SOX, Basel II and Solvency II, IT organisations
are now aiming for increased maturity in their processes and to align themselves to in-
ternational standards and best practices such as, COBIT [IT07], ITIL [OGO07] and
CMMI [CMO06]. Common ground for each of these standards is the claim for placing
their various architecture artefacts under appropriate levels of control. Therefore each of
these de-facto standards defines a configuration management process e.g. for managing
source code within the development process (,,CMMI for Development™) or for
managing configuration items (such as applications, software components, infrastructure

73

figuration items (such as applications, software components, infrastructure and commu-
nication elements) within an IT infrastructure (,,CMMI for Services, ITIL, COBIT).

However, these standards do not provide adequate concepts for controlling the various
architecture artefacts in a way that is suitable for supporting these processes and prac-
tices. Mechanisms, e.g. to organise version control of architecture artefacts, to establish
and maintain time-related views as well as mechanisms for status management of the
architecture artefacts, remain unattended. As COBIT and CMMI do not discuss these
mechanisms at all, ITIL introduces the concept of the configuration management data-
base (CMDB) - renamed to configuration management system (CMS) in ITIL V3 — a
repository of all authorised configuration items. ITIL states, that the main purpose of the
CMDRB is, the provision of up-to-date and secure information via the configuration items
used to support all service management disciplines [OGO07]. By contrast, the main focus
of EAM, besides representing the as-is IT infrastructure, is the creation of planning sce-
narios, comprising different variants of implementation options, as well as the agreed
target IT infrastructure. Since there seems to be a major overlap with regard to the re-
quired metamodels, as well as the control mechanisms between EAM and Configuration
Management, equal mechanisms and tool functionality seem to be applicable.

This paper introduces a framework called BOCAF (Business Objectives Compliance
Architecture Framework), which provides a means for integrating the requirements of
both EAM and Service Management. The main focus is on the description of the under-
lying mechanisms to ensure architecture artefacts are under an appropriate level of con-
trol. The term “architecture artefact” is used synonymous with the term ,,configuration
item* as the elements of the EA are denominated in ITIL. This would guarantee consis-
tency between the two domains. BOCAF is realised within the metamodelling tool
ADOit and has proven to be of value in numerous projects. The underlying research
approach for developing the BOCAF mechanisms was ,,Design Science* [He04]. The
discussed mechanisms evolved step by step during the various EA projects conducted by
the authors.

The remainder of the paper is organised as follows. In chapter 2, BOCAF and its main
elements are explained, by integrating the de-facto standard ITIL and the EA framework
TOGAF - as some of the most recognised approaches in the fields of service and EA
management. Chapter 3 discusses the various control mechanisms for maintaining and
evaluating the EA. In chapter 4, the various mechanisms are brought together, describ-
ing the interplay of these mechanisms to support effective and efficient EA and service
management. Finally, chapter 5 gives you an outlook on our future research fields.

2 BOCAF - A Framework for Business Objectives Compliance
Architectures

BOCAF represents a technology independent EAM framework for the structured and

consistent construction and maintenance of blueprints for the management of IT. It al-
lows the comprehensive coordination of strategic positioning, the reorganisation of or-

74

ganisational structures as well as the IS design on various levels by providing three es-
sential elements:

e the metamodel, comprising ITIL’s configuration items, as well as further archi-
tecture artefacts like reference patterns and the architecture building blocks
used during the architecture development process,

e best practice processes for implementing and performing IT management and

e mechanisms for putting the architecture artefacts under control, as well as
mechanisms for the analysis and evaluation of the architecture.

Unlike the EA frameworks mentioned above, BOCAF comprises application-oriented
scenarios for managing IT. It represents a collection of frameworks and approaches that
can be generally accepted as best practice for IT service management and EAM. It al-
lows for integration of different frameworks depending on the particular application
scenario. [MBO07] for example describes an approach for increasing the maturity level of
IT processes in accordance with ISO 20000, a prominent standard in the field of service
management by integrating ITIL and CMMI.

The underlying mechanisms for assuring an appropriate level of control for architecture
artefacts remain valid for all application scenarios, taking into account that different
levels of control are appropriate for different architecture artefacts at different imple-
mentation states (e.g. planned, in test, released) at different points in time.

2.1 Metamodel

The language for representing the architecture artefacts and their interdependencies (the
model) is described by its metamodel, i.e. the metamodel is a model of its corresponding
modelling language [Ku03]. The metamodel of BOCAF consists of a layered architec-
ture, and contains more than fifty modelling classes, with 14 static diagram types (repre-
senting the layers). For a more detailed discussion of BOCAF’s standard metamodel
refer to [Bo07].

The Strategy layer supports the alignment of the business targets with those of the IT
organisation. Strategies are implemented in terms of /T Projects, representing strategic
measures. By determining the required projects and by synchronisation of the superordi-
nate project master plans, these measures are assigned to the various architecture levels
of BOCAF [MBO7]. Figure 1 depicts the various layers of BOCAF.

75

Strategy

Projects

| Business Architecture |

| Application Architecture |

Software Architecture

ICT Infrastructure

IT Processes

Organisation

Figure 1. The BOCAF Metamodel (Overview)

The Business Architecture layer is used to analyse the business processes that are neces-
sary for IT support. IT services (also part of the Business Architecture), as the products
of the IT department/organisation, represent the link between business processes and the
existing IT architecture. The Application Architecture layer represents the applications,
their interfaces and business functions. Each application can be detailed in the Software
Architecture layer, comprising the deployment units of the applications, interfaces as
well as information and data flows. (Of course interfaces, information and data flows are
part of the Application Architecture layer as well.) For running the necessary applica-
tions, infrastructure elements are structured in the ICT Infrastructure layer, representing
all infrastructure and communication elements of the various test and production envi-
ronments. The IT Processes and Organisation layers represent the process organisation
and the organisational structure (including roles and skill profiles) of the IT organisa-
tion.

2.2 Best Practice Processes

Some of the aforementioned EA frameworks provide reference models, which represent
approaches to developing and maintaining the EA. These reference models can be inte-
grated into BOCAF on its IT Processes layer. Table 1 gives an overview of an integrated
process model combining ITIL and TOGAF’s Architecture Development Method
(ADM), which builds the basis for deriving the necessary mechanisms discussed in
chapter 4. It is worth mentioning that the described process model, focuses on the proc-
esses that are in need of mechanisms for controlling the architecture artefacts and main-
taining the EA in an efficient way. It does not cover all of the processes recommended in
ITIL and TOGAF. For a more detailed mapping considering all relevant processes, refer
to [ThO7].

76

Process

Short Description

Required Mechanisms

Analyse
the EA

Whereas the analysis in service
management concepts often fo-
cuses on the improvement of sin-
gle IT services (e.g. Availability
Management); in EA the analysis
usually focuses on the capabilities
of the IT architecture to meet the
business goals in the long run.

Groundwork for the analysis builds
a repository, representing the archi-
tecture at any given point in time,
building the baseline for further
planning (see chapter 3.1).

The concept of ,Types and In-
stances” (chapter 3.2) ensures the
efficient documentation of the ar-
chitecture with the required level of
detail.

Propose
Changes

For proposing changes we find
elements in both fields. TOGAF
distinguishes three change types:
The “simplification change”,
much like the definition of change
in ITIL. The “Re-architecting
change”, which requires putting
the whole architecture through the
architecture development cycle
again. The “Incremental change”
may be capable of being handled
via change management tech-
niques as discussed in ITIL, or it
may require partial re-
architecting.

An Request for Change (RFC)
represents an architecture artefact,
containing a description, objectives,
description of the risks and effects
of not implementing, and further
attributes (all part of the meta-
model).

RFCs need to be approved via an
agreed release workflow (see chap-
ter 3.3).

Generate
and Ana-
lyse
Planning
Scenar-
ios

For “Re-architecting changes”
and for “Incremental changes”,
because of their complexity, the
definition of scenarios might be
appropriate. These scenarios need
to be analysed with regard to their
capabilities to meet the business
needs. As discussed in [MBO05] an
agreed technology roadmap, e.g.
derived from a Technical Refer-
ence Model (TRM), as provided
by TOGAF or FEAF should build
the construction kit for standard
conform scenarios.

A scenario mechanism to describe
the implementation options and
their interplay with the baseline
architecture (at a certain point in
time) is requested (see chapter 3.1).
The competing planning scenarios
need to be connected to the initiat-
ing RFC via relationships as de-
fined in the metamodel.

Once the most applicable scenario
is chosen, its architecture artefacts
need to be released into the baseline
section of the repository (see chap-
ter 3.3).

71

Perform
Project
Master
Planning
and Mi-
gration
Planning

This process is about generating
an overall implementation and
migration strategy and a detailed
implementation plan for the im-
plementation of the released arte-
facts.

For this purpose ITIL establishes
the concept of the Forward
Schedule of Change, which con-
tains details of all approved
changes and their planning. TO-
GAF uses an equal concept relat-
ing to a time-lined implementa-
tion roadmap.

Impact analysis capabilities to iden-
tify changes/projects working on
the same instances of architecture
artefacts at the same time are
needed. Furthermore, interdepend-
encies in terms of budget and re-
source restrictions need to be
avoided (see chapter 3.1).

Perform
Imple-
menta-
tion
Govern-
ance

The goal of this process is to en-
sure that changes to the architec-
ture are managed in a cohesive
and architected way [TO06]. Par-
allel with this phase there is the
execution of an organisational
specific development process,
where the actual development
happens [TO06]. ITIL introduces
the process “Release Manage-
ment” for this purpose.

Check mechanisms that ensure the
validity of the released artefacts
must be in place. This implies the
necessity of mechanisms to com-
prehend the relations of CRs, plan-
ning scenarios, released artefacts,
scheduled changes/projects, as well
as to verify the content of the re-
pository against the real world en-
vironment (see chapter 4). The
approach for verifying artefacts is
taken from the process “Verifica-
tion” of ITIL’s Configuration Man-
agement process.

Table 1. Considered processes of ITIL and TOGAF

2.3 Mechanisms

As stated above, two major types of mechanisms are implemented in BOCAF:

1. Mechanisms for the analysis and evaluation of the released architecture and
planning scenarios comprise:

mechanisms for the generation of dynamic views like portfolio view, layer-
spanning dependency views, GANTT views, to perform analysis of the EA
from numerous concerns (requirements) or viewpoints and to provide
means to document each of the relevant viewpoint [TO06], [Bo07] and

mechanisms for evaluating and designing the EA, using concepts like
CMU/SEI’s Architecture Trade-off Analysis (ATA) Method, the concept

78

of gap matrix etc. [TOGO06].

2. Basic mechanisms for putting architecture artefacts of the EA under appropriate
control in a way to guarantee validity and timeliness of its content.

The following chapter discusses the basic mechanisms, derived under consideration of
TOGATF as well as from the required configuration management concepts of ITIL V3.

3 Requirements of Mechanisms for Controlling Architecture
Artefacts

3.1 Baselines and Planning Scenarios

As intended in the step “Opportunities and Solutions” of TOGAF’s reference process,
model mechanisms for the definition of various planning scenarios need to be provided.
Planning scenarios represent implementation options, described by using the various
diagram types representing the business, application, sofiware and ICT infrastructure
layers of BOCAF. Examples for planning scenarios are build-versus-buy-versus-reuse
options, and sub-options within those major options [TO06]. The various planning sce-
narios need to be evaluated with regard to their suitability for implementation. After
performing a benefits analysis, the most appropriate scenario can be chosen, based on
parameters such as costs and amortisation time.

The starting point for a new planning scenario is the architecture at any given point in
time, along with a baseline which represents the released, authorised state of the enter-
prise at this time. The released artefacts comprise artefacts already implemented at this
point in time, as well as those that are planned or in a test state (see chapter 3.4). Base-
lines at predetermined states of the enterprise architecture are formally reviewed and
agreed on, and serve as the basis for further development of the designated changes to

the architecture.
Architecture t_
(Target)

Planning
Scenario 1

- Architecture t,

o
Architecture t, ‘b

/
Architecture t, Planning
(as-is) Scenario 3

Figure 2. Baselines and Planning Scenarios

BOCAF consists of a repository that holds all the architecture artefacts that are part of
the enterprise’s current IT environment, as well as artefacts that have yet to be inte-
grated. It contains information to support the operative ITSM processes as well as typi-

cal information, like reference patterns and architecture building blocks to support the
architecture development processes. An important concept is the separation of the re-
pository contents in released artefacts that represent the state of the IT infrastructure as-
is and artefacts that are not integrated yet. The latter ones might be created with the pur-
pose of planning to change or extend the current IT infrastructure, but have not been
released yet or the planned components are just not installed yet. An advantage of the
planning scenario concept is the possibility to create several concurrent planning scenar-
ios, execute queries on the planned architecture and compare the results of n possible
scenarios.

In BOCAF the separation between actual, released artefacts and artefacts within a plan-
ning scenario is made possible by filtering the repository contents in a way that only
artefacts within a certain context are visible to the user. Roughly, the repository contents
can be separated into artefacts that were released (thus agreed upon and possibly already
part of the actual infrastructure) and those that are contained within a new planning sce-
nario. The first are visible all the time but can only be manipulated through the release
workflow (see chapter 3.3). Manipulation of the released elements as-is through model-
ling means, is not possible since they are already in use and possibly needed by other
scenarios or running projects. The latter will only be visible when the planning scenario
they are part of is activated. The user can still manipulate elements within a planning
scenario as long as they have not been released.

Upon release, an architecture artefact does not lose its affiliation to a planning scenario.
The process of releasing artefacts is further described in chapter 3.3. Additionally to its
release status, an artefact has an implementation status. Releasing an artefact only makes
it available for projects, it does not necessarily mean that the released artefacts are al-
ready implemented (see chapter 3.4).

Repository Scenario 1

Released
Artefacts
(Baselines)

Scenario 5

Scenario 4

Figure 3. Planning Scenarios
Consider the figure 3:

e Scenario 1 consists of the artefacts 1 and 2 that were newly created, but it also
uses artefacts 5 and 6 that are already released and are still affiliated to scenario
5, that only contains released artefacts. Scenario 5 was implemented com-
pletely.

80

Example: A new application along with a new database is to be introduced in
an enterprise. A month ago a project was finished successfully and introduced
three new servers that still have capacity available. For the new application and
the database, the existing capacity should be used.

e Scenario 2 consists of the artefacts 3 and 4 and also uses released artefacts. In
this scenario, the released artefacts 7 and 8§ are not realised yet (which is visual-
ised in the figure by the artefacts’ dotted line).

Example: Similar to scenario 1, new software is to be introduced and installed
on existing hardware. This does not pose any problems since there is still ca-
pacity available and there are no other scenarios that need any of the resources
of this scenario. However, it has to be considered that, although the artefacts 7
and 8 are already released, they are not realised yet (because they are still being
tested), and are not available immediately.

e Scenario 3 consists of the artefacts 10, 11, 12 and 13. The architecture artefacts
introduced with this scenario will be using the artefact 9 that is already part of
the released IT architecture. Another scenario, scenario 4 also plans to use the
artefact 9. In this situation, the persons responsible for planning have to be
aware that seemingly spare resources might already be occupied in another
planning scenario. For these situations BOCAF proposes queries (like impact
analysis) that provide a mechanism to identify all possible scenarios in which
an architecture artefact is used at a certain point in time, to avoid resource con-
flicts.

Example: A piece of hardware is available and has enough resources to host
another planned application. However, two scenarios are planning to use the
hardware and it is not certain that it can support both.

3.2 Types and Instances

In ITIL, architecture artefacts are classified in types and instances where a type refers to
a certain modelling class and an instance to a specific version of this class. The classifi-
cation of architecture artefacts helps to identify and maintain the usage and status of the
items. Typical types according to ITIL are: software products, business systems, system
software, servers, mainframes, workstations, laptops, routers and hubs.

An example for the relationship between types and instances in BOCAF is a piece of
software that comes in various release versions. Every version of this software is an in-
stance which is identified by an instance-specific versioning attribute, e.g. its version
number. The versioning attribute for a piece of hardware could be its serial number. (Of
course the versioning can be defined by more than one version attribute of an artefact,
but to reduce complexity for the modeller BOCAF focuses on only one versioning at-
tribute in its reference implementation.) An instance always belongs to a type; it can
never exist on its own. Figure 4 shows an example of the interplay of types and in-
stances: “Quickref” as the type of an architecture artefact (of modelling class “applica-

81

tion”) and its related instances “Quickref 1.0” and “Quickref 2.0”, representing the re-
leases of “Quickref”.

On the other hand, a type can have zero or more instances related to itself. Instances are
connected to types via the ,,is-kind-of™ relation (see chapter 3.3), which does not neces-
sary define an inheritance relation from the type to the instance. In fact BOCAF allows
the definition of propagation rules from types to instances or vice-versa. For example the
propagation of the attribute “date of validity” from the instance to the type via the func-
tion max (date of validity) can be denoted, thus setting the value of the type’s attribute to
the highest value of the attribute, in all of the instances based on this type.

The separation of types and instances provides an opportunity to design IT architectures
on two levels: the type and the instance level.

Type(ITIL) =
Modelling class Type (BOCAF) Instance (BOCAF)
(BOCAF)

— uses-templ ate
Application F—~mrm~a— e

- ~~T "~~~

\‘ I~ ~
\ uses— =~ Quickref ‘:L\ RSN
\ termplate d’l Quiskref 2.0
\
b »_ Quickref 3.0
v \
\
)

- PowerCaic \
|——b| PowerCalc 1.0

Figure 4. Interrelations between Modelling classes, Types and Instances

Figure 4 additionally shows the level “Modelling class” that contains the templates for
types and instances as they are defined in the metamodel (mentioned in chapter 2.1). On
the type level, hierarchies of any depth are possible. An example would be an abstract
application type “Office Software” upon which the types “Quickref” and “PowerCalc”
are based. To keep the modelling effort and the complexity of the modelled EA low, the
BOCAF metamodel does not contain type hierarchies.

The type level is convenient for modelling dependencies between architecture artefacts,
without having to pay too much attention to detail. The instance level is needed when
the dependencies are known and the architecture has to be planned in great detail. Also,
when modelling on the instance level, it is possible to use the type as a container for
several instances to evaluate the architecture. The type represents the version set of all
its instances. Thus, it is possible to perform queries on the type level (e.g. “Retrieve all
instances of Quickref”) that return all instances of the selected type.

33 Versioning Concepts and Release Workflow

Within BOCAF, artefacts and their relations are regarded as versioned items. As dis-
cussed in [Sc94] and [CWI8] versioning is performed with several intentions:

82

A version defined to supersede its predecessor is called a revision. For exam-
ple, the new version might be the result of a bug fix or the refinement of a pre-
vious version.

Versions defined to coexist are called variants. These represent alternative ver-
sions defined by a set of variant attributes. E.g., the metamodel might declare
the attribute “target operating system” of the modelling class “application” to
be a variant attribute. According to this rule, a variant can be defined for each
design alternative with regard to the suitable target operating systems.

Finally, versions may also be maintained to support cooperation or for analys-
ing different resolution alternatives. This case is covered by the concept of
planning scenarios (see chapter 3.1).

BOCAF distinguishes two structural relationships relevant for versioning (in compliance
with [Ka90]):

Version Histories/Is-Derived-From/Is-A-Kind-Of: This relation type is used to
incorporate the time dimension into BOCAF, by introducing the concept of re-
visions (see above). Via revisions the ancestor/descendent interrelationships of
one artefact are defined (using “is-derived-from” relationships).

The “is-a-kind-of” relation was elaborated in more detail in chapter 3.2, by in-
troducing the concept of “types and instances”.

Equivalencies: Often a variety of representations are needed to describe archi-
tecture artefacts and their dependencies accurately. Therefore mechanisms to
tie these representations together are required. Within BOCAF this is resolved
via diagram types (for visualising the interplay of architecture artefacts) and
the concept of planning scenarios, as previously discussed.

Before a new item that was added to the repository or an existing item that was changed
is released and therefore is ready to be added to the actual infrastructure of the enter-
prise, the relevant item has to go through a release workflow, during which it is re-
viewed by various persons and finally released.

In BOCAF, the release of architecture artefacts is achieved by bundling them into a
planning scenario and sending the whole scenario through a release workflow. The re-
lease workflow in BOCAF is realised as a status automaton that defines the states
,.Draft”, | Audit“, ,,Released* and ,,Archived®.

Modeller Auditor Supervisor

R A R

creates, performs audit,

initiates state transition | initiates state transition initiates state transition

Draft_>————+_Audit_>—————>(Released >—>Archived >

Figure 5. States of the Release Workflow

83

In the figure above, the release workflow consists of the four aforementioned states and
three roles that have permissions to initiate state transitions:

The Modeller creates new diagrams and artefacts in the state ,,Draft™. These
diagrams and artefacts make up a new planning scenario. After the modelling
tasks in the new scenario are finished, the Modeller forwards the whole sce-
nario to the Auditor.

The Auditor decides whether the planning scenario forwarded by the Modeller
meets the requirements of the enterprise and can either reject it and send it
back to the Modeller for further refinement or accept it and set its status to
,Released”.

The Supervisor manages the process and decides about the modification of the
IT infrastructure. To change an existing, released architecture artefact, the Su-
pervisor can create a new version of this artefact and send it to the Modeller
who implements the required change. After a new version of an artefact is fin-
ished, the Supervisor can set the status of its predecessor to ,,Archived®. Arte-
facts that have reached this state are added to the released artefacts within the
repository. It is important to note that these artefacts are not necessarily im-
plemented yet, they may still only be planned or in test (see chapter 3.4).

The various versions of an architecture artefact are identified by a numeric version num-
ber (extensional versioning). It is important not to confuse the version of an artefact with
the concept of instances that was described in the previous chapter 3.2. While for exam-
ple, the version number of an instance of a piece of software refers to the release version
(e.g. for Quickref 3.0, the version number 3.0 would be the number of the release), the
version of an artefact in the repository is a mechanism to visualise and manage its level

of maturity.

Type (BOC AF)| Instance (BOCAF)
Is-Derived-From Is-Derived-From
Quickr ef
A Quickref20 | _ _ _ _ _ _ _ _______ Quickref2.0 | __ _ _ > Quickref 2.0
Is-A-Kina-Of (V1‘(l) Create new working () Release ’(v2. 0)
‘~‘\\~ersion,changedescription /// _,"—
-~ -~ -~ /./ - -
~— P
Quickr ef
A Quickref2.0 |
Quickref3.0 | -=~"
Is-A-Kind-Of (v1.0)

Figure 6. “Types and Instances” and the Release Workflow

Consider figure 6 that visualises the difference between the instance of a type (repre-
sented by an instance attribute) and the technical version of an architecture artefact. The
top of the figure shows how a new technical version of an architecture artefact is cre-

84

ated: The artefact “Quickref 2.0” which is an instance of the type “Quickref” exists in its
technical version 1.0. After it was released, an error in the description of this artefact
was discovered, so it was necessary to create a new working version (Quickref 2.0 in
technical version 1.1) and to correct the error. After the error was corrected and the arte-
fact passed the status “Audit”, Quickref 2.0 was released and its technical version was
set to 2.0. During the whole process, the artefact’s instance attribute was not changed
because the release version of the artefact did not change.

The bottom of the figure shows that a new release of the type “Quickref” is handled dif-
ferently. It is handled as a new instance that has no actual connection to its predecessor
instance (aside from the shared type). The instance “Quickref 2.0” exists in technical
version 1.0 side by side with its successor “Quickref 3.0” that also has the technical ver-
sion 1.0.

34 Time-related Views

An important aspect of planning the IT architecture of an enterprise is the capability for
describing different states of architecture artefacts at different times. While a piece of
hardware might be valid at one point in time, some time later it might have become inva-
lid. BOCAF’s metamodel realises this aspect and incorporates it. In BOCAF, every ar-
chitecture artefact contains an attribute that represents the artefact’s state for a certain

period of time.
Implemented In Phase-out Obsolete
1 t3 t4 t5
Figure 7. States of Architecture Artefacts

The figure above shows the four states that an architecture artefact in BOCAF can have:
»Planned®, ,In Test”, , Implemented, ,,In Phase-out* and ,,Obsolete”. Every state also
has a date that marks the starting point for the next state. In the figure above, the state
,.In Test* would start at t1 and last until t2.

t2

The point of time at which the modelled IT architecture is viewed, affects the visibility
of architecture artefacts. Consider figure 8: The first part shows the state of the IT archi-
tecture at tl. There are two applications that are using the old server Serverl. A new
server named Server2 is already planned and will be introduced shortly. The user can
now view the state of t2 and see that at this time one application, PowerCalc, has already
been migrated to the new server. The other application, Quickref is still using the old
server. If the user views the state of t3, he sees that at this time, Quickref has been mi-
grated to the new server as well, the old server Serverl has become obsolete and will
from now on be hidden in this diagram. It is important to note that BOCAF provides the
possibility to view the state of the architecture (including the artefacts and their relations
and dependencies) at any given point in time. According to [Sc94] there are two types of

85

time versions to be considered: Time values in BOCAF are considered as logical time —
the time at which the changes took place or will take place in the real world. The time at
which the changes took place in the repository - physical time — is not discussed.

Quickref | | PowerCalc |

t1 t2

| Quickref | |PowerCaIc| | Quickref | |PowerCaIc

t3

Figure 8. Example for time-related Views

4 Tying it all together

Figure 9 illustrates how the various concepts introduced in the previous chapters can be
brought together and used to effectively manage the IT architecture. The released archi-
tecture artefacts are at the centre of the architecture. They are supposed to resemble the
reality as much as possible. A synchronisation of the released artefacts to the reality is
performed constantly to minimise differences as proposed in ITIL’s Service Asset and
Configuration Management [OGO07].

While constant synchronisation of the repository and the reality is necessary and sensi-
ble, changes made on the repository contents, such as the introduction of a new mail
client, will of course affect the real world (by releasing and implementing the mail client
in a real world environment), as can be seen at the bottom of the figure.

Repository

| Project , Introduction Mail Client Germany*

| Project ,, Introdu9(f§(1\Mail Client Poland* |
AN 1
T

I\

Planning Scenarios

LTI ~ A /
¢ Scenario / I \ /
"_»Thunderbird “ /

time

- -~

< Scenaro
. ,MS Outlook* _/
T . R d architecture artefact:
4
Scenario _
,Lotus Notes* Release modllfy
Workflow Synchronisation reality
LJ

Figure 9. Interdependencies of BOCAF’s control mechanisms

Planning scenarios are used to introduce new architecture artefacts into an infrastructure.
As soon as architecture artefacts are approved and released (as new artefacts or new
versions of existing artefacts) in the repository, changes to the infrastructure can be
made that are using released artefacts that were introduced through scenarios.

86

Consider the example in the figure above: On the left side, alternative planning scenarios
are listed. In this example, a company wants to introduce a new mail client for its sub-
sidiaries. The company considers three possible clients: Thunderbird, Lotus Notes and
MS Outlook. For each of these clients, a planning scenario is created, complete with
needed hardware and support services. After all the advantages and disadvantages of the
three scenarios have been calculated, a decision for one scenario is made and the re-
quired architecture artefacts are approved and released. The process of releasing archi-
tecture artefacts was described in chapter 3.3. In the example, the company decides to
use Lotus Notes. Only the artefacts needed for this planning scenario are released, arte-
facts required for the other two scenarios are not further considered and will not be
added to the infrastructure.

After the selected scenario has gone through the release workflow, the introduced archi-
tecture artefacts (or their new versions) are residing in the repository and are from that
time on available within the company.

Above the repository, along the time axis, changes to the released IT architecture are
made. This concept represents a time-lined implementation roadmap. In this example,
after the architecture artefacts necessary for the introduction of the new mail clients have
been released, changes to the company’s subsidiaries can be made. First, the new client
is introduced in Poland, later in Germany. The status of the released architecture arte-
facts changes from planned to tested and implemented during the lifetime of the pro-
jects/changes. Through projects/changes architecture artefacts might be removed, in this
case the state of the architecture object is set to obsolete and its date of validity expires.

5 Experiences and Future Work

The paper provided a general prescription of mechanisms for controlling EAs, which
have to be adapted (by IT architects) for the specific problem at hand. For example the
concept of “types and instances” might be disabled if it is not required for dealing with a
certain situation. This might be appropriate if the architecture work focuses more on a
strategic level (by modelling types only) to reduce the planning effort. Furthermore, by
building upon a metamodelling platform, the discussed mechanisms work with any
metamodel, which can be designed exactly according to the situation at hand.

The usage of the planning scenario mechanisms provides a workspace for IT architects
to define and evaluate alternative architecture solutions in parallel, by combining re-
leased artefacts with planned artefacts. In doing so, the effort involved in defining inde-
pendent, consistent alternative scenarios is saved. The concept of “types and instances”
is regarded as a powerful mechanism, as it allows dealing with the architecture on dif-
ferent levels of details. This is useful if the architectural work only focuses on certain
sections of the EA or detailed planning is not appropriate. Furthermore, the release
workflow ensures that accepted scenarios are propagated to the released architecture
section, without the risk of losing details of the architectural work. Since the repository
provides a view on the EA at any given point in time, it is possible to define projects

87

within the planning scenarios which are based on states of the architecture at any given
point in time, not only on certain states which is often a major drawback of conventional
modelling tools.

The full power of these basic concepts comes when combined with mechanisms to
evaluate the EA — like mechanisms for the generation of dynamic views, graphical and
tabular scenario comparisons etc. (Mentioned in chapter 2.3.) Of course the suitability of
the presented method needs to be proved in a more structured manner. Our approach
will define and evaluate key performance indicators (KPIs), e.g. the “reduction of inci-
dents occurring after changes” reduced through a more credible change process, or indi-
cators evaluating the workload reduction in the various phases of complex EA projects.

Among our future research goals is the definition of a detailed reference model for IT
architecture and service management, as well as the extension of the existing technical
workflows within ADOit, based on this reference model.

References

[Bo07] BOC: ADOit NP White Paper. (2007).

[CM06] CMMI Product Team: CMMI® for Development. Version 1.2 (CMMI-
SE/SW/IPPD/SS, V1.1): Staged Representation, Carnegie Mellon Software Engineer-
ing Institute, http://www.sei.cmu.edu/cmmi/models/index.html (access: 2007-08-15).

[CW98] Conradi, R.; Westfechtel, B.: Version Models for Software Configuration Management.
In: ACM Computing Surveys, June 1998, Volume 30, No. 2.

[Do07] Department of Defense (DoD): DoD Architecture Framework — Volume 1: Definitions
and Guidelines. http://www.defenselink.mil/cio-nii/docs/DoDAF_Volume_I.pdf (ac-
cess 2007-08-12).

[He04] Hevner, A.R.; March, S.T.; Park, J.: Design Science in Information Systems Research.
In: MIS Quaterly, March 2004, Volume 28, No. 1, pp. 75-105.

[ITO7] IT Governance Institute: COBIT. Version 4.0, IT Governance Institute,
http://www.isaca.org/downloads (access: 2007-06-11).

[MBO05] Moser, C.; Bayer, F.: IT Architecture Management — A Framework for IT Services. In:
(Desel, J.; Frank, U. Eds.): Proceedings of the Workshop on Enterprise Modelling and
Information Systems Architectures, October 2005, Lecture Notes in Informatics, Vol-
ume P-75, pp. 137-151.

[MBO07] Moser, C.; Bayer, F.: Einfiihrung von ISO/IEC 20000 — Ein prozessbasierter Ansatz.
In: (Andenmatten, M. Eds.): ISO 20000 — das Giitesiegel fiir geschéftskonforme IT-
Dienstleister. Publication date: February 2008, Symposion Verlag.

[Ka90] Katz, R.H.: Toward a Unified Framework for Version Modeling in Engineering Data-
bases. In: ACM Computing Surveys, December 1990, Volume 22, No. 4.

[Ku03] Kiihn, H.; Bayer, F.; Junginger, S.; Karagiannis, D.: Enterprise Model Integration. In:
(Bauknecht, K.; Tjoa, A M.; Quirchmayer, G. Eds.): Proceedings of the Fourth Interna-
tional Conference EC-Web 2003 — Dexa 2003, Prague, Czech Republic, September
2003, LNCS 2738, Springer-Verlag, Berlin, Heidelberg, pp. 379-392.

[OG07] Office of Government Commerce: ITIL — Service Transition. Appeared in the book
series ITIL - IT Infrastructure Library, The Stationery Office, London, 2007.

[Sc94] Sciore, E.: Versioning and Configuration Management in an Object-Oriented Data
Model. In: (Scheuermann, P.): VLDB Journal, 1994, No. 3, pp. 77-106.

[ThO7] Thorn, S.: TOGAF™ and ITIL®. http://www.opengroup.org/architecture/togaf8-
doc/arch/ (access: 2007-09-05).

[TO06] TOGAF: The Open Group Architecture Framework “Enterprise Edition”. Version
8.1.1, http://www.opengroup.org/architecture/togaf8-doc/arch/ (access: 2007-08-15).

[ZS87] Zachman, J. A.; Sowa, J.F.: Extending and formalizing the framework for information
systems architecture. In: IBM Systems Journal, 31. Jg., Nr. 3, 1992, S. 590-616.

88

