

PDV-Berichte

Die Gesellschaft für Kernforschung mbH koordiniert und betreut im Auftrag des

Bundesministers für Forschung und Technologie das im Rahmen der Datenverarbei­

tungsprogramme der Bundesregierung geförderte Projekt Prozeßlenkung mit Datenver­

arbeitungsanlagen (PDV). Hierbei arbeitet sie eng mit Unternehmen der gewerblichen

Wirtschaft und Einrichtungen der öffentlichen Hand zusammen. Als Projektträger gibt

sie die Schriftenreihe PDV-Berichte heraus. Darin werden Entwicklungsunterlagen zur

Verfügung gestellt. die einer raschen und breiteren Anwendung der Datenverarbeitung :n

der Prozeßlenkung dienen sollen.

Der vorliegende Bericht dokumentiert Kenntnisse und Ergebnisse, die im Projekt POV

gewonnen wurden.

Verantwortlich für den Inhalt sind die Autoren. Die Gesellschaft für Kernforschung

übernimmt keine Gewähr insbesondere für die Richtigkeit, Genauigkeit und Vollständig­

keit der Angaben, sowie die Beachtung privater Rechte Dritter.

Druck und Verbreitung:

Gesellschaft für Kernforschung mbH
7500 Karlsruhe 1, Postfach 3640

Printed in Western-Germany

KFK-PDV 120

Projekt Prozeßlenkung mit DV-Anlagen

Forschungsbericht KFK-PDV 120

Basic PEARL

Language Description

: ~rocess and ~xperiment Automation Realtime ~anguage)

291 Seiten

7 Abbildungen

7 Tabellen

Basic PEARL Language Description

Forword

This docurnent is the official cornrnon language description

of Basic PEARL. Basic PEARL is the subset of Full PEARL which

was defined as the rninimum that each PEARL implementation

rnust contain. At the time being, it has been accepted and

included in their implementations by the following firms:

AEG, BBC, Dietz, GPP, Krupp-Atlas, MBP, and Siemens.

As for Full PEARL, the reader is asked to refer to Full PEARL

Language Description KFK-PDV 130, Gesellschaft für Kernfor­

schung mbH, Karlsruhe.

This Basic PEARL Language Description was assembled by Mr.

P. Hruschka from GEI (Gesellschaft für Elektronische Infor­

nationsverarbeitung), Aachen, on behalf of Project PDV under

;overnment Contract No. DV 5.505.

�xtracts may be reproduced provided the source is acknowledged.

(For questions, contact Projekt PDV, Gesellschaft für Kernfor­

;chung mbH, P.O. Box 3640, 7500 Karlsruhe, Germany,

:/o Dr. T. Martin.)

Table of Contents: Survey

page

I INTRODUCTION

II LANGUAGE DESCRIPTION

0. General

0 . 1 Method of Syntax Description 1

0.2 Method of Semantics Description 10

1.

2.

Objects

1.0 General

1 . 1 Structural Objects

1. 2 Algorithmic Objects

1. 3 Communication Objects

1 . 4 Realtime Objects

Operations

2.0

2. 1

2.2

2.3

2.4

General

Structural Operations

Algorithmic Operations

Communication Operations

Realtime Operations

III APPENDIX

11

11

24

35

7 1

129

1 4 1

14 1

146

153

196

213

LANGUAGE DESCRIPTI0N: Table of Contents

o. GENERAL

0. 1 Method of Syntax Description

o. 1 .0 General

0. 1 . 1 Production-rules

0. 1. 2 Character-set

o. 1. 3 Spaces, Cornments and Keywords

0.2 Method of Semantics Description

LANGUAGE DESCRIPTI0N: Table of Contents

1 . 0BJECTS

1.0 General

1. 0 .o Attributes of 0bjects

1 • 0. 1 Variability

1 .o. 2 Declarations and Specifications

1.0.2.0 General

1.0.2.1 Global Declaration

1.0.2.2 Global Specification

LANGUAGE DESCRIPTION: Table of Contents

1 • 1 Structural Objects

1 . 1 • 0 Program Structure

1. 1. 1 Modules, Divisions and Blocks

1. 1. 2 Begin-blocks

1. 1. 3 Inter-module Communication

1. 1. 4 Inter-division Communication

LANGUAGE DESCRIPTION: Table of Contents

1.2 Algorithmic Objects

1.2.0 General

1.2.1 Basic Data Types

1.2.1.0 General

1.2.1.1 Nurnbers

1.2.1.1.0 Precisions

1 . 2 . 1 . 1 . 1 F IXED

1.2.1.1.2 FLOAT

1.2.1.2 Strings

1.2.1.2.0 Length

1.2.1.2.1 CHARACTER

1 . 2. 1 . 2. 2 BIT

1.2.1.3 Times

1.2.1.3.0 General

1 . 2 . 1 . 3 . 1 CLOCK

1.2.1.3.2 DURATION

1.2.2 Procedures

1.2.2.0 General

1.2.2.1 Parameters

1.2.2.2 Function Procedures

1.2.2.3 Reentrancy

1 . 2. 3 Compound Obj ects

1.2.3.0 General

1 . 2 . 3 . 1 Arrays

1.2.3.2 Structures

LANGUAGE DESCRIPTION: Table of Contents

1.3 Communication Objects

1.3.0 General

1.3.1 Data-stations

1.3.1.0 General

1.3.1.1 User-defined Data-stations

1.3.1.1.0 General

1.3.1.1.1 Data-channel Attributes
1.3.1.1.2 Control-channel Attribute

1.3.1.2 System-defined Data-stations

1.3.1.2.1 General

1.3.1.2.2 System-division

1. 3. 2 Controls

1.3.2.0 General

1.3.2.1 Non-rnatching Controls
1.3.2.2 Matching Controls
1.3.2.3 Control Lists

1.3.2.4 Remote Format

LANGUAGE DESCRIPTION: Table of Contents

1 . 4 Real time Objects

1. 4. 0 General

1. 4. 1 Events

1.4.1.0 General

1.4.1.1 Interrupts

1.4.1.2 Signals

1 . 4. 2 Synchronizers

1 . 4. 3 Tasks

LANGUAGE DESCRIPTION: Table of Contents

2. OPERATIONS

2.0 General

2.o.o Operators and Operands

2.0.1 Expressions

2.0.2 Statements

LANGUAGE DESCRIPTION: Table of Contents

2. 1 Structural Operations

2. 1 • 0 General

2. 1 . 1 Prograrn Execution

2. 1 . 2 Lifetime and Scope

LANGUAGE DESCRIPTION: Table of Contents

2.2 Algorithrnic Operations

2.2.0 General

2.2.1 Basic Operations

2.2.1.0 General

2.2.1.1 Assignation

2.2.1.2 Standard Operations

2.2.1.2.0 General

2.2.1.2.1 Monadic Operators

2.2.1.2.2 Dyadic Operators

2.2.1.3 Evaluation of Expressions

2.2.2 Procedure Calls

2.2.2.0 General

2.2.2.1 Passing Actual Parameters

2.2.2.1.0 General

2.2.2.1.1 Initial-Mechanism

2.2.2.1.2 Identical-Mechanism

2.2.2.2 Returning a Result

2.2.3 Operations on Compund Objects

2.2.3.0 General

2.2.3.1 Access to Arrays

2.2.3.2 Access to Structures

2.2.3.3 Bit-String-Selection

2.2.4 Transfer of Control

2.2.4.0 General

2.2.4.1 Gote-Statement

2.2.4.2 Conditional-Statement

2.2.4.3 Case-Statement

2.2.4.4 Repeat-Statement

LANGUAGE DESCRIPTION: Table of Contents

2.3 Cornmunication Operations

2.3.0 General

2. 3. 1 Dataway Operations

2.3.1.0 General

2.3.1.1 Construction of Dataways

2.3.1.2 Synchronization of Dataways

2. 3. 2 Transfer Operations

2.3.2.0 General

2.3.2.1 PUT and GET

2.3.2.2 SEND and TAKE

2.3.2.3 WRITE and READ

LANGUAGE DESCRIPTION: Table of Contents

2.4

2.4.0

2.4.1

2.4.2

2.4.3

Realtime Operatiqns

General

Event Operations

2.4.1.O General

2.4.1.1 Interrupt Masking

2.4.1.2 Signal Stimulation

2.4.1.3 Signal Reactions

Synchronization

2.4.2.O General

2. 4. 2. 1 Request

2.4.2.2 Release

Task Operations

2.4.3.O General

2.4.3.O.1

2.4.3.O.2

2.4.3.1 Activate

2.4.3.2 Terminate

2.4.3.3 Suspend

2.4.3.4 Continue

2.4.3.5 Resume

2.4.3.6 Prevent

Schedules

Priorities

LIST OF TABLES AND FIGURES

table 1:

table 2:

table 3:

table 4:

table 5:

table 6:

table 7:

fig. 1 :

fig. 2:

fig. 3:

fig. 4:

fig. 5:

fig. 6:

f ig. 7:

page

reserved keywords 8

initialization 20

binary-octal conversion 48

binary-hexadecimal conversion 48

monadic operators 159

dyadic operators 163

transfer operations 204

Basic PEARL program 24

module 24

block-structures 30

data-station 76

states and transitions of tasks 137

graphic representation of a repeat-statement
195

individual transfers 205

~ ~. .

'·

. ;

-1-

o. 1 Method of Syntax Description

o. 1. 0 General

The syntax of Basic PEARL is described by a set of

"Eroduction-rules".

These production-rules consist of "terminals" and

"non-terminals" and some special characters, the

meaning of which is discussed below.

Non-terminals are represented by a sequence of

(small) letters, digits and hyphens, starting with a

letter. No hyphen may irnmediately be followed by

another one.

examples for non-terminals:

identifier

prec-3-operator

scheduie-1

Terminals are represented by a sequence of capital­

letters, digits and special characters, that are listed

in section 0.1.1.2 (character-set).

examples for terminals:

TASK
(

IF
,
F
DATION

0.1.0/1

-2-

0. 1 . 1 Production-rules

Each production-rule consists of

- a rule-name

- the character-sequence ::= to separate

the rule-name f rom the rule-body

- a rule-body

There is a one-to-one correspondence between the

rule-names and the non-terminals, i.e. each non-terminal

identifies exactly one rule-body.

Beyond that each non-terminal must a least once appear

in another rule-body, except for one non-terminal, which

is Basic PEARL is

basic-pearl-program

(refer to section 1.1.1).

A rule-body consists of a sequence of non-terminals and

terminals and some special characters, which are used for

convenience of denotation.

These special characters are:

I
{ }
[]
• • ••

used to denote alternatives

used for alternatives, too, or to enclose

sequences

used to enclose optional parts

used for repetition or repetition with

delimiter

0.1.1/1

-3-

alternatives:

alternatives within a rule-body are either separated
by / or they are aligned vertically and enclosed in
braces {, J

example:

options:

A ·. =

B / C / D

A produces B or C or D. The same

production- rule may be denoted as

A •• =

if parts of a rule-body may be produced or not, these
parts are enclosed in square brackets [,] .

example:

repetition:

A· ·=

B [c] D

A produces either BCD or BD only.

Cis said tobe optional.

repetition of sequences is achieved by • ·• following

the sequence.

example:
A· ·=

B • • •

This means, A produces B, or BB,

or BBB'

- ,.,..,.

-4-

repetition with delirniter:

often it is necessary to repeat a sequence, separa­

ting the single elernents by a special delirniter.

A• ·­
. . -

{ D • B ...
J

produces B or a sequence of B separated by D:

BDB

BDBDB

BDBDBDB
.

.

•

•

To obtain a (syntactically correct) Basic PEARL program

one has to start with the production-rule for

'basic-pearl-prograrn', always replacing non-terrninals

by any of the alternatives listed in its production­

rule until this results in a terminal sequence.

0. 1. 1 /3.

-5-

0. 1. 2 Character-set

The character-set of Basic PEARL is given by the

following production-rule:

character-set::=

{

"Letter]
digit

special-aharacter

letter: :=

digit::=

A/B/C/D/E/F/

G/H/I / J/K/L/

M/N/O/P/Q/R/

S / T/U/V/W/X/

y / z

0 / 1 / 2 / 3 / 4 / 5 / 6 / 7 / 8 / 9

For the representation of 'bit-strings' the following

three subsets of the character-set are used:

binary-digit::=

0 / 1

octal-digit: :=

0 / 1 / 2 / 3 / 4 / 5 / 6 / 7

hexadecimal-digit::=

0/1/2/3/4/5/6/7/

8/9/A/B/C/ D / E/ F

()_1_?/1

-6-

In Basic PEARL the following special-characters areadmitted:

Note:

special-character::=

+

..

!..

(

)

,

;

<

>

[

J

(blank or space)

(plus-sign)

(minus-sign or hyphen)
(asterisk)

(slash)

(left parenthesis)
(right parenthesis)
(colon)

(period)

(corrma)

(semico lon)

(equal-sign)

(left-angle-bracket)
(right-angle-bracket)
(single quote)
(left squax>e bracket)
(right squa:r>e bracket)

the characters /, (, J are underscored todistinguish them from the ones used withinproduction rules.

0.1.2;2

-7-

o. 1. 3 Spaces, Conunents and Keywords

On constructing Basic PEARL programs some more rules

have to be obeyed:

identifier, keywords and constant-denotations of

objects of type FIXED, FLOAT, BIT, CHAR have to be

separated by at least one blank.

example: BEGIN uIF

7.53~EC

FOR I FROMSTART BY
;
blank missing between keyword

and identifier!

blanks may be inserted anywhere between terminals

except within 'identifiers' and string-constant-deno­

tations .

(Note: in character-strings blanks may appear, but

then they are relevant members of the string,

and not separators!)

Those sequences of special-characters denoting ~

terminal symbol, as for example := or II or -). , may

not be broken apart, too.

conunents may be inserted anywhere where blanks are legal.

Conunents are bracketed by the special-character-combi­

nations

and

Within these brackets any text may appear except ~I,

which would terminate the conunent.

Conunents may not be nested.

example: THIS IS A COMMENT

0.1.311

-8-

Some of the terminal symbols are reserved keywords

of Basic PEARL, i.e. they may not be used as identifiers.

The following table lists all the keywords of Basic

PEARL and the abbreviations (denoted in brackets) in

alphabetical order.

(Note: In order to write Basic PEARL programs comptatible

to Full PEARL one has to obey some more reserved

keywords. They can be found in the Full PEARL

Reference Manual).

ACTIVATE DATION

AFTER DECLARE (DCL)

ALL DIRECT

ALPHIC DISABLE

ALT DURATION (DUR)

AT DURING

BASIC ELSE

BEGIN ENABLE

BIT END

BY ENTRY

EVERY

CALL

CASE FIN

CHARACTER (CHAR) FIXED

CLOCK FLOAT

CLOSE FOR

CONTINUE FORBACK

CONTROL FORMAT

CREATED FORWARD

CYCLIC FROM

table 1: reserved keywords

0.1.3/2

GET

GLOBAL

GOTO

HRS

IDENT

IF

IN

INDUCE

INIT

I N OUT

INTERRUPT (IRPT)

INV

LENGTH

MAX

MIN

MODEND

MODULE

NOCYCL

NOSTREAM

ON

OPEN

OUT

PRESET

PREVENT

PRIORITY (PRIO)

PROBLEM

PROCEDURE (PROC)

PUT

table 1, continued:

-9-

READ

REENT

RELEASE

REPEAT

REQUEST

RESIDENT

RESUME

RETURN

RETURNS

SEC

SEMA

SEND

SIGNAL

SPECIFY (SPC)

STREAM

STRUCT

SUSPEND

SYSTEM

TAKE

TASK

TERMINATE

TFU

THEN

TO

UNTIL

WHEN

WHILE

WRITE

r e ser ved k eywo rds

-10-

0.2 Method of Semantics Description

The semantics of syntactically correct Basic PEARL

constructs is explained in plain English. For ease

of understanding examples and illustrations are added.

Part 1 of this Language Description explains the

static features of Basic PEARL objects, i.e. what

attributes they may be given, what restrictions have

to be obeyed etc.

The dynamics of Basic PEARL programs are detailed

in part 2 in form of operations on objects.

Semantics is only detailed as far as this is possible

on language level, i.e. no implementation dependent

features are explained in this report. Such locations

still needing supplement are either marked by a

reference to a special "implementation-handbook" or by

referring to the "system" (meaning a virtual machine

executing the Basic PEARL code, without detailing the

actions of this machine precisely).

0.2/1

-11-

1. OBJECTS

1. 0 General --------

1. 0. 0 Attributes of Objects

Objects consist of a location and a content. The

content of an object can be a value or a prescrip­

tion. (The contents of a FIXED-variable, for instance

is a value of an integer number, the contents of a

procedure is a prescription for the execution of an

algorithrn). Objects the content of which is a pres­

cription are called "executable objects".

Objects may be "identifiable" or not. Identifiable

objects must be equipped with a name, a socalled

"identifier".

The usual way to supply objects with an identifier is

a declaration (cf. section 1.0.2). But there are some

objects with predefined names (and attributes), for

example 'controls' (refer to section 1.3.2) or the

'system-device-identificators' in the SYSTEM-division

(see section 1.3.1.2.2), that are already known to the

"system" - and therefore they don't have tobe declared.

An 'identifier' consists of a sequence of letters and

digits, starting with a letter.

identifier: :=

{
letter) · · •

letter r digi t J

Within its scope (refer to section 2.1.2) it must un­

equivocally identify ~ object.

-12-

Objects without identifier are called 'constant-deno­

tations'. Such objects always represent a value, their

location is not known to the prograrnmer.

example: 3. 14 may be used in a program to denote

the mathematical entity "real

number 3.14".

The attributes of an object serve to

characterize the content and to

characterize the access-right

to the object.

The first group of attributes defines how the content

is tobe interpreted. So, for example -FIXED means,

the content is the value of an integer number, ALPHIC

denotes, that a 'dation' may contaln 'alphic symbols'

etc.

In the following these attributes are often called the

"type" of an object.

Examples for the second category are FORWARD, meaning

an object of type 'dation' can only be accessed sequen­

tially in positive direction - or INV, denoting

"invariability". Access-right attributes given in a

declaration may not be extended in specifications; they

may only be restricted.

In general, the relations between these attributes (i.e.

which attribute is more restricted or more extended) are

set up in the sections where the corresponding objects

are detailed. One attribute , however, is explained in

the following section, since it applies to a variety of

types: the INV-attribute.

1 .0.0/2

-13-

1.0.1 Variability

"Variability" of an object means, that it may be used

as left-hand-side of an assignation (refer to section

2.2.1.1), i.e. different values may be assigned to this

object by the programmer.

For objects of basic type variability is default, in­

variability is indicated by the attribute "INV".

Objects having the INV-attribute are in the following

often called 1 constants 1
, basic objects without the

INV-attribute are called 'variables'.

example:

DCL PI INV FLOAT INIT (3.14);

PI denotes a FLOAT-constant

DCL I FIXED;

I denotes a FIXED-variable

Some other Basic PEARL objects are implicitely consi­

dered of having INV-access since no assignation is defi­

ned for these objects, for example semaphores or proce­

dures.

Variability is defined with respect to the assignation­

operation, not with respect to operations in general.

(For example, a semaphore, although considered as INV,

will of course be changed under a REQUEST-operation) .

The INV-attribute may also be used to restrict access to

a global object within a specification to "read-only".

1.0.1/1

-14-

example:

MODULE;

DC� F FIXED GLOBAL;

F : = I + J;

F : = 7;

MODEND;

F is declared as

FIXED-variable, therefore

F may be used as left­

hand-side in assignations.

MODULE;

•

'

SPC F INV FIXED GLOBAL;

A : = S*F;

PUT F TO ••••

1
1

1

MODEND;

Access to F has been

restricted in the speci­

fication. Therefore the

value of F must not be

changed in this module.

1.0.1/2

-15-

1.0.2 Declarations and Specifications

1.0.2.0 General

As already mentioned in the previous section attaching

attributes to objects can either be done in a decla­

ration or a specification.

A declaration creates an object and attaches attributes

to it. Any identifiable Basic PEARL object - with the

exception of labels (refer to section 1.2.4) - must

be declared before it can be accessed (used in opera­

tions).

There are different syntactical forms for declarations:

gtobat-deataration

toaat-identifier-deataration

- r-fonnat-deataration

- proaedure-deataration

task-deataration

tength-deataration

- preaision-deataration

tabet-deataration

Except for 'global-declaration' they will be detailed in

the corresponding sections.

The 'length-declaration' and the 'precision-declaration'

do not create objects, but preset system-values needed

as defaults (cf. section 1.2.1.1.0 and 1.2.1.2.0).

Specifications can only be applied to already existing

objects. They are either used to make these objects

known in another module (or division, resp.) and/or

to restrict the access-attributes of these objects.

1 . 0 .2. 0/ 1

-16-

(Note: Extending or changing attributes is not

possible in specifications, only restric-

tion!)

In Basic PEARL specifications can only be attached

at module-level, therefore they are syntacticallY

covered by

global-specification

which is detailed in section 1.0.2.2.

1.0.2.0/2

-17-

1.0.2.1 Global Declaration

A variety of Basic PEARL objects is created by a

'global-declaration'. The general syntactical form is

given by:

gtobat-decta:l'ati on::=

{
DECLARE]

DCL

{, • one-identifier-or-iist

gfobat-dect-attributes • • •}

If several objects are to be created with equal attri­

butes ('global-decl-attributes') their identifiers may

be combined to a list:

exarnple:

one-identi fier-or-iist:: =

J identifier]
l ({, • identifier> ~„})

creating four FIXED-variables can be achie­

ved by

DCL (I,J,K,L) FIXED;

An equivalent denotation is

DCL I FIXED, J FIXED,

K FIXED, L FIXED;

'global-decl-attributes' lists the attributes the

object(s) is (are) tobe given and provides construc­

tions for initialization.

1.0.2.1/1

-18-

gZobaL- decL-attributes::=

{

(bound-Ust] Local-mode

SEMA

dat i on-attr

(RESIDENT] [GLOBAL]

[RESIDENT] [GLOBAL)

[RESIDENT] (GLOBAL]

initial

presetting

dataway-con-
struation

The f irst alternative is to denote all basic data-types

(detailed in section 1.2.1), and compound objects

constructed of basic objects.

loca i-mode: : =

[INV J {:=:::~:ade]
The s econd alternative denotes the attributes for sema­

phores, the third is provided for user-defined data­

stations .

The att r i bute RESIDENT has no semantics in the usual

sense . lt just indicates that the corresponding object

is consid e red tobe used frequently, therefore it would

be advantageous to keep it in a fast-access part of

memory. lt may also be used as a hint to the compiler

to do some o p t i mi zation.

The attribute GLOBAL is detailed in section 1 . 1.3 and

1.1.4.

An initialization presets the value of an object at

the time it is created . Syntactically these are three

different forms:

1.0.2.1/2

-19-

initiaZ: :=

(INIT

({ , • { [+ 11-J eonstant-denotation • • "JJ J

presetting: :=

[PRESET .

({, • simpZe-integer-eonstant-denotation · • "]J]

dataway-eonstrueti on ::=

CREATED

(dation-identi fier [in t eger-in-braekets])

For some objects initialization is necessary since it is

the only chance to supply them with a value.

The following table lists all the objects for which

initialization is possible, necessary, impossible or

defaulted - and the way how this is achieved.

1. 0 .2.1/3

initialization

is:

possible

necessary

impossible

defaulted

table 2:

-20-

for objects of

TYPE

FIXED

FLOAT

BIT

CHARACTER

CLOCK

DURATION

SEMA

DATION

INV FI
0

XED

INV FLOAT

INV BIT

INV CHARACTER

INV CLOCK

INV DU RATION

DATION

for all compound

objects, i.e.

arrays and

structures

SEMA

initialization

achieved by:

"

'initial'

~

'presetting'

'dataway-construc-
tion'

'initial'

„

'dataway-construc­
tion'

omitting 'presetting',

defaulted value is

zero

-21-

Within one 'global-declaration' objects of different

types may be declared.

example:

DECLARE F INV FLOAT INIT(7.5) GLOBAL,

CL CLOCK, I FIXED(16) INIT(-2(16)),

(S1 ,S2) (5) CHAR(10) RESIDENT GLOBAL;

This 'global-declaration' is equivalent to the

following sequence of 'global-declaration's:

DCL F INV FLOAT INIT(7.5) GLOBAL;

DCL CL CLOCK;

DCL I FIXED(16) INIT(-2(16));

DCL S1 (5) CHAR(10) RESIDENT GLOBAL;

DCL S2 (5) CHAR(10) RESIDENT GLOBAL;

Note: In the following sections, where the objects are

introduced and explained, the respective complete

syntax for the declaration (and specification)

for the object is given.

This is done to provide a convenient way for

reading the sections and to establish an easily

comprehensible connection between syntax and

examples.

Nevertheless such declarations may - at the pro­

grammers pleasure - be combined to 'global-decla­

ration's (as indicated in the example above).

1.0.2.1/5

-22-

1.0.2 .2 Global Specification

In Basic PEARL specifications are only possible at

rnodule-level. The general syntactical form is given by:

global-specification::=

{
SPECIFY}

SPC

f , · one-identifier-or>-list

global-spec-attributes [GLOBAL]•••~

As f o r declarations cornbining identifiers to lists is

pos sible, if the corresponding objects have equal attri­

butes.

'global-spec-attributes' provides sorne more alternatives

than the corresponding 'global-decl-attributes', since

realtirne-objects and procedures are included in this

syntactical construction, too.

global-spec-attributes::=

[r C, J [, JJ J focal-mode

SEMA

[< J] dation-spec-attr

TASK

irpt- or- signal-mode

procedU:t'e-mode {RESIDENTj{REENT]

Within specifications al l t he bound-lists are denoted

as ernpty lis t s, just indicating the (number of) dimensions.

This applies t o any kind of arrays (e.g. arrays of simple

objects, data-stations and inte rrupt- or signal-arrays,

too).

1 .0.2 . 2;1

-23-

irpt-or-signal-mode::=

[r J 1
{

INTERRUPT)
IRPT

SIGNAL

For the specification of procedures a different key­

word is used:

procedux>e-mode::=

ENTRY [({, • parameter-mode • • "}) J
r resuit-attribute]

example:

SPC I INV FIXED GLOBAL,

A(,) CHAR(10) GLOBAL,

T1 TASK GLOBAL,

ALARM() IRPT, DONE SIGNAL,

F1 ENTRY RETURNS (FIXED) REENT GLOBAL;

1.0 .2.2/2

1.1 Structural Objects

1.1.0 Program Structure

-24-

In Basic PEARL a program is composed of one or several

"modules".

Modules are the units of compilation of a Basic PEARL

prograrn.

f ig. 1:

Basic PEARL
program

MODULE;

MODULE,

MODEND; � modules

A module may consist of one or two "divisions".

There are two kinds of divisions:

fig. 2:
module

SYSTEM-division

PROBLEM-division

MODULE;

SYSTEM;

PROBLEM;

SYSTEM-division

PROBLEM-divisio1

1.1.0/1

-25-

The SYSTEM-division describes the system-dependent

parts of the program, i.e. the configuration of the

devices used and the connections between them.

The PROBLEM-division contains the problem-specific

parts of the program, i.e. the formulation of the

algorithms used to solve the autornation problem.

Modules and divisions will be briefly discussed in

the following section. There the block-concept is

introduced, too.

1. 1.0/2

-26-

1.1.1 Modules, Divisions and Blocks

A Basic PEARL program consists of declarations and

s pecifications partitioned into units called "modules".

basia-pearZ.-program::=

moduZ.e • • •

A module may contain one or two divisions.

moduZ.e: :=

MODULE;

{

system-division (probZ.em-division]]

probZ.em-division

MODEND;

The syntax shows, that a module may contain either

Note:

- only a system-division, or

- only a problem-division, or

- a system-division and a problem-division

In a Basic PEARL program only one rnodule rnay

contain a system-division.

At lea s t one module must contain a problern­

divisio n containing a declaration of a global

task.

(cf. section 2. 1 .1)

1.1.l/1

-27-

The goals of the systern-division and the specif ica­

tions it rnay contain are further explained in

section 1.3.1.2.1.

A problern-division consists of a set of declarations

and specifications.

probZem-division::=

PROBLEM;

decZarations-and-specifications

Within 'declarations-and-specifications' the following

order rnust be obeyed:

decZarations-and-specifications::=

f Zength-decZaration; } • • •
l . . . 1

prec~s~on-decZarat~on;

[gZobaZ-specification; J ···
[gZobaZ-decZaration; J ···
[r-format-decZaration; J · • ·
(procedure-decZaration; J · · ·
C task-decZaration; J • · ·

A further structuring of a problern-division is achieved

by introducing "blocks".

Blocks are groups of declarations and/or statements.

Declarations, if present, have to precede statements.

Two blocks rnay either be disjoint or one is completely

enclosed by the other.

1 1 1 /'l

exa.rnple:

l
l

-28-

block-begin 1 •

block-end 1

block-begin 2 .
.
' block-end 2

block-begin 1
• •
~ (bl~ck-beg in 2 . :
1 1

• block-end 2
1

block-end 1

Two disjoint
blocks

Two "nested"
blocks

(Block 2 completely
enclosed by block 1)

In Basic PEARL the following types of blocks are

possible:

- procedures

- tasks

- begin-blocks

- r epeat-statements

In a certain respect modules or divisions, resp., may

be viewed as blocks. They may only contain declarations

(or specifications, resp.) , but no statements.

1.1.1/ 3

-29-

In Basic PEARL the following rules have to be obeyed:

at module-level (within a problem-division) only

procedure- or task-blocks may be attached.

procedures and tasks are always disjoint blocks,

they may not be nested.

(i.e. one must not declare a procedure within a

task, or a procedure within a procedure etc. !)

note the order of procedures and tasks given in

the syntax: procedures always precede tasks!

begin-blocks may only appear within procedures or

tasks (not at module-level since they are no

declarations). Begin-blocks will be detailed below.

The particularities of procedures and tasks will be

discussed in the respective sections.

1 • 1 • 1 / 4

-30-

'he f ollowing figure is to elucidate the rules:

PROBLEM:

[

P 1 1 PROCEDURE;

END:

[

P2: PROCEDURE;

[

BEGIN

END
END;

T:TASK;

BEG IN

!
BEGIN

END;

END:

END:

fig. 3: Block-structures

two procedure-blocks,
one containing a
begin-block

a task-block containing
nested begin-blocks

1.1.1/5

-31-

1. 1. 2 Begin-blocks

Syntactically, a 'begin-block' is a special form of

a 'statement' (refer to section 2.0). This implies -

as already mentioned in the last section - that begin­

blocks may only appear within procedures or tasks

(and not at module-level).

begin-bZock: :=

BEGIN (; J
bZock-tai"l

1

bZock-taii: :=

[ioca"l-identifier-dec"laration;J···

[statementr··

END

'statement' within the block-tail may, of course, again

be a begin-block, and so nesting is achieved.

Begin-blocks are used to structure procedure- and

task-blocks and to control the scope and the lifetime

of objects.

This is explained in section 2.1.

A begin-block is entered as soon as its block-begin is

executed. It can be left in two ways: either by

executing its block-end or by transfer of control to a

statement that is not part of it.

'local-identifier-declaration' serves to declare objects

local to the block.

In Basic PEARL only simple objects, structures and arrays

may be declared at this level.

1.1.2/1

-32-

LocaL-identifier-decLaration::=

[
DECLAREJ

DCL

{, • one-identifier-or-List

(bound-List]

LocaL-mode

initial• „1

examples for local declarations:

DCL A INV FIXED INIT(7),

B(2,5) FLOAT;

DECLARE X STRUCT (M CHAR (5) , N FIXED)

1.1.2/2

-33-

1. 1. 3 Inter-module o©nununication

All objects declared at module-level may usually be

accessed only within the module they are declared.

But Basic PEARL provides means to extend the scope of

objects. This is achieved through the global-attribute

"GLOBAL".

So, if one object (e.g. a variable or a procedure) is

to be used in more than one module it must be declared

with the global-attribute.

Then it can be ·specified in other modules.

(The usual way would be to declare this object in a

more global block, enclosing all the blocks, where it

is used. Since this is not possible for modules -

because there is no enclosing "block" - this special

mechanism for communication has been introduced) .

example:

MODULE;

PROBLEM;

DCL F FIXED GLOBAL;

/# here F may be . used •!

MODEND;

MODULE;

PROBLEM;

SPC F FIXED GLOBAL;
\

/~ here F may be used,

too ft'/

' MODEND;

-34-

1. 1. 4 Inter-division cornmunication

A sirnilar rnechanisrn as for rnodules is used between

divisions.

All the devices introduced in the systern-division are

irnplicitly GLOBAL. They rnust be specified in problem­

divisions, even if they are in the same module.

In this case no "global-attribute" is required.

example:

SYSTEM;

TEMP: ANIN(8) -) ADC(2);

ALARM: ITR(3) -) ;

PROBLEM;

SPC TEMP DATION IN BIT(8);

SPC ALARM INTERRUPT;

1.1.4/1

1.2 Algorithmic Objects

1.2.0 General

-35-

This chapter deals with those Basic PEARL objects

that are cornmonly considered as "algorithrnic".

Section 1.2.1 describes the six basic data-types, grou­

ped into nurnbers, strings and tirnes.

The declaration and specification of "procedures'' are

detailed in section 1.2.2. It is also explained what

attributes procedures, their pararneters and results rnay

be given.

The basic data-types introduced in 1.2.1 rnay be cornbined,

forrning new types of objects. These "cornpound objects"

are developped in section 1.2.3.

The final section 1.2.4 introduces "labels".

1.2.0/1

-36-

1.2.1 Basic Data Types

1 .2.1.0 General

This section deals with the simple algorithmic objects

used in Basic PEARL.

simple-mode::=

FIXED [precision]

FLOAT (precision)

{ CHARACTER/ CHAR} [length J
BIT [length]

CLOCK

DURATI ON/DUR

For each of these basic-types a constant-denotation

exists:

constant-denotation::=

integer-constant-denotation

real-constant-denotation

character-string-constant-denotation

bit-string-donstant-denotation

clock-constant-denotation

du:r>ation-constant-denotation

They are detailed in the following sections.

1.2.1.0/1

-37-

1.2.1.1 Numbers

1.2.1.1.0 Precision

Basic PEARL provides two data-types for the represen­

tation of numbers, that are objects of type FIXED and

of type FLOAT. Associated with each FIXED- and

FLOAT-object is an integer-constant called "precision".

precision ::=

i nteger-in-brackets

int eger-ir:.-brackets::=

(s i rrrple-int eger-cons t ant- denota t ion)

This 'precision' defines a relation between the "internal"

repr esentation of FIXED- and FLOAT-objects and the

"external", i . e. mathematical numbers to which they

correspond.

For FIXED-objects precision defines a range:

Each mathematical integer with an absolute value from

~ to 2 I precision1_ 1

has an exact internal representation as FIXED-object.

For FLOAT-objects precision defines how exact the internal

representation of a real number is.

1.2.1.1.0/1

-38-

The deviation between a math~~atical number r and its

internal representation is given by:

deviation (r / 2 jprecisionl

There are different ways of supplying the precision:

for user-defined objects it may be given within the

declaration or

in a precision-declaration at the beginning of a

problem-division.

for constant-denotation precision can be denoted

as suffix in brackets.

example: 10 (16) denotes the integer number 10

with precision 16.

If no precision is given, neither direct, nor in a

precision-declaration, it is defaulted to an implemen­

tation-dependent value.

preeision-declaration::=

LENGTH

{
FIXEDJ
FLOAT

precision

This 'precision-declaration' is valid for all FIXED- or

FLOAT-objects respectively, declared in the corresponding

problem-division without 'precision'.

1.2.1.1.0/2

-39-

Within specifications precision rnay not be changed.

If it is supplied it has to be in accordance with the

declaration. If it is ornitted it is defaulted to the

precision valid in the problern-division the specifica­

tion is attached to.

In the following section the two sorts of objects, their

·aeclarations and constant-denotations are detailed.

1.2.1.1.0/3

-40-

1. 2.1.1.1 FIXED

Objects of type FIXED represent integer numbers.

User-defined-objects of type FIXED are introduced by

the following declaration:

integer-declaration::=

{
D"E;CLAREJ
DCL one-identifier-or-list

[INV) FIXED (precision]

(RESIDENT] [GLOBAL]

[INIT <{3 • {[+Jl-Jinteger-constant­
denotation .„} Jl

The corresponding constant-denotation consists of a

sequence of decimal or binary digits.

integer-constant-denotation::=

sinrple-integer-constant-denotation [precision]

sinrple-integer-constant-denotation::=

{
digit ••• }

binary-digit 000 B

examples:

DCL A FIXED (10); A is an integer-variable, that
may accept values: r/J '= IAI ~ 1023

DCL I INV FIXED INIT (17); I is an integer constant
with the value 17

101B This is an integer constant re­
presenting the decimal number 5

1 . 2.1.1.1/1

-41-

1.2.1.1.2 FLOAT

Objects of type FLOAT are used to represent rational

nurnbers. They may be declared as follows:

float-declaration::=

{
DECLAREJ
DCL one-identifier-or-list

[INV) FLOAT (precision]

[RESIDENT] (GLOBAL]

(INIT (f, • (+J/-) reaZ-constant-denotation „.JJJ

The constant denotation for float-objects is given by

the following syntax:

real-constant-denotation::=

simple-real-constant-denotation [precision]

simple-real-constant-denotation::=

{{
(digi t •• •J. digi t} 1
digit ••• . (exponent-part]

digi t • · • exponent-part

The exponent is denoted in the following way:

e~ponent-part::=

E {C+]/-1 [digit] digit

1.2 . 1.1. 2/1

-42-

examples:

DCL A FLOAT (16); A is a FLOAT-variable with

precision 16

DCL C INV FLOAT INIT (0.87)

c is a FLOAT-constant repre­

senting the value 0.87

Some examp'les for constant denotations, all of them

denoting the same values as C above:

8.70E-1

.87

0.0087E02

.0870E+1

1.2.1.1.2/2

-43-

1.2.1.2 Strings

1.2.1.2.0 Length

In Basic PEARL there are two kinds of strings:

character-strings and bit-strings

Both of them are characterized by an integer number

called "length", denoting the number of characters or

bits, respectively, the object is able to contain.

As the precision for numbers length is denoted as:

Zength: :=

integer-in-brackets

'Length' may be defined by a 'length-declaration' at

the beginning of a problem-division (cf. section 1.1.1).

Zength-declaration: :=

LENGTH {
BIT J
CHARACTER/CHAR

Zength

This 'length-declaration' is valid for all strings in

this problem-division, that do not explicitly contain

the length-attribute in their declaration or specifi­

cation.

For user-defined strings, the length must be chosen

such that it is not exceeded by any string-expression

assigned to them.

This would be an error.

1.2.1.2.0/1

-44-

If 'length' is neither supplied in the declaration

(or specification), nor a length-declaration is pro­

vided, it is defaulted to 1.

Within a specification, 'length', if supplied, rnust

be the sarne as the one (given explicitely or irnpli­

citely) in corresponding declaration.

For string-constant-denotations length is given by

the actual nurnber of characters or bits. This is

detailed in the following sections.

1.2.1.2.0/2

-45-

1.2.1.2.1 CHARACTER

Objects of type CHARACTER are used to represent

"alphic syrnbols", i.e. all letters, digits and special

characters of an irnplernentation (refer to section

1.3.1.1.1.2).

They are declared in the following way:

character-dec laration:: =

{
DECLARE}
DCL one-identifier-or-list

(INV] { CHARACT.ER/CHAR} [length]

f RESIDENT] [GLOBAL]

[INIT ({, 0 character-string-constant-denotation"""jJ]

'character-string-constant-denotation' consists of a

sequence of syrnbols frorn the character-set enclosed in

(single) quotation-rnarks:

character-string-constant-denotation::=

' [string-character • • "] 1

s tring-charac ter: : =

letter / digit / blank /

+/-1~/j/,/

(/) / : / . / ; /

=l<l>l"!lll

1.2.1.2.111

-46-

As one can see frorn the syntax above, single quotes

(') within a string have tobe denoted as 11 to di­

st i nguish thern frorn the delirniters of a string.

The length of a character-string is given by the

nurnber of string-characters within the delirniting

quotes, whereby 1
' count as one character.

examples:

1 STRING' is a string of type CHARACTER(6)
1 EXAMPLE'-" 1 2 111 is a string of type CHARACTER(11)
1 1 is a string of type CHARACTER(O) ;

it is called ernpty string.

Character-strings may also contain other alphanurneric

syrnbols, which are not part of the Basic PEARL

character-set. Those additional symbols are listed

in the implernentation handbook.

1.2.1.2.1/2

-47-

1 . 2 . 1 . 2 . 2 BIT

Objects of type BIT represent bit-strings.

They are declared as follows:

bit -declaration::=

{
DECLARE}

one-identifier-or-list
DCL

[INV] BIT [length]

[RESIDENT] [GLOBAL)

[INIT (t "bit-string-constant-denotation ••• }JJ

In Basic PEARL they are three different ways to denote

bit-string-constants:

bi t -s tring-cons tan t-denota tion: : =

{

' { binary-digit ··• J ' { B / BI} }

' { octa l-d1:gi t ·" } ' B3

' { hexadecima l-digi t · · ·} B4

The length of a bit-string is given by the number of

digits enclosed by ' multiplied with the integer

following B (which is defaulted to 1, if B stands alone).

The following tables show the relations between binary-,

octal- and hexadecimal-digits:

1.2.1.2.2/1

.-48-

octal-digit binary-digit

0 000

1 001

2 010

3 011

4 100

5 101

6 110

111

table 3: binary-octal conversion

hexadecimal-digit binary-digit

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

A 1010

B 1011

C 1100

D 1101

E 1110

F 1111

table 4: binary-hexadecimal conversion

1.2.1.2.2/2

-49-

examples:

'101 'B is a bit-string of type BIT(3)

'101 'B4 is a bit-string of type BIT (1 2)

'AE'B4 is a bit-string of type BIT (8)

'712'B3 is a bit-string of type BIT (9)

1.2.1.2.2/3

-so-

1.2.1.3 Times

1.2.1.3.0 General

In a realtime-language features for time-handling

are of special importance.

Basic PEARL provides two data-types to deal with

times, i.e. objects of type CLOCK and DURATION.

They are mainly used for scheduling operations

(cf. section 2.4.3.0.1). Other operations for objects

of these types are listed in section 2.2.1.2.

1.2.1.3.0/1

-51-

1 . 2. 1 . 3. 1 CLOCK

Points on a time-scale are represented by Basic PEARL

objects of type CLOCK.

They are declared in the following way:

clock-declaration::=

{
DECLARE}
DCL one-identifier-or-list

[INV] CLOCK

(RESIDENT] [GLOBAL]

[INIT ({, "clock-constant-denotation"
00]JJ

rhe corresponding constant-denotation consists of three

lumbers, seperated by colons.

clock-constant-denotation::=

simple-integer-constant-denotation:

simple-integer-constant-denotation:

{
simple-integer-constant-denotationJ

simple-real-constant-denotation]

'he three numbers denote hours, minutes and seconds.

linutes and seconds have to be within the range between

1 and 60, hours are always interpreted modulo 24.

,xamples:

1 3: 2: 20

13:02:20.0

37:2:20.0

7:63:10

} all three constant-denotations
mean 2 minutes and 20 seconds
past 1 o'clock p.m.

is an illegal example, since the
number denoting the minutes is not
within the range.

1.? . 1 { 1/1

-52-

1.2.1 . 3 .2 DURATION

Time- int ervals may be handled through objects of type

DURAT ION.

The declaration for these objects looks like:

duration-deciaration::=

{
DECLARE}
DCL one-identifier-or-list

(INV) {DURATION /DUR}

[RESIDENT] [GLOBAL]

[INIT ({, ·auration-constant-denotation'"'JJJ

Dura t ion-constants are denoted as follows:

du:ration-constant-denotation::=

{

hou:rs [minutes] [seconds]1
minutes [seconds]

seconds

hou:rs : :=

simple-integer-constant-denotation HRS

minutes : :=

simple-integer-constant-denotation MIN

seconds : :=

[
simple-integer-constant-denotation] SEC
simple-real - constant-denotation

1.2.1.3.2/1

-53-

For the numbers contained in 'duration-constant-deno­

tation' there are no p~rticular res.trictions.

exarnples:

2 HRS 10 MIN 26.7 SEC

HRS 10 SEC

87 MIN

320.5 SEC

1.2.1.3.2/2

-54-

1.2.2 Procedures

1.2.2.0 General

Procedures are main elements for structuring programs.

A procedure is a set of declarations and statements

combined to a block (refer to section 1.1.1.). This

block can be executed by a special operation, a "call".

Execution of procedures is detailed in section 2.2.2.

This section explains, how objects of type "procedure"

are created, and what attributes they may be given.

As any other Basic PEARL objects a procedure has to be

declared prior to its use.

procedure-declaration::=

pr>ocedu:r>e-iden.ti f1'.er:

{
PROCEDURE J
PROC

[rL ·on.e-identifier>-or-List

par>ameter>-mode • • 'JJ l
[r>esult-attr>ibute]

[RESIDENT] [REENT] [GLOBAL];

bfock-taii

'procedure-identifier' denotes the name of the procedure.

pr>ocedur>e-identifier>::=

identifier>

1.2.2.0/1

-55-

The construction following the keyword "PROCEDURE"

(or "PROC") denotes the list of formal parameters. This

is detailed in the following section.

'result-attribute' must only be supplied with function­

procedures, i.e. with procedures returning a result to

the point where they are called from. Function procedu­

res are explained in section 1.2.2.2.

As for other objects some optional attributes may be

added. One of thern, the attribute 'REENT' may only

be used with objects of type 'procedure', therefore it

is detailed in section 1.2.2.3.

Note the sequence of the three keywords

RESIDENT REENT GLOBAL

which in Basic PEARL is compulsory!

'block-tail' contains the local declarations of the

procedure and the sequence of statements that make up

the procedure-body.

To use a procedure in another module it must be specified.

This is done in the following way:

procedu:re-specification::=

{
SPECIFY

}
SPC procedUJ>e-identifier

ENTRY [({, • para.me ter-mode • • "j) J
(resuZt-attribute]
{ .9ESIDENT] [REENT] (PLOBAL J

1.2.2.0/2

-56-

Note the different keyword "ENTRY" (instead of

"PROCEDURE"). Within the formal parameter-list

only the types are listed, no longer the names of

the formal parameters.

example for a procedure-declaration:

P PROCEDURE (A (,) FIXED IDENT, B CLOCK)

RESIDENT GLOBAL;

1
1

END;

The corresponding specification is:

SPECIFY P ENTRY ((,) FIXED IDENT, CLOCK)

RESIDENT GLOBAL;

1.2.2.0/3

-57-

1.2.2.1 Parameters

There are two ways, how a procedure can corrununicate

with its environment.

Either via global objects, i.e. objects the scope of

which includes the declaration and the call of a pro­

cedure. The second way is to pass objects to a proce­

dure, when it is called. These objects are called

"actual parameters". Within a declaration (or speci­

f i c ation, resp.) of a procedure this has tobe pre­

pared by us i ng "formal parameters".

How t he parameters are passed to a procedure is de­

ta i l e d in section 2.2.2 . 1.

I n t his section it is explained, which objects may be

used as formal parameters and how the formal-parameter­

li s t s are constructed wi thin the declaration and spe­

c ific a tion of a procedure.

With i n a declaration the list is denoted as follows:

({, • one""i denti f ier-o.r-list

parameter-mode · · ·})

'one-identifier-or-list' denotes the name(s) of the

formal parameter(s). 'parameter-mode' denotes the corres­

ponding type and the way how the parameter is passed

to the procedure.

parame t er-mode::=

{
[([, J [,]) J l oca l-mode

[()] dati on- attr IDENT
[IDENT j}

-58-

According to the syntax above the following objects may

be used as formal parameters:

all types of simple objects

FIXED

FLOAT

CHARACTER

BIT

CLOCK

DURATION

structures built of simple objects

arrays of simple objects

arrays of structures

dations

arrays of dation

Parameters of the same type may be denoted in one list.

example: (A,F,X) FIXED)

is short for

(A FIXED, F FIXED, X FIXED)

Forma l parameters that are arrays are denoted with empty

bound- lists:

() denotes a one-dimensional array,

(,) a t wo-dimensional array and

(,,) a three-dimensional array.

1.2.2.1/2

-59-

exarnple:

(AR(,) FLOAT IDENT

This parameter-list contains a two­

dirnensional array of type FLOAT.

The keyword 'IDENT' denotes that the corresponding

parameter is passed to the procedure by the "identi­

cal-rnechanisrn". If it is ornitted, the parameter is

passed by the "initial-rnechanisrn".

Both rnechanisrns are detailed in section 2.2.2.1., where

one can also find examples.

exarnple for a complex parameter-list:

(D DATION IN ALPHIC IDENT, (X,Y) () STRUCT (A FIXED,

S CHAR(S)]IDENT, C INV FIXED, (R,S,T) FLOAT IDENT)

There are seven formal parameters:

- a dation

- two one-dirnensional arrays of structures

- a FIXED-constant

- three FLOAT-variables

1.2.2.1/3

-60-

Within a specification of a procedure the formal-para­

meter-list is denoted as follows:

({, · parame ter-mode • · • J)

This means, that within a specification only the types

of the formal parameters are listed.

So within a specification the example above must be

denoted in the following way:

DATION IN ALPHIC IDENT,

STRUCT [
() STRUCT (

INV FIXED,

FLOAT IDENT,

FLOAT IDENT,

FLOAT IDENT)

A FIXED,

A FIXED,

s CHAR (5) J IDENT I

s CHAR(5)] IDENT I

1.2.2.1/4

-61-

1.2.2.2 Function Procedures

A special group of procedures, that return a result to

the point where they are called from, is called

"functions" or "function-procedures".

Function-procedures are declared with the 'result­

attribute'.

resuZt-a t tribute: :=

RETURNS (simpZe-mode)

The syntax shows that a function-procedure can only

return an object of one of the basic types.

example:

FP PROCEDURE RETURNS (FIXED) GLOBAL;

RETURN (I);

END;

This is a function-procedure without

parameters, returning the value of a

FIXED-object.

How function-procedures are called and how the result

is returned is detailed in section 2.2.2.

1.2.2.2/1

-62-

1.2.2.3 Reentrancy

A procedure having the attribute "REENT" may be used

"reentrant".

This means, it may be called from several tasks at the

same time (without explicite synchronization) and this

will never lead to conflicts.

Reentrancy may be viewed as executing several "copies"

of a procedure, no copy knowing about the existence

of the others.

How this problem is solved is not described in Basic

PEARL. The attribute "REENT" just indicates that the

programmer wants to use this procedure in more than

one task.

The compiler or the operating-system, respectively,

have manage synchronization for such procedures.

1.2.2.3/1

-63-

1.2.3 Cornpound Objects

1.2.3.0 General

Starting with the basic data-types explained in

section 1.2.1 the user can form new types by putting

thern together. In Basic PEARL there are two forrns

of cornpound objects that can be constructed by the

prograrnrner:

arrays

structures

In the following sections it is detailed how such

cornpound objects are created and what restrictions

and rules have to be obeyed.

Section 2.2.3 describes, how compound objects rnay be

accessed and used in operations.

1.2.3.0/1

-64-

1. 2. 3.1 Arrays

An "array" is a ordered set of objects all of which have

to be of the same type.

This set of objects is given one narne.

The elernents of an array are characterized by an index,

which gives their position within the array.

array-declaration::=

{
DECLARE}
DCL one-identifier-or-list

bound-list local-mode

[RESIDENT] f GLOBAL j

'bound-list' denotes the size and the structure of an

array.

bound-list:=:

(simple-integer-constant-denotation)

[, simple-integer-constant-denotation

[, simple-in teger-cons tant-denotation]])

In Basic PEARL an array rnay have 3 dirnensions, therefore

3 integers are provided in 'bound-list'.

The lower-bound is always 1, the upper-bound is given

by 'sirnple-integer-constant-denotation'. Within this

range the index can be varied.

1.2.3.1/1

-65-

example:

(5) denotes a vector with 5 elements

2 3 4 5

(2, 3) denotes a two-dimensional array

2 3

(2, 4, 3) denotes a three-dimensional array

1

2

3

4
2 3

The type of the elements of the array is given by

'local-mode'.

loc:a l - mode : : =

[INV) f s imp l e- mode }

s t r>uc:tur>e- mode

1.2.3.1/2

-66-

Arrays may be constructed of all basic-types and

of structures, which are detailed in the following

section.

Note:

examples:

Within declaration of arrays the INV-attribute

must not be used!

{Since there is no way of initializing

arrays, no constant arrays may be

declared).

·ncL A (7) FIXED GLOBAL;

DCL TABLE{100,10) CLOCK;

DCL CUBE(10,10,10) FLOAT RESIDENT GLOBAL;

An array is specified as follows:

array-specificatiOYL::=

{
SPECIFY}
SPC one-identifier-or-list

([,] [,]) iocal-mode

[GLOBAL]

Within a specification of an array just an empty bound­

list has to be supplied, to indicate how many dimensions

t he array has.

Now, 'local-mode' may contain the INV-attribute, i.e.

in a specification access to an array may be restricted

to "read-only".

1.2.3.1/3

-67-

examples:

The two global arrays .inthe examples above

may be specified as:

SPC A() FIXED GLOBAL;

SPC CUBE(,,) INV FLOAT GLOBAL;

1.2.3.1/4

-68-

1.2.3.2 Structures

"Structures" are constructed of "components", which need

not be of the same type.

A structure is given a naroe, and also the single

components are given names (contrary to the index of

arrays, which is denoted by a number).

A structure is declared as follows:

structure-declaration::=

{
DECLAREJ identifier
DCL

STRUCT f _! / (f_ J
{, •[one-identifier-or-list]

sirrple-mode ·••J
{l / LJ J

{GLOBAL]

'identifier' following DECLARE (or DCL, resp.) denotes

the name of the structure.

Following the keyword 'STRUCT' the components of the

structure are listed; this list may be delimited by

[or (/ and J or /) .

The c omponents are denoted by a name and the type, which

may only be one of the basic-types. Identifiers for

components o f t he same type may be combined to a list.

If the identifier is omitted the corresponding component

cannot be selected (refer to section 2.2.3.2).

The names of the c omponents must be unequivocal in their

scope, i .e. the scope of the structure. In other words no

selector may have the same 'identifier' as any other

object in this block .

1.2.3.2/1

-69-

exarnples:

DCL S STRUCT [(A,B) FIXED, F FLOAT] GLOBAL;

DCL PERSON STRUCT (/ NAME CHAR(30),

SEX BIT(1),

AGE FIXED,

ADDRESS CHAR(100) /);

A structure is specified in the following way:

structu:re-specification::=

{
SPECIFY J
SPC

[nw]

identifier

STRVCT f I / (!_ 1
{,

0 [one-identifier-or-list]

simp Ze-mode · · " }

f l! f.J}
[GLOBAL]

Note, that within a specification access may again - as

for arrays - be restricted by the INV-attribute (which

is not possible in a declaration, because there is no

constant-denotation for structures).

example:

SPC S INV STRUCT [(A,B) FIXED, F FLOAT] GLOBAL;

-70-

1.2.4 Labels

Labels are the only Basic PEARL objects that need

no explicite declaration.

They corne into existence by writing a 'label-identifier'

in front of a statement. (This may be considered as

implicite declaration).

label-identifier::=

identifier

A 'label-identifier' may be used in a 'goto-statement'

(refer to section 2.2.4.1) to transfer control to a

'labelled' statement.

The scope of a label is the block, where it is used

as marking of a statement. Within this scope only one

statement may, of course, be marked with this

'label-identifier'.

Separating the label from the statement is achieved by ':'.

example: BEG IN

L~1 X := Y;

GOTO L~1;

'
END;

1.2.4/1

-71-

1.3 Communication Objects

1.3.0 General

In this chapter objects are introduced, that are necessary to

cornply with the requests of I/O in a realtime language. Basic

PEARL enables the prograrnrner to set up his own logical

communication structure, based upon the available hardware­

and software components.

The rnost irnportant notion in Basic PEARL I/O is the

"data-station". A data-station is the source or the sink

of a data-transfer. The properties of a data-station

are either predefined by the system, or they may be spe­

cified by the prograrnrner.

The first group is called "system-defined data-stations"

(or "devices"), the second one is called "user-defined

data-stations". Elements of these two groups can be connec­

ted, forrning "dataways". How this is done, and how data­

stations are used in I/0-operations is dealt with in

section 2.3.

The second type of objects used in I/O is called "control".

Controls serve to control data-stations in operation, and

to transform PEARL-objects into (or out of) external repre­

sentation. They are detailed in section 1.3.2.

1.3.0/1

-72-

1 . 3. 1 Data-stations

1.3.1.0 General

Data-stations or "dations" are the objects which serve

as partner for the rnernory in comrnunication operations.

inforrnation-transfer - „
dation rnernory „ ,

The objects transferred are considered to be contained

in channels. The channels of a data-station are intro­

duced in the following section.

Since cornrnunication ultirnately depends upon the hardware

facilities of an installation, these serve as a basis for

the definition of data-stations. The data-stations which

are given by the hardware are called "system-defined data­

stations" or "devices". They are detailed in section 1.3.1.2.

Beyond that, the programrner may construct new data-stations,

t e l ling the system, what properties they should have.

Th i s i s done within a 'dation-declaration'.

dation-declaration::=

G~~LARE 1
one-identifier-or-list DATION

d- channel- at t r i butes

(CONTROL (ALL))

(RESIDENT] [GLOBAL}]

datarvay-construction;

1.3.1.0/1

-73-

'one-identifier-or-list' denotes the name of the DATION.

'd-channel-attributes' is detailed in section 1.3.1.1.1.

The control-channel attribute 'CONTROL (ALL)' is described

in 1 . 3 . 1 . 1 . 2 .

'dataway-construction' is to connect this user-defined

DATION to a device. (cf. section 1. 3.1.1.0 linkage, and

2.3.1.1).

Before a system-def ined data-station rnay be used in a

PROBLEM-division it has to be specified.

The sarne sort of specification is necessary, if a global

user-defined DATION is to be used within another rnodule.

dation-specificat ion::=

{
SPECIFY}

SPC

one-identifier-or-list [(J] DATION

d-channel-spec-attr

[CONTROL (ALL))

[GLOBAL);

The e:rnpty pair of parenthesis indicates a one-dirnensional

array; it rnay only be used with devices.

'd-channel-spec-attr' is sirnilar to the declaration attri­

butes; only the dirnension of the dation is denoted in a

different way. As for other specifications just the nurnber

of dirnensions (and not the upper bounds) are denoted.

1.3.1.0/2

-74-

d-channel-spec-attr::=

{

IN }
OUT

INOUT

{

ALPHIC J
BASIC

trf-item-type

(dim-spec [TFU [MAX]]

f
DIRECT 1
FORWARD

FORBACK

l(NOCYCL l J
CYCLIC

L
(sTREAM))

NOSTREAM j

dim-spec:: =

([,] [,]J

The attribute GLOBAL has to be supplied if it is the

specification of a user-defined data-station or if

the SYSTEM-division is contained in another module.

1.3.1.0/3

-75-

1.3.1.1 User-defined Data-stations

1.3.1.1.0 General

A data-station can be seen as compound object, the

constituents of which cannot be accessed directly.

There are four constituents, that are of interest to

the prograrruner (to understand the function of a data­

station):

linkage

This is a pointer, which is used to refer to a

system-defined data-station. It can only be set

once for each user-defined data-station. This is

done in the declaration (cf. 2.3.1.1).

synchronizer

This may be seen as a counter, the value of which

indicates, whether the data-station may be accessed

or not (cf. section 2.3.1.2).

data-channel

The data-channel can hold or pass on, resp. the

data-elements transferred to (or from) this data-station.

In the following section all the attributes a 'd-channel'

may have are described in detail.

1.3.1.1.0/1

-76-

control-channel

The control-channel is capable of holding sequences

of controls transferred to a data-station. The

function of this 'c-channel' is explained in section

1.3.1.1.2.

data-station

fig. 4: constituents of a data-station

1.3.1.1.0/2

-77-

1.3.1.1.1 Data-channel Attributes

The most important attributes of a data-station are

summarized in 'd-channel-attributes'.

d- channeZ-att ributes::=

.1 usage

usage

c Zass

[di mension

access]

As already mentioned in section 1.3.1.0 memory is always

one of the "end-points" of an I/0-operation.

The usage-attribute qualifies a data-station as a transfer­

partner for the memory. It indicates the possible transfer­

direction.

usage : :=

{
I N J OUT

INOUT

With INOUT, both transfer-directions are possible. IN restricts

the direction to input from a data-station to the memory

(e.g. card-reader, digital input); with OUT output from

memory to a data-station is possible (e.g. line-printer).

Restricting the usage within a specification is possible.

So a DATION declared as. INOUT and GLOBAL may be specif i ed

either as IN or OUT in another module.

But a DATION declared with the attribute OUT ma y neither be

specified IN nor INOUT.

1.3.1.1.1/ 1

-78-

.2 class

The class-attribute describes the items a data-station can

accept. These items may be represented in internal or ex­

ternal mode. Internal means that the DATION can hold PEARL­

objects in the same way the "system" does.

External means the DATION is capable of changing PEARL­

objects into objects external to PEARL (or the opposite

direction). This transformation is called "formatting"

(cf. section 1.3.2.2).

c'lass: :=

[

ALPHIC l
BASIC

trf-i tem-type

ALPHIC and BASIC are used for DATIONS with external access.

ALPHIC means the DATION transforms PEARL-objects into or

out of "alphic-symbols".

"Alphic-symbols" are all characters used to represent infor­

mation in a special implementation.

A DATION declared ALPHIC can be accessed by a 'get-staternent'

o r a 'put-statement'.

BASIC means that PEARL-objects are transformed into or out

of "bas i c-symbols". These "basic-symbols" are used to repre­

sent binary information.

For instance "basic-symbols" can be represented by

t h e characters 'O' and '1'

two vo l tages or two magnetizations etc.

For a DATION decla red BASIC the 'take-statement' or the

' send-statement' is possible.

1.3.1.1.1/2

-79-

If 'trf-item-type' is used the DATION has internal access.

trf-item-type: :=

{
simple-mode

]
structure-mode

Note, that only simple objects (as FIXED or DURATION) and

structures may be specified as transfer items, but no arrays.

A transfer-operation to or from a DATION with internal

access transports data in internal representation without

transforming them. The 'read-statement' and the 'write­

statement' are used for this transport .

. 3 dimension

The d-channel of a DATION may be dimensioned, i.e. it may

be constructed as one-, two- or three-dimensional array

of transfer-i tems. (These transfer-i tems may be "alphic­

symbols", "basic-symbols" or one of 'trf-item-type' detailed

in the previous section).

dimension: :=

/ { !imp Ze-integer-oons tan t-deno tatioJ

[, simple-integer-constant-denotation
[, simple-integer-constant-denotation]])

[TFU [MAX]]

The integer numbers must be positive. They specify the number

of pages, the number of lines and the number of items.

The highest order bound must not be finite. In this case an

asterisk (,t) replaces the integer number.

(e.g. the pages of a line-printer may be considered infinite,

one would specify the following dimension:

1.3.1.1.1/3

-80-

{ *' ' 60' 130)

LL 4 char/line

lines/page

infinite nurnber of pages

The following combinations are possible:

{pages, lines, items)

{ * , lines, items)

{lines, items)

{ Wo, items)

{i tems)

{ *>

Additionally a transfer-unit may be specified. The transfer­

unit indicates the smallest nurnber of items transported

in one I/0-operation.

Transfer-unit is indicated by TFU; three case have to be

considered:

TFU omitted:

TFU supplied:

TFU MAX supplied:

this means that the transfer-unit

is one item.

this means the transfer-unit is

one line.

this means that the maximum length

of the transfer-unit is one line.

The actual length is undefined, it

depends on the implementation of

the DATION.

1 . 3.1.1.1/4

-81-

If TFU is supplied and the actual number of items in an

I/0-operation is less than the number of item per line,

the line is irnplicitly cornpleted by appropriate items.

For a DATION with the attribute ALPHIC these might be

blanks, for BASIC these might be zeroes or "low voltage"
etc ..

exarnple:

DCL PRINT DATION OUT ALPHIC (. , 60, 1 30) TFU .••...

The transfer-unit of this line-printer is one line

(130 characters). If the following I/0-statement

is written:

PUT 'PEARL' TO PRINT;

this results in the transport of the 5 characters

'P', 'E', 'A', 'R', 'L' and 125 blanks to the

d-channel of PRINT .

. 4 access

The following attributes deterrnine the access facilities

to the d-channel of a DATION.

aaaess::=

{ FORBACK

DIRECT l
FORWARD

{ [NOCYCL]
}

CYCLIC
{

(STREAM]
}

NOSTREAM

1.3.1.1.1/5

-82-

The attribute DIRECT allows unrestricted access to all

transfer-items within the array defined by 'dimension'.

Absolute positioning is possible (cf. section 1.3.2.1,

where the controls for absolute positioning are explained).

Sequential access is indicated by the attributes FORWARD

and FORBACK. FORWARD restricts the access to the positive

direction, FORBACK permits sequential access forwards

and backwards.

Sequential access only allows relative positioning. The

controls therefore are detailed in section 1.3.2.1, too.

The following attributes indicate, what has to be done, if

an I/O-operation exceeds one of the bounds given in

'dimension'.

If the DATION has the STREAM-attribute (which is default),

positioning beyond the bounds in the array of the

d-channel is possible, but not beyond the highest bound.

(One can image a three-dimensional array displayed in

linear form, without marking the inner bounds).

1

�<---positioning without restriction-

>

-
----... --_,_,..._ ... ___ ,,,.. __ .,)

page 1 page 2

.,

page

NOSTREAM indicates that positioning beyond one bound would

result in a signal.

1.3.1.1.1/6

-83-

CYCLIC means that also the outermost bounds may be

exceeded, in which case positioning starts again at the

lowest (or highest) value. (Imagine the linearized form

shown above put together to a ring. Then you cannot see

the beginning and the end anymore).

NOCYCL means, that the lowest and the highest value within

'dimension' have tobe obeyed, otherwise a signal is raised.

Note, that a DATION containing an asterisk in 'dirnension'

may, of course, never be CYCLIC.

But a DATION need not necessarily be STREAM to adrnit the

CYCLIC-attribute. (Imagine this as a ring with the inner

bounds marked) .

Within a specification of a DATION the access attributes may

be restricted in the following way:

a DATION declared DIRECT may be specif ied FORBACK or

FORWARD

a DATION declared FORBACK may be specified FORWARD

CYCLIC may be restricted to NOCYCL

STREAM may be restricted to NOSTREAM

1.3.1.1.1/7

-84-

1.3.1.1.2 Control-channel Attribute

In order to have a control-channel in addition to the

d-channel, a data-station must have been declared with the

attribute:

CONTROL (ALL)

(cf. section 1. 3.1 .0).

A control-channel must always be supplied when positioning

or explicite transformation is intended.

In other words when any transfer-operation uses objects

of type "control" (i.e. contains the phrase "BY c-list")

the corresponding data-station must have been declared

(or specified) with the attribute 'CONTROL (ALL)'.

1.3.1.1.2/1

-85-

1.3.1.2 System-defined Data-stations

1.3.1.2.0 General

Th .
d "d . II ere is a set of intrinsic data-stations, calle evices ,

the names and types of which are known to the systern without

explici te declaration.
Devices must be introduced in the SYSTEM-division, before

they can be used in a PROBLEM-division.
The information contained in the SYSTEM-division is based

on the implementation handbooks. There, the properties

of all devices available within an installation are

registered.

Within a PROBLEM-division, all the devices used rnust be

specified. How this is done has been explained in section

1.3.1.0.

Syntax and - as far as defined on language level - sernan­

tics of the SYSTEM-division is treated in the following

section.

1.3.1.2.0/1

-86-

1.3.1.2.1 System-division

.O General

The SYSTEM-division is the implementation- and installation­

dependent part of a PEARL-program. Here restrictions are

formulated with respect to the devices listed in the

implementation handbook. The SYSTEM-division has two main

goals:

to describe the configuration used within a special

process. That means, a selection of devices has to be

made, and the connections between the selected ones

have to be specified.

to identify a device with a user-chosen name. This has

to be done, because within the PROBLEM-division one

only refers to these user-names, and no langer to

system-names.

The term "device" in SYSTEM-division-context is used in a

slightly more general way than within the PROBLEM-division,

because it is not distinguished between data-stations, inter­

rupts and signals. This distinction is not made till the spe­

cification in the PROBLEM-division. It is a matter of the

imple mentation handbook to determine, which device is to be

specified as INTERRUPT, which as SIGNAL and which as DATION.

This may not be inferred from the SYSTEM-division due to the

equal treatme n t of the three.

1.3.1.2.1/1

-87-

The syntax of the SYSTEM-division is given by the following:

system-division::=

SYSTEM;

{ [connection;] ... }

Note: Within a Basic PEARL-program there may only be one

SYSTEM-division!

Due to the different goals of the SYSTEM-division a

'connection' can be a 'device-specification' (combining

a name and a device) or a 'connection-specification'

(in general specifying a connection between two devices).

connection::=

[
device-speci fication

1
connection-specification

'connection' is detailed in the following sections.

1.3.1.2.1/2

-88-

. 1 Device Specifications

.1. 0 General

As already mentioned in the previous section, those

SYSTEM-division devices,that are intended tobe used in

a PROBLEM-division (as DATION, INTERRUPT or SIGNAL) must

be given prograrnmer-names. This may either be done in

conjunction with a connection-specification (cf .. 2), or

independently, in form of a device-specification. The

latter is mainly to provide user-names for standard

peripheral devices. The system implicitly knows the connec­

tions; the user does not have to write them down.

device-specification::=

{
simple-dev-spec}
array-dev-spec

1.3.1.2.1/3

-89-

.1.1 Simple Device-Specification

A 'simple-dev-spec' attaches one or several new identi­

fiers (chosen by the prograrruner) to one device.

simple-dev-spec::=

{ us er-device-iden ti f icator: • • "}

syste~device-identificator Cindex1

user-devi ce-identi f i cator::=

i dentifier

sys te~device-identificator::=

i dentifier

'user-device-identificator' is the narne for one device

chosen by the programmer. Within the PROBLEM-division the

object denoted by this name may be specified as DATION,

INTERRUPT or SIGNAL.

index:: =

integer-in-brakcets

'system-device-identificator' and 'index' must be taken from

the implementation-handbook.

examples: PRINTER:LISTING:LPR53;

(two names (PRINTER and LISTING) are

attached to the device LPR53)

OVERFLOW:OFL;

(the name OVERFLOW is attached to the

signal OFL)

1.3.1.2.1/4

-90-

.1.2 Device-array Specification

In the irnplernentation-handbook a series of devices with

identical properties may be grouped into an array.

In the SYSTEM-division such arrays (or slices of such

arrays) rnay be identified with one or several user-named

dation-arrays.

ar>ray-dev-spec::=

{user-device-identificator array-bounds:···}

systerrr-device-identificators array-bounds

ar>ray-bounds: : =

(simple-integer-constant-denotation

: simple-integer-constant-denotation)

The array-bounds following the user-name and the system-name

do not have to be identical, but the width (i.e. upper-bound

- lower-bound) must be equal.

exarnples: • LAMP (1 : 5) : DO (4 : 8) ;

\oo(4)\ \oo(s)) \no(6)\ loo(7)\ \no(s)\
LAMP(1) LAMP(2) LAMP(3) LAMP(4) LAMP(5)

• SWITCH (1 : 3) : IN (5 : 7) : PB (1 : 3) ;

SWITCH(1)SWITCH(2)SWITCH(3)

IN(5) IN(6) IN(7)

1.3.1.2.1/5

-91-

.2 Connection Specification

.2. 0 General

As already mentioned in .o one goal of the SYSTEM-division

is to describe the hardware configuration used in the special

program system.

This is achieved by specifying connections petween SYSTEM­

division devices.

A 'connection-specification' establishes a relation between

two "end-points".

The direction for the flow of information is indicated

by 'transfer-direction'.

trans f er--direction:: =

example:

In this example the flow of information between device A and

device B is only possible from device B to device A, even

if bidirectional exchange of information is provided in

the implementation handbook.

A <- B;

1.3.1.2.1/6

-92-

Between device B and device C bidirectional exchange is

possible. This must be provided in the implementation

handbook.

B <-> C;

The end-points of a 'connection-specification' may be

single devices, interrupts, device-arrays etc ..

As in the 'device-specification', the progranuner may

identify a device with a user-name within a 'connection­

specification', but only on the left side of a connection

(i.e. left of 'transfer-direction').

Due to the different complexity of the end-points, there

is a simple and a compound specification.

connection-specification::=

[

simpZe-con-spec }

compound-con-spec

1.3.1.2.1/7

-93-

.2.1 Simple Connection Specification

A 'sirnple-con-spec' specifies a possible transfer-direction

between two devices.

simpZe-con-spec::=

[{ use.r--device-identi ficator: ···}]

system-device-identificator [index]

transfer-direction

(simpZe-connection-point-description J

The left side is sirnilar to a 'sirnple-dev-spec' (cf .. 1. 1)

with the exception that the 'user-device-identificator'

may be missing.

The right side ('sirnple-connection-point-description')

must not contain a user-narne, but rnore detailed inforrnation

about a device is possible.

simple .?nnection-point-description::=

system-device-identificator [index]

[*simple-in teger-constant-denotation]

If ·a device has rnore than one connection-point '* sirnple­

integer-constant-denotation' allows to select one of them.

exarnples for 'sirnple-connection-point-description':

(1) ADC(3)

(2) DIGOUT ,lf7 DIGOUT

8

1.3.1.2.1/8

-94-

(3) MUX (2) .1 MUX (2) MUX (2)

1 2 3 1/11.'1. 2 3 '/i'y;,

t
examples for 'sirnple-connection-specification':

(1) MUX <-> CPU;

(2) TELTYP: TTP7 (-) MUX *O;

TELTYPB

1 2

(3) PRESSURE:TEMP:ANIN(8) -) ADC (2) ;

PRESS URE

TEMP 1 ANIN (8)1 t----~11 ADC (2) l

's irnple-connection-point-description' rnay be omitted, if

the e n d-point cannot be described on language-level .

(e.g. an interrupt source located somewhere within the

proces s).

exarnple: ALARM: ITR (7) -)

ALARM 1 ITR(7)1---

1.3.1.2.1/9

-95-

. 2. 2 Compound Connection Specification

.2.2.0 General

The 'compound-con-spec' enables the progranuner to specify

connections between several devices, device-arrays or

groups of devices within a single specification.

compound-con-spec::=

({ useri-device-identificator Carray-bounds l : · · • J l
C system-device-identifioatori [array-bounds))

triansf er-direction

[{ + · connection-point-desoription • · • J]

At least one of the outermost pairs of square brackets must

be omitted (i.e. 'transfer-direction' must not stand alone).

On the left side of 'transfer-direction' the description

of a single device or an array may stand combined with one

or several usernames; or user-names may stand alone.

On the right side either an array-description may stand

(cf .. 2.2.1) or a group-description (cf .. 2.2.2).

The right side may be completely omitted, in which case it

is assumed, that the end-points are situated within the pro­

cess (e.g. an interrupt-array).

example: WARNING(1:3) ITR (1 : 3) ->
WARNING(1) 1 ITR (1) f ~

WARNING(2) {rTR(2)} i
WARNING (3) 1 ITR(3.d l

1.3.1.2.1/10

-96-

'connection-point-description' has the following syntax:

connection-point-description::=

system-device-identificator

[index-or-array-bounds]

\

{simple-integer-constant-denotation .

[:$- [,simple-integer-constant-denotat~on]}
array-bounds

Note that no user-name may be specified within 'connection­

point-description'.

index-or-array-bounds::=

(simple-integer-constant-denotation

[: simple-integer-constant-denotation])

'index-or-array-bounds' allows to denote

- a single element of an array

(e.g.: A(5))

- or a slice

(e.g.: A(3:6))

- or a whole array1 respectively

(e.g.: A(1:8)).

1.3.1.2.1/11

-97-

The construction following '*' allows to denote sub­

divided connection-points of a single device (or an

elernent out of an array).

The first integer is the number of the subdivided connection­
point.

e.g. A ~ 3

0

If the second integer (after the cornma) is supplied, it

denotes the width of a slice of subdivided connection­

points, starting with the number specified by the first
integer.

e.g. DIGOUT •2, 5 DIGOUT

0 7

Al ternatively 'array-bounds' rnay be specified after ' *'.
e.g. A J1i (3:6)

0 1

1.3.1.2.1/12

-98-

.2.2.1 Array Connection Specification

Array connections are just a shorthand notation for several

simple connections. This irnplies that the nurnber of

connection points rnust be the sarne on both sides of

transfer-direction.

The following exarnples are to illustrate this:

(1) TERM(1 :3) : XYZ (1 :3) (-) A(1:3);

TERM(1) 1 XYZ (1)~ ~A(1)1

TERM(2) 'XYZ(2)~ ~ A(2) 1

TERM(3) (xYZ(3)~ ~ A(3) 1

(2) TERM (4 : 7) : PORT (1 : 4) (- B(2)~(2:5);

TERM(4)

TERM(5)

B(2)

TERM(6)

TERM(7)

This exarnple can also be denoted in the following way:

TERM (4 : 7) : PORT (1 : 4) (- B (2) * 2, 4;

1.3.1.2.1/13

(3)

-99-

COLL(1 :3) (- C(1 :3) .2

8
.

[COLL (1) ff-------- 1
C (1)

~

[coLL(2>f-~------~ c<2> 1

~------!?' c (3) 1 1 COLL(3) Jt ~ .

(4) D (1 : 6) (-) E (1 : 2) * (2: 4) j

D (1)

D(2) E (1)

D (3)

D(4)

D(S) E(2)

[;}]

1.3.1.2.1/14

-100-

.2.2.2 Group Connection Specification

A device-group is an ordered sequence of devices and/or

connection-points. The progranuner can connect such a

device-group with an array or a single device. This

implies that the attributes of the elements must be

compatible, as defined in the implementation handbook.

The sequence within the group is important, because it

determines the logical position of the connection-points.

Syntactically the elements of a group are separated by

the symbol '+' .
All the examples for 'simple-connection-point-description'

(cf .. 2.1) and for 'connection-point-description'

(cf .. 2.2.0) may be used to illustrate the elements of a

device-group.

examples for group connections:

(1) TERM(1:4):(-) XYZ + A + B(1:2);

.--- . --· -' .
TERM (1): , '-----·-·· .-- ·----· ...
TERM (2): :

,_. - -· „ - • J

:--------,
TERM(3); ! ·--...... .:

,. „ •• „ - ••• ,
•

TERM (4) : -. -·

XYZ 1

A 1
()

~
~

1.3. 1 .2. 1/1 5

-101-

(2) IODEV: <-> Alr3 + B + c (3) *' (1:2);

1

2
A

-+
4

,- - - - - „,
-+ 1 IODEV

1
)

• : (B

·-·--·-··

0
__. c (3)

-+

1.3.1.2.1/16

-102-

1.3.2 Controls

1.3.2.0 General

Due to the importance of the c-channel (see section 1.3.1.1.2)

for the semantics of communication-statements, there is a

special type of objects called "controls".

In Basic PEARL only "predefined" controls exist, i.e. the

names, the parameters, the semantics etc. of these objects

are determined. (The programmer may not declare new

controls) .

There are two different kinds of control elements:

such that match an itern in the data-sequence of a DATION,

and such that do not. The first group is called "rnatching

controls", the second one "non-matching controls".

Matching controls control the transformation of a PEARL­

ob j ect into (or out of) a non-PEARL-object. This trans­

f ormation is called "forrnatting", therefore rnatching con­

trols are called "formats", too. They are detailed in

section 1.3 . 2.2.

Non-matching controls control a data-station in operation,

e ither during it is established or during it is used. This

kind of controls is explained in section 1.3.2.1.

Cont r ols rnay be combined in lists, when they are used in

communicati on operations. How these lists are constructed

is detailed i n section 1.3.2.3.

For the purpo s e of abbreviation these lists rnay also

be predefined and supplied with a name. This is called

"remote-:fo:nnat" and detailed in section 1.3.2.4.

1.3.2 . 0/1

-103-

1.3.2.1 Non-matching Controls

1.3.2.1.0 General

There are two different groups of non-matching controls.

The first group influences the physical dataset belonging

to a DATION. They are called "open-controls".

The second group permits explicite positioning within a

DATION. Therefore they are called "positioning-controls".

non-mat ching-controZ::=

{
open-controil
pos-controi

1 . 3.2.1.1 Open Controls

These open controls are to handle DATIONS with identifiable

datasets. They influence the access, the identification and

the disposition of the datasets.

open-controZ: :=

access:

IDF (symboZ-or-constant)

OLD

NEW

[ANY)

In Basic PEARL only shared access to a DATION is possible,

i.e. several tasks may use the DATION at the s ame time.

No task may reserve a DATION exclusively.

Therefore there is no need for a Spec i a l control, "shared

access" is defaulted.

1.3.2.1/1

-104-

identification:

To identify a dataset the control IDF is provided.

The parameter following IDF (in brackets) specifies the

name of the dataset.

This parameter may be a constant or a variable of type

CHAR(n). The length and the interpretation of this para­

meter depend on the implementation.

e. g. : IDF ('FILE~1 ')

or DCL A CHAR INIT ('FILE~2');

'

IDF (A)

If IDF is omitted, an implementation-dependent name is

used for the dataset.

disposition:

There are three open controls to specify the disposition

of a dataset.

OLD: a dataset with the name specified in IDF must exist.

NEW:

ANY:

If not, or if IDF is omitted, a signal is raised.

a new dataset with the name given in IDF is to be

established. If it already exists1 or if IDF is omitted,

a signal is raised.

if a dataset already exi sts, it is reopened; if not,

a n ew dataset is established.

If IDF i s omitted an implementation-dependent name

is used f or the dataset.

If no disposition is specified, ANY is defaulted. Commonly

for a l l disposition controls after the 'open-statement' the

transfer-item-pointer refer s t o the beginn i ng of the dataset.

1 . 3 . 2 . 1/2

-105-

1.3.2.1.2 Positioning Controls

Explicite positioning can be done in two ways:

absolute

relative

Absolute means the transfer- item-pointer can be set to any

position within 'dimension' without referring to the

actual position. Relative positioning always specifies a

distance from the actual position.

pos-aontro 'l: : =

{
abs-pos-atr 'l}
re'l-pos-atr'l

1.3.2.1.2.1 Absolute Positioning

Absolute positioning is only possible if the DATION has

been declared with the attribute DIRECT.

abs-pos-atr'l::=

{ ~~~E J 1 simp Ze-expr)

{Pos (simp'le-e:r:pr

(, simp'le-e:r:pr

[, simp 'le-e:r:pr]]) j

'simple-expr' may be a positive integer or a varia ble

denoting such an integer. The value must be within the

range of the corresponding dimension .

COL refers to the lowest dimension (to the items), LINE

refers to the second dimension (to the lines).

1.3.2.1/3

-106-

exarnple: dimension = (5, 10)

4-- LINE (2)

t
COL (4)

POS may have three parameters, referring to the three

dimensions. Leading parameters may be omitted (- the

corresponding commas, too); they are defaulted to the

actual value.

example: POS (7 , 1 0, 3) sets the transfer-item-pointer

to the seventh page, tenth

line into the third column.

If in the following I/O-statement POS (2, 9)

appears, the transfer-item-pointer keeps poin­

ting to the seventh page, but now refers to the

second line and the ninth column.

1.3.2.1/4

-107-

1.3.2.1.2.2 Relative Positioning

If a DATION has been declared with the attribute FORWARD

or FORBACK only relative controls may be used.

rel-pos-ctrl::=

{;KIF 1
PAGE

((simp le-expr)]

{ADV (simple-expr

(, simp le-expr

[, simp le-expr]]) }

'simple-expr' must be an integer, or an identifier denoting

an integer. It may be positive or negative.

X refers to the lowest dimension (the items). So X(n)

means: advance n items.

SKIP refers to the second dimension (the lines) . If the

actual position of the transfer-item-pointer is within

line a, SKIP(n) sets the pointer to the beginning of

line (a+n).

PAGE refers to the third dimension (the pages) . If the

actual position is somewhere on page a, PAGE(n) sets the

pointer to the top of page (a+n).

If the parameter of X, SKIP or PAGE is missing it is de­

faulted to 1.

So, PAGE without parameter means: go to the top of t he

next page.

1.3.2.1/5

-108-

The parameter rnust be positive if the DATION concerned

has the attribute FORWARD,and rnay also be negative if the

attribute is FORBACK or DIRECT.

exarnples: let the dirnension be (10, 10, 10)

actual position control new position

(4, 3 / 7) X (4 / 3, 8)

X(-5) (4, 3 / 2)

SKIP(2) (4, 5, 1)

PAGE(4) (8, 1 , 1)

PAGE (-2) (2 / 1 , 1)

ADV rnay have three parameters, affecting the corresponding

dirnensions. Leading pararneters (and the corresponding

cornrnas) rnay be ornitteeI,in which case they are defaulted to

zero.

(Note the difference in defaulting X, SKIP and. PAGE!)

If a DATION has the attribute FORWARD the leftrnost

nonzero parameter rnust be positive.

examples: dirnension = (10, 10, 10)

actual position

(3 , 5, 6)

control

ADV (1, 0 I 3}

ADV(2}

ADV (-3, O}

ADV (-1, -5}

new

(4,

(3 /

(3 /

(3,

position

5, 9)

5, 8)

2 / 6)

4 / 1)

1 .3 . 2 . 1/6

-109-

If the bounds given in dirnension are exceeded during rela­

tive positioning, this is in error unless the DATION has

the attribute STREAM (resp. CYCLIC).

Positioning in continued within the next dirnension (or

starts again at the lowest or highest value after reaching

the outerrnost bound).

exarnples: DCL D DATION IN ALPHIC (10, 10, 10) FORWARD CYCLI

actual position control new position

(4' 8, 7) X(5) (4' 9' 2)

SKIP(7) (5, 5' 1)

ADV(7, O, 5) (1 ' 9' 2)

PAGE(9) (3' 1 ' 1)

1.3.2.1/7

-110-

1.3.2.2 Matching Controls

.0 General

If a DATION has either the attribute ALPHIC or BASIC

(i.e. the 'class' is external, cf. section 1.3.1.1.1)

PEARL-objects have to be transformed to or from non-PEARL­

objects. This transformation is called "formatting". lt

is controlled by "matching-controls" or - how they are

often called - by "formats".

matching-control::=

nwnber-f onnat

string-fonnat

time-format

Ust-format

Each 'matching-control' matches exactly one data-element.

Syntax and semantics will be detailed in the following sec-

tions .

. 1 Number Format

.1.0 General

In Basic PEARL two formats are provided for the external

representation of nurnbers (i.e. objects of type FIXED or

FLOAT).

nwnber-format::=

{
f-format J
e-format

1.3.2.2/1

-111-

. 1. 1 Fixed-point Format

can be used to transform
The fixed-point format "F"

objects of type FIXED or FLOAT.

f-format: :=

(1) output

F (width [, decim [, scaZe 11)

width: : =

simpZe-expr

decim: :=

simpZe-expr

scale:: =

simple-expr

The object that matches to a fixed-point format is trans­

formed into the following sequence of alphic symbols:

_ ---_sx---x [. x---x]

where " " stands for the alphic symbol " blank", "." for

"decimal point", "s" for "plus" or " minus" and "X" for a men

ber of the set of dig i ts "zero" to "nine" . The brackets [,]

enclose options.

"---" stands for repetition of the symbols enclosing, a
number of times given by 'width', 'decim' and 'scale' in the
following way:

the total number of alphics produced is given by 'width',
x following the decimal point is repeated 'decim' times,

1.3.2.2/2

-112-

the digits preceding the decimal point are given

by the corresponding significant digits of the

FLOAT or FIXED to be formatted, after a shift accor­

ding to 'scale' , i.e., the output corresponds to a

FIXED or FLOAT multiplied by 1~••'scale'.

If due to 'scale' or the absolute value of the source

the number of alphics needed exceeds the number avai­

lable this is in error and a SIGNAL is raised. In the

opposite case zeros are produced.

If 'decim' is omitted the alphics produced are

--- sx---x

with "X---X'' corresponding to the integer part of the

source (proper rounding implied) .

If ~ ('width' < 'decim', an implementation-dependent cha­

r acter, e.g. the alphic "asterisk'' (*) is produced 'width'

times.

I f 'width' = ~, no alphic is produced, the source is

s k ipped.

Leadi ng zeros are replaced by blanks except for the zero

preceding the decimal point.

1 . 3.2 . 2/3

-113- P . ELZER

(2) input

The sequence of alphics to be transformed into memory has

the form

_ ---_ ([s] x---x (. [x---X]]] _ ---_

The alphics admitted and the number of repetitions are

given as for output. Alphics not admitted lead to a SIGNAL.

Only the total number of blanks being fixed, the sequence

[s] x---x (. (x---x]]

may be located anywhere within the field of 'width' alphics.

If this sequence is empty (i.e. consists of blanks only)

the value is defaulted to "zero".

s is defaulted to "plus" (+) .

'decim' and 'scale' are defaulted to "~".

If the alphic sequence contains a decimal point,

[s)x---x.(x---x)

'decim' - if supplied - is overridden. The effect of

'scale' is to shift the decimal point in the alphic se­

quence, i.e. prior to assignation to mernory.

If 'width' = ~, no assignrnent is rnade. The object in the

data-list is skipped.

If due to the 'precision' a transforrnation is not possible,

a SIGNAL is raised.

1.3.2.2/4

-114-

examples:

value format output

13.5 F(7, 2) 1.1 u 1 3. 5~

275.2 F(4, 5) ... **'
22.8 F (5) uuu23

212.73 F (9, 2, 2) u 2127 3. ~~

.J.2 Exponential Format

The exponential format "E" can be matched by objects of

type FLOAT or FIXED.

(1) output

e-format: :=

E (width [, decim L signif J]J

s i gnif: : =

simpZ.e-expr

The source i s transformed into the following sequence of

alph i cs:

_ ---_ (-JX---x.x---XEsXX

E stands f o r the alphic "E".

1.3.2.2/5

-115-

The total number of alphics produced is given by 'width'.

The number of digits "X" following the decimal point is

given by 'decim '.

The total number of digits of the mantissa (the digits

preceding "E") is given by 'signif'.

The exponent (the digits following ''ES") is chosen such that

t h e first digit preceding the decimal point is different

from "zero", except for a source-value ~-

If 'width' is such that no mantissa-digit can be produced,

i.e. if 'width' (6 for positive source-values or 'width' (7

f or negative source-values, a SIGNAL is raised and an imple­

mentation dependent sequence of alphics is produced, for

example "asterisks".

If 'decim' = 'signif' there is no digit preceding the

decimal point.

If 'decim' > 'width' > ~ a SIGNAL is raised .

If ~ ('width') 'decim') 'signif' the manti ssa is c h osen

such that

'signif'-'decim'-1
10 ~ 1 mantissa 1 'signif '-'decirn' (10

If 'width' = ~, no alphics are produced , t he s ource is

skipped.

1.3.2.2/6

-116-

(2) input

The general form of the sequence of alphics to be trans­

forrned into the sink is the following:

--- [(sl [X---x.x---x] fE[sJ (x]x]]_---_

The alphi cs adrnitted and the nurnber of repetitions are

given as for output. Alphics not adrnitted lead to a SIGNAL .

The sequence

([s] [x---x. x---x] [E [s) [x]x]]

rnay contain no blanks and rnay be located anywhere within

the field of 'width' alphics.

If the rnantissa or the whole sequence are ernpty they are
defaulted to "zero".

The exponent-part is defaulted to "E+~~".

Let rn be the nurnber of rnantissa-digits supplied, i.e., the

total nurnber of "X" in the alphic sequence "X---x.x---X".

If rn ('signif', 'signif' is overridden by rn.

If 'signif' (rn, precision rnay be ·1ost .

If t he alphic sequence contains a decirnal point, 'decirn'

- i f s upplied - is overridden.

s is defaulted to "plus" (+).

If due to the e xponent-part of the alphic sequence a trans­

forrnation is not poss i ble, a SIGNAL is raised.

1.3. 2.2/7

-117-

If 'width' = ~' no assignment is made to the sink.
The element is skipped in the data sequence.

examples:

value

-0.07

2713.5

2721

format output

E (9, 1) u - 7 . {llE-~2

E(11, 2, 4) uu27.13E+~2

E(8) uuu2E+{i'.l3

1.3.2.2/8

-118-

.2 String Format

.2.0 General

String formats are used to transform objects of type

CHARACTER(n) or BIT(n), respectively.

string-fonnat::=

{

character-string-formatJ

bit-string-formats

.2.1 Character-string Format

The character-string format ''A" is used to transform

objects of type CHARACTER(n).

character-string-format::=

A [(width)]

On input, 'width' must be supplied.

(1) output

The objects of type CHARACTER matching to this format is

transformed into a sequence of 'width' alphic symbols

and put to the external d-channel.

If ('wi dth') is omitted, the number of alphic symbols

produc e d conforms to the declaration of the source

(cf. ' length', section 1.2.1).

1 . 3.2.2/9

-119-

if • width' < 'length' , the CHARACTERs in excess are lost

(right truncation) .

if 'width' > 'length', the alphic syrnbols in excess are

blanks.

if 'width' = ~, no alphic syrnbols are produced.

(2) input

'width' alphic syrnbols are transformed to objects of type

CHARACTER and assigned to the corresponding rnatching object.

if 'width' ('length', the CHARACTERs in excess are blanks.

if 'width' } 'length', the alphic syrnbols in excess

are lost (right truncation).

if 'width' = ~, blanks are assigned to all CHARACTERs.

examples:

(1) output of 'ABCDE' with the format

A(5) results in ABCDE,

A(7) results in ABCDEuu,

A(2) results in AB

(2) input of 'ABCDEuu' to a variable STR, declared

as CHAR(5) with the forrnat

A (5) :

A (7) :

A (2) :

STR: = 'ABCDE'

STR: = 'ABCDE'

STR: = 'ABuuu'

1.3.2.2/10

-120-

.2.2 Bit-string Formats

The bit-string formats "B", "B3", "B4" match objects of

type BIT (n) .

bit-string-formats::=

{ ::J [lwidthJ]

The semantics of the previous section essentially remains

valid if "CHARACTER" is replaced by "BIT" and "blank" by "Q5".

(1) output

According to the alternatives 'B', 'B3' and 'B4', the

alphics produced are chosen from one out of three alpha­

bets conventionally used to represent binary, octal or

hexadecimal digits, respectively.

binary-digit::=

{ {1/1 1
octa"l-digit: :=

I ;1111213/4/5/6/7]

hexadecima"l-digit::=

{ ~/1/2/3/4/5/6/7/8/9/
A/B/C/D/E/F j

1.3.2.2/11

-121-

(2) input

Any alphic symbol not member of the appropriate alphabet

is in error. An exception are leading and trailing

blanks, which are ignored.

exarnples:

(1) output of the bit-string '0101110' with the format

B (5)

B3(3)

B4 (3)

results in 01011

results in 270

results in 7Cu

(2) input to a variable BSTR, declared as BIT(8):

input-string forrnat value assigned to BSTR

11111 B(S) 11111000

235 B3(3) 01001110

AB B4 (2) 10101011

201 B (3)

(error, " 2" is no
binary-digit)

1.3.2.2/12

-122-

.3 Time Format

.3.0 General

For Basic PEARL objects of type CLOCK and DURATION

the corresponding formats are provided :

time-format : :=

{
t-format 1
d-format

. 3 . 1 Clock Fonnat

The clock format "T" matches objects of type CLOCK.

t-format ::=

T (width [, deeim])

(1) output

Objects of type CLOCK are transformed into the following

sequence of alphic syrnbols :

- ---- [x] X: XX: XX[. x---x]

The total number of alphics produced is· given by 'width'.

The number of digits following the decimal point is given

by 'decim' •

exarnple: printing with T(12,1) may result in

'-' 14:07:25.3

1.3.2.2/13

-123-

(2) input

On input a valid 'clock-constant-denotation' has to

be located anywhere within 'width' positions.

'decim' - if supplied - is overridden.

(Note: there may be some blanks 11 surrounding 11 the

colons)

example: input with T (15.2) may be

......... 71.1: 28 : ... 20 ... -.1

. 3.2 Duration Format

Objects of type DURATION are matched by the duration

format "D".

d-format: :=

D (width [, decim 1)

(1) output

Output of DURATION objects results in the followi ng

sequence of alphics:

_---_fxJx_HRS_XX_MIN_xxr.x---x]_SEC

The total number of alphics produced is given by 'width'.

'decim' denotes the number of digits following t h e deci­

mal point.

1.3.2.2/14

-124-

example: output with 0(24,1) rnay be

~u18uHRSw10~MIN~59.9wSEC

(2) input

As for CLOCK objects a valid 'duration-constant­

denotation' has to be located within 'width' positions.

'decirn'-if supplied-is overridden.

(Note : At least one blank has to be used to

separate the keywords HRS, MIN, SEC frorn

the neighbouring nurnbers !)

example: input with T (26) rnay be

1.3.2.2/15

-125-

.4 List Format

The 'list-forrnat' LIST rnatches all basic types, i.e.

variables or constants of type FIXED, FLOAT, CLOCK,

DURATION, BIT and CHAR.

list-format: :=

LIST

The transforrnation or the external representation resp.

is implementation-dependent.

example: DCL(A,B)FIXED,

C CHAR,

D FLOAT;

DCL DEV DATION OUT ALPHIC(.) CONTROL (ALL);

PUT A, B, C, D TO DEV BY(4) LIST;

1.3.2.2/16

-126-

1.3.2.3 Control Lists

As already rnentioned in section 1.3.2.0 single control­

elements may be put together to lists, which may be used in

transfer-statements.

A 'standard-c-list' may contain one or several 'c-list-element',

separated by commas.

standard-c-list::=

{, • c-list-element .„}

c-list-element::=

{

lt] (pos-control 1}
[mu matching-control

mult (standard-c-list)

'mult' is the denotation for a multiplier. This must be

a 'simple-integer-constant-denotation' enclosed in brackets.

mult: :=

(simple-integer-constant-denotation)

'mult' means, that the following control (or list of controls)

has to be repeated 'mult'-times.

example: (4) A (7) is equivalent to A(7), A(7), A(7), A(7)

(2) (F(7, 2), X(3)) is equivalent to

F(7,2), X(3), F(7,2), X(3)

1.3.2.3/1

-127-

Some examples may illustrate the complex variety of

'standard-c-1ist':

(3) F (A, B, C)

A(2), SKIP, (5) B4 (12)

X, (20) (F(8), X(3), F(S, 1))

COL (ST)

(4) (LINE(2), T(17, 2), X, (3) A (L))

1.3.2.3/2

-128-

1.3.2.4 Remote Format

For convenience 'standard-c-list' may be "predefined"

by the programmer within a 'r-formqt-declaration'.

r-format-declaration::=

format-identifier: FORMAT

(standard-c-list) •
•

This is similar to a procedure declaration. The "body"

is denoted by 'standard-c-list' (which has been explained

in the previous section) .

'format-identifier' is the name for this list. lt is used

in transfer-operations as a parameter for the standard­

function '.'R". This standard-function returns the

'standard-c-list' denoted by format-identifier.

remote-format::=

R (format-identifier)

example:

DCL LIN DATION OUT ALPHIC(130) CONTROL (ALL);

DCL A, B, C, X, Y, Z FIXED; .
• •

LINFOR : FORMAT(X, F(7, 2), (2) (X(S), F(8))); .
• . .

PUT A, B, C TO LIN BY R (LINFOR); .
• .

PUT X, Y, Z TO LIN BY R (LINFOR);

• •

1.3.2.4/1

-129-

1. 4 Realtime Objects

1 . 4. 0 General

If an industrial process is to be controlled by a program

system, a special set of language elements is required.

The program system has to react upon "messages" coming

out of the process, it has to start or stop activities

depending on states of the process and so on. The langua­

ge facilities provided therefore are called realtime­

features.

The execution of a program system is inf luenced by

"events" arising from the process. These events are

detailed in section 1.4.1.

In section 1.4.3 the basic notion for concurrent program

parts, a "task", is introduced. Concurrency means that

these tasks can execute their statements independently

of each other in a quasi-parallel manner.

If these tasks interact, i.e. if there are logical

connections between them or if parts have to be sequen­

tialized, it is necessary to introduce coordinating

objects. These are called "synchronizers" and are treated

in section 1.4.2.

1.4.0/1

-130-

1 . 4. 1 Events

1.4.1.0 General

An "event" can be seen as a message originating in the

environment of a program system. An event is always

combined with a condition . When the condition is satis­

fied (set true) the event "occurs".

(e. g. let the condi tion be "reaching the end of a tape" .

As soon as EOF is reached, i.e. the condition is

satisfied, an event occurs. A message is sent to

the program) .

An event can arise implicitly from a system-division

device (e.g. a device reports "not ready", an AD-converter

signals "done"); explicitly an occurrence can be caused

by PEARL-statements (cf. section 2.4.1.2) or by errors

during the execution of statements (e.g. overflow, zero­

divide etc.).

Reactions on events can be specified by the programmer

within the program system. They are discussed in section

2.4.1.3 andin section 2.4.3.0.1.

In PEARL two kinds of events are distinguished. An event

concerni ng one particular activity is called a "signal".

An event that may concern more tasks is called an

n i n terrupt" .

An interrupt is a priori an independent event occurring

a s ynchronously ("unexpected"). There is no connection to

the s t a tement executed the very moment of the occurrence

of the i nterrupt.

It effects all the tasks which have specified a reaction

on that interrupt (refer to section 2.4.3.0.1).

A s i gnal is always in connection with exactly one activity.

It i s caused by a PEARL- stat ement. The system directs the

signal t o the task having executed this statement.

1. 4.1.0/ 1

-131-

1.4.1.1 Interrupts

In PEARL interrupt-handling is based on objects of type

INTERRUPT. In the irnplernentation-handbook one can find

all the interrupts that can occur.

In the systern-division they can be identified with user­

narnes (cf. section 1.3.1.2.2). Interrupts are always

GLOBAL and need only specification within a problern-divi­

sion at rnodule level.

i nter>r>upt-specification: :=

[
SPECIFYl
SPC

one-identifier-or-list [(J]

[
INTERRUPT]
IRPT

[GLOBAL);

Interrupt rnay be grouped into arrays, therefore an empty

pair of parenthesis is provided.

exarnples: SPC ALARM IRPT;

SPECIFY ITR() INTERRUPT GLOBAL;

SPC (M1,ITR,INT) IRPT;

In Basic PEARL interrupt reactions rnay only be scheduled

task-oper~tions (refer to section 2.4.3.0.1).

For rnasking interrupts refer to section 2.4.1.1.

1.4.1.1/1

-132-

1.4.1.2 Signals

During the execution of some selected PEARL staternents

exceptional conditions may arise. They require a special

treatment (e.g. overflow is indicated during the execution

of an arith.metic operation) .

Signals are used to report the exceptional conditions

to the task executing the statement in question.

Similar to interrupts all possible signals can be found in

the implementation-handbook. There the system-names are

listed and the .m~aning is explained. Signals rnay be given

user-names within the systern-division (cf. section 1.3.1.2.2).

Within a problem-division they have to be specified at

module level.

signaL-specification::=

[

SPECIFYJ

SPC

one-identifier>-or-List [rJ]

SIGNAL

f GLOBAL);

Analogous to interrupts also signals can be grouped into

arrays, therefore an empty pair of parenthesis is provided.

Signals may be stirnulated explicitly by the induce-statement

(cf. section 2.4.1.2).

Syntax and semantics of signal-reactions are discussed in

section 2.4.1.3.

Typical exampl es for signals are overflow, end-of-file,

zerodivide, conversion error etc.

Examples for signal-specification:

SPC OFL SIGNAL;

SPECIFY PRINT(3) SIGNAL GLOBAL;

1.4.1.2/1

-133-

1 . 4. 2 Synchronizers

Synchronizers are objects for explicit synchronization

of statements in different tasks.

They allow to force a time-ordering upon parts of a

program.

This may for instance be necessary if one task produces

results and another consurnes them. Then the consumer must

not be faster than the producer.

In Basic PEARL synchronizers are called "semaphores".

On language level semaphores are realized by objects

of type SEMA:

Semaphores are characterized by their states. They may

be occupied (requested) or free (released). Changes of

states can only be achieved by special operations, one to

request a semaphore and one to release it (cf. section

2.4.2 synchronization). The states are displayed by integer

nurnbers. Zero represents the state 'reguested', any positive

nurnber the state 'released'.

In Basic PEARL semaphores can only be declared at module

level.

sema-declaration::=

{
DECLARE)
DCL

one-identifier-or-Zist SEMA

f GLOBAL f RESIDENT 11
[PRESET ({, • integer-constant-denotation • • ·})) ;

•

1.4.2/1

-134-

'one-identifier-or-list' denotes the name of one or more

semaphores.

The programmer may assign an initial value for a semaphore

by using the PRESET-clause.

The list of numbers following PRESET must contain as many

items as 'one-identifier-or-list'.

The initial value may only be zero or a positive integer

number. If the PRESET-clause is omitted the initial value

is defaulted to zero.

Prior to the use in another module a global semaphore has to be

specif ied.

sema-specification::=

{
SPECIFY}
SPC

one-identifier-or-List SEMA

[cLOBAL] ;

Note: Within a specification no initialization is permitted.

examples: DCL RESULT SEMA GLOBAL PRESET 1;

SPC RESULT SEMA GLOBAL;

DCL (81,VALVE,DONE) SEMA PRESET 3,0,1;

DCL S SEMA GLOBAL;

•

1.4.2/2

-135-

1. 4. 3 Tasks

In a program system for the control of a technical

process, it is not always possible to execute the prograrns

in a predefined sequential way.

Programs have to run at times required by the process,

often at the same time as (concurrent to) other programs.

For parts of a program which have to be executed in a

concurrent or "quasi-parallel" manner the PEARL object

"task" was introduced.

A task consists of declarations and statements. These

are worked off sequentially.

To simplify the description of the execution of a task we

can assume that each task has its own "virtual processor".

All the processors can do their work independently of each

other, simultaneously and parallel.

exarnple: a program system consists of 3 tasks

T1, T2, T3.

T1 T2 T3

T1 is executed on the virtual processor PT1' T2
on PT2 and T3 on PT3" So each task i s e xe c uted
on its own processor, even i f they don 't over-
lap in time.

1.4.3/1

-136-

To execute a task it has to be "activated'' (this is des­

cribed in section 2.4.3.1). An activation creates an

"activity". One task can have several activities at the

same time. (This can happen, if there are more activations

of this task before the first activity has finished its

execution). But only one activity of a task (the one that

was activated first in time) can occupy the virtual proces­

sor of this task and execute its statements.

All the other activities of this task have to queue up

and wait for their turn (they are worked off sequen­

tially).

A task can have different states. Prior to its declaration

for instance it is 'unknown', if an activity is executing

its statements it is 'runnable' etc.

The following diagram shows the states of a task (drawn as

circles). The transitions between the states are represen­

ted by lines between the circles. Every line is marked with

the event causing the transition.

The diagram cannot give a complete description of all

possible sequences of transitions. It shall just be

helpful to understand the task-operations in principle.

More detailed explanations are given in the following

description of the states andin section 2.4.3. where

the task-operations are described in detail.

1.4.3/2

-137-
f ig. 5:

States and transitions of tasks:

TERMINATE

Solid lines:

Dotted lines:

PREVENT

Schedule ACTIVATE

TERMINATE

unsuccessfu REOUEST

RELEASE

,
scheduled 1

condition I
satisfiea;

1
1

' ' ' ' ' '
'

part of a
cyclic
schedule

' worked off
\

' ' 1
1

1

'

transitions activated directly by PEARL-statements

transitions initialized by the system

1.4.3/3

-138-

Explanation of the states of a task:

unknown (U)

dormant (D)

scheduled (Sch)

runnable (R)

the operating system does not know

the task, therefore no operations

are allowed.

the task has been declared. It is

known to the operating system, but

at the moment no activity exists.

a condition for an activate-state­

ment has been set up. But this con­

dition is not yet satisfied. The

task has to wait until the condition

comes true. Then a new activity of

this task is created.

all the conditions for the start or

continuation of an activity are

satisfied. Several activities of one

or more tasks can be in that state.

Note: Frorn each task only the first

activity has occupied the

virtual processor, i.e. the

first activity is running

(executing its statements).

The others are waiting until

the first one is finished

although they are 'runnable'

too.

1.4.3/4

- suspended (S)

-139-

an activity has been stopped. It

has to wait for a certain time. There

are two ways for an activity to

reach this state: either it stops

itself (cf. section 2.4.2.2) to

wait for an event or a point of t i me

or it is forced to wait for the release

of a semaphore (cf. section 2.4.2).

- suspended and

scheduled (S+Sch) analogous to the state 'suspended'

an activity is still waiting but

a continuation for this activity has

already been scheduled.

Declaration of a task:

As any other PEARL objects (except labels) a task has to

be declared prior to its use. The declaration takes the

task from the state 'unknown' to the state 'dormant'. In

Basic PEARL a task has to be declared at module-level.

task-deaZaration::=

task-identifier: TASK

[
PRIORITY]

(PRIO simpZe-integer-aonstant-denotation]

CRESIDENTJ [GLOBAL1

bfoak-taiZ

'task-identifier' denotes the name of the task . The priority

clause is detailed in section 2.4.3.0.2.

'block-tail' contains all task-specific declarations a nd

statements.

1.4.3/5

-140-

A task can be used in another module after it has been

specified:

task-specification::=

{

SPECIFY l
SPC J

one-identifier-or-list TASK

(GLOBAL]

Note: Changing the priority is not permitted within a

specification.

1.4.3/6

-141-

2. OPERATIONS

2.0 General

2.0.0 Operators and Operands

In part 1 all the Basic PEARL objects have been intro­

duced. This part deals with the dynamic features of

these objects. It is explained how they may be used in

operations.

Some of the Basic PEARL objects are considered to be

"executable", for instance procedures or tasks.

This means their declaration contains a sequence of

operations which is worked off sequentially as soon

as the object is "executed".

In general an operation consists of an operator and

one or more operands.

In Basic PEARL all the operators are predefined, i.e.

the number and the types of the operands required are

determined.

exarnples: the monadic operator ROUND requires

exactly one operand of type FLOAT.

REQUEST requires an operand of type

SEMA.

2.0.0/1

-142-

The number of operands may be used to classify ope­

rations. In particular this is done for the variety

of algorithrnic operations, where the terms "monadic"

and "dyadic" are used to refer to operators requiring

one and two operands, respectively.

Another criterion for the classification of operations

is, whether they have a result or not.

An operations is said to have a result if its execution

may be replaced by a value.

example: 2 + 3 ~ 4 is an operation wi th a resul t,

it may be replaced by this result 14.

Suchoperationsare called "expressions".

Operations without result are just worked off. Of course,

during this execution there may be changes of the con­

tents of some objects that are accessed. But such an

operation stands for "itself", it does not represent a

value.

example: REQUEST S;

This is an operation without result, but it

changes the value of the semaphore s.

Operations of this kind are called "§tatements".

2.0.0/2

-143-

2.0.1 Expressions

Expressions are defi ; ed as operations returning a result.

In Basic PEARL this result is always a value.

Hence, expressions may be used in many parts of a

Basic PEARL program, for example in

assignations,

parameter-lists,

I/0-lists,

repeat-statements,

schedules

How expressions are evaluated is detailed in section

2.2.1.3. Sometimes an operation demands a special type

of the result of an expression, or in other words - not

every expressions is legal in this operation. This will

syntactically be denoted by adding the type of the result

to the general notation "expression-seven".

So, for example

bit-one-expression-seven

denotes an expression, the result of which has to be

of type BIT(1).

2.0.1/1

-144-

2.0.2 Statements

Statements have been introduced as operations returning

no result.

In Basic PEARL staternents can only be part of an

executable object like a procedure or a task.

Stat~ments are executed in the sequence they are denoted

unless this sequence is explicitely modified by a

special category of statements, called "transfer-of-control­

statements" (refer to section 2.2.4).

These "transfer-of-control" operations require "labelling"

of staternents, therefore the general syntax of statement

is given by:

statement: :=

[{ label,-identifier : J ...]
(unlabeUed-statement] ;

'label-identifier' is viewed as implicite declaration

of an object of type LABEL (refer to section 1.2.4). Any

unlabelled statement may be preceded by an arbitrary

nurnber of labels.

'unlabelled-statement' is further classified as follows:

unlabelled-statement::=

assignment

begin-b lock

caU-statement

return-statement

trf-of-ctrl-statement

realtime-statement

communication

2.0.2/1

-145-

The different categories will be discussed in the

following sections.

If 'label-identifier' and 'unlabelled-staternent' are

omitted, the semicolon remains, denoting a "no-operation",

a "dummy-statement" with the semantics: do nothing,

pass the control to the next statement in the sequence.

2.0.2/2

-146-

2. 1 Structural Operations

2. 1 . 0 General

In section 1.1 the structural objects rnodule, division

and block have been introduced.

This section deals with sorne properties of these objects

during prograrn execution.

In 2.1.1 a general outline is given, how a Basic PEARL

prograrn is executed.

Section 2.1.2 details how long objects attached to

the different levels exist and where they rnay be used.

How the different types of blocks (procedures, tasks

and begin-blocks) are executed is explained in the

corresponding sections.

2.1.0/1

-147-

2. 1 . 1 Program Execution

If a Basic PEARL program is to be executed, the SYSTEM­

division is considered first.

All the specifications given in it are evaluated.

Then the PROBLEM-divisions are executed in an arbi­

trary-orde::-.

In section 1.1.1 it has been stated that at least one

module has to contain a declaration of a global task.

So there is one task to be activated.

Since there is no language feature permitting to start

a task when none is active, the "initial" start (the

start of the first task) has to be done by an external

stimulus (e.g. by an operator).

2.1.1/1

-148-

2. 1 • 2 Lifetime and Scope

In section 1.0 it has been describ ed, how objects

are generated by declarations or specifications.

In this section it is to be detailed during which time

the objects exist and from which part of the program

they may be accessed (used).

The lifetime of an object is the time between (the

execution of) its declaration and the execution of the

block-end of the block, in which its declaration is

contained.

example:

BEGIN

DCL A FIXED;

DCL B(S) FLOAT;

1

1

END;

t

lifetime of
array B

lifetime of
variable A

2.1.2/1

-149-

All parts of the program (declarations, specifications,

statements) where it is possible to access an object,

are called the scope of this object.

In general the scope of an object is the block, in

which it is declared.

example:

(1) BEG IN

DCL F FIXED;

END;

(2) MODULE;
1

1

T:TASK;
1

END;

1

MODE1'1D;

F may be used any­
where in this block

The scope of task T
is this module

2.1.2/2

-150-

Sorne rules have to be obeyed:

Except controls within the sarne scope,

no two objects rnay have the sarne identif ication.

exarnple:

(1) MODULE;

DCL A CHAR(1);

A:TASK;
1

MODEND;

This exarnple is illegal: there rnust not

be a variable A and a task A within one

rnodule!

(2) BEGIN

DCL (E, F) FIXED;
•

PUTE TO LPRINT BY F(F);
1

END;

This exarnple is legal, since the first

"F" in the put-staternent denotes a

control, the second one a variable of

type FIXED.

2.1.2/3

-151-

The scope of an object may be restricted, if there

is an enclosed block containing (a declaration of)

another object with the same identification.

example:

BEG IN

•
DCL X FLOAT;

1

'

BEG IN
•

DCL X FIXED;
1
t
1

END;

END;

Scope of
FIXED X

Scope of
FLOAT X

Scope of
FLOAT X

The scope of the FIXED-variable X is the inner block.

The scope of the FLOAT-variable X is the outer block

except the inner öne, since thereis another object

with the same name.

2.1.2/4

-152-

The scope of objects declared at module-level may

be extended by using the global-attribute "GLOBAL" .

(cf. section 1.1.3).

The scope of an object declared at module-level

is a priori the module. If this object has the

global-attribute the scope may be extended to other

modules by specifying this object in the other modules.

example:

MODULE;

PROBLEM;

DCL F FIXED GLOBAL;

1

1

MODEND;

MODULE;
1

1

PROBLEM;
'
' ' SPC F FIXED GLOBAL;
1

' MODEND;

a priori scope
of F

extended scope
of F

2.1.2/5

-153-

2.2 Algorithmic Operations

2.2.0 General

In this chapter all the languages features will be

discussed that are corrunonly considered as "algorithmic".

Section 2.2.1 deals with operations on objects of basic

types, especially the fundamental operation of assigning

a value to an object.

In section 2.2.2 the call of a procedure is explained

together with the mechanisms, how to get data into and

out of a procedure~

Section 2.2.3 details, how compound objects (refer

to section 1.2.3) may be accessed.

A very important group of statements is summarized by

the term 'transfer of control'. These operations control

the sequence of execution of statements. They are

detailed in section 2.2.4.

2.2.0/1

-154-

2.2.1 Basic Operations

2.2.1.0 General

The Operations detailed in this section are essentially

operations using objects of the basic types (refer to

section 1 . 2. 1) .

Section 2.2.1.1 discusses the assignment-statement, which

is a fundamental operation in each programming language.

Section 2.2.1.2 lists all the standard operators of

Basic PEARL and explains, how they rnay be used in

expressions.

The final section 2.2.1.3 details, how complex expressions

are evaluated.

2.2.1.0/1

-155-

2,2.1.1 Assignation

Assignation is one of the fundamental operations. It

explicitely allows to modify the contents of an object.

In Basic PEARL assignation is only def ined for objects

of basic types.

However, assignation, even if defined for an object,

may be inhibited, if access to this object is restricted

by the INV-attribute (either by declaration or speci­

fication) .

assignment::=

symboi f: } expression-seven

The value of 'expression-seven' is assigned to the 'symbol'

left of the assignation-operator ':=' (or '=').

Some rules for compatibility have to be obeyed:

the result of 'expression-seven' and 'symbol' must

be of the same type. (There is only one exception:

FIXED-objects may be assigned to FLOAT-objects).

as already mentioned above, 'symbol' must not hav e the

INV-attribute.

assignation of strings: if the string on the left side

is longer than the one on the right side it is f i l l e d

up with blanks or zeroes, respectively. If it is s h o rter,
it results in an error.

2. 2. 1 :1/1

example:

-156-

�CL S CHAR (9) ;

S • - ' EXAMPLE 1
• ,

This results in assignation of
' EXAMPLE, ' to S

assignation of numbers: The precision of the left
side must not be smaller th an the precision of the
right side.

Some examples for assignations:

DCL (I, J, K) FIXED INIT (1 , 2, 3) ,

PI INV FLOAT,

B BIT(8) ,

B 1 BIT (4) INIT (' 1111 'B) ,

F FLOAT;

P PROC (A1 FIXED, A2 FLOAT) RETURNS (FIXED);

END;

i

I becomes 6 lf/ I : = J. 3;

B : = B1 CAT

PI: = 3. 14;

/lt

'01'B; /*

/lt

B becomes '11110100'B tf>/

illegal, since PI has the INV-

K : = P(I,F);

attribute •/

/• The result of procedure Pis assigned

to K 14/

2.2.1.1/2

-157-

2.2.1.2 Standard Operations

2.2.1.2.0 General

In this section the operators are described, that may be

used in Basic PEARL expressions.

They are predefined and can only be used with the types

of operands given in the following tables.

Using other types of operands results is an error, just

as using a wrong type for the result.

If the precision of the result is not cornpatible with

the one needed, in general a signal is raised.

2.2.1.2.0/1

-158-

2.2.1.2.1 Monadic Operators

An Operator having exactly one operand is called a

"monadic operator".

In Basic PEARL the f ollowing monadic operators are

provided:

monadic-operator::=

+

NOT

ABS

SIGN

ROUND

TOFIXED

TOFLOAT

TOBIT

TOCHAR

ENTIER

The following table lists for each monadic operator the

type(s) that its operand must have, the corresponding type

of the result and the semantics.

2.2.1.2.1;1

N

N

.....

"'
........ ... ,

rt
llJ
tr
......
Cl)

\.11

s
0
::i
llJ
p.
1-'·
0

0
"O
Cl)
li
llJ
rt
0
11
Cl)

syntax

+ a

- a

NOT a

ABS a

SIGN a

ROUND a

type of operand a

FIXED (p)
FLOAT (p)
DURATION

see +

BIT (k)

FIXED (p)
FLOAT (p)
DURATION

FIXED {p)
FLOAT (p)
DURATION

FLOAT (p)

type of result c

FIXED (p)
FLOAT (p)
DURATION

see +

BIT (k)

FIXED (p)
FLOAT (p)
DURATION

] FIXED (1)

FIXED (p)

sernantics

c := +a

(monadic plus)

c := -a
(monadic minus)

inversion of all bits

c := lal
(absolute value)

p if a > 121
c := if a = !1S

-1 if a (95

rounding to the nearest
integer

1
-->

\.11
\0
1

IV

IV

IV

.........
w

rt
llJ
tr
......
CD

U1

(}

0
::s
rt
....
::s
i::
CD
0..

s
0
::s
llJ
0..
1:-'·
(}

0
'O
CD
11
llJ
rt
0
11
C/l

syntax

TOFIXED a

TOFLOAT a

TOBI T a

TOCHAR a

ENTIER a

~ype o f operand a

CHARACTER (1)

BIT (k)

FIXED (p)

FIXED (k)

FIXED

FLOAT (p)

type of result c

FIXED (p)

FIXED (p)

FLOAT (p)

BIT (p)

CHARACTER (1)

FIXED (p)

semanti cs

c := integer associated with a
CHARACTER;
that integer and p are
implementation dependent

c = interpretation of a bit-
string as an integer

c becomes the real number
corresponding to a

conversion of a to BIT (p) i

p is implementation dependent

conversion of a to a
CHARACTER (1) value, if
possible

c := nearest integer not
greater than a

1
°' 0
1

-161-

2.2.1.2.2 Dyadic Operators

A "dyadic operator" is an operator with two operands.

Dyadic operators are classified according to their

"precedence".

prec-1-operator::=

{ ~p~} FIT

prec-4-operator::=

!
</LT })/ GT
(= / LE
)=/GE

prec-6-operator::=

AND

prec-7-operator::=

{ ~~OR}

2.2.1.2.211

-162-

The precedence of an operator becomes important when

several operators are used within one expression.

Then it is one criterium to determine how such an ex­

pression is worked off. This is further detailed in

section 2.2.1.3. As for monadic operators the following

table lists the syntax of dyadic operators, the types of

operands and the corresponding type of the result.

Besides this a short explanation of semantics is given.

2.2.1.2.2/2

syntax type of operand a type of operand b type of result c

0\
a ,._ Jlf, b FIXED (p) FIXED (q) FIXED (p)

FLOAT (p) FIXED (q) FLOAT (p)

a UPB b FIXED (p) array FIXED

a FIT b FIXED (p) FIXED (q) FIXED (q)
FLOAT (p) FLOAT (q) FLOAT (q)

a * b FIXED (p) FIXED (q) FIXED (r)
FIXED (p) FLOAT (q) FLOAT (r)
FLOAT (p) FIXED (q) FLOAT (r)
FLOAT (p) FLOAT (q) FLOAT (r)
FIXED (p) DURATION DURATION
DURATION FIXED (p) DURATION

"'

semantics

c:= {�•a;f ... Ma (b times), if b)0
, if b =0

c: =

r••>- .. J<a (b times), if b> �
1.0 , if b = f{)
1/ (a.-a# ... ;l'a) (lhl times),

if b (0

C : = �per e_ound of the a-th
dimension of b, if it exists

The precision of a is changed to
that one of b.

C : = a .1' b
(mul tiplication)

r : = max (p,q)

�

0\

w

.....

°'
..

0
0
:::,
rt
f-'·
:::,
s::
(1)
0.,
..

syntax

a / b

a // b

• {) (}b
CAT

a + b

type of operand a

FIXED (p)
FLOAT (p)
FIXED (p)
FLOAT (p)
DURATION

FIXED (p)

CHAR (n)

BIT (n)

FIXED (p)
FIXED (p)
FLOAT (p)
FLOAT (p)
DURATION
DURATION
CLOCK

type of operand

FIXED (q)
FLOAT (q)
FLOAT (q)
FIXED (q)
FIXED

FIXED (q)

CHAR (m)

BIT (m)

FIXED (q)
FLOAT (q)
FIXED (q)
FLOAT (q)
DURATION
CLOCK
DURATION

b type of result c semantics

FLOAT (r) a if b 'f' �
FLOAT (r) C : =

b '
(division)

FLOAT (r)
FLOAT (r) (p,q) r : = max DURATION

FIXED (r) C : = ENTIER ABS (a/b) � SIGN (a/b)
if b 'f' �
(integer division)

r : = max (p,q}

1
.....

CHAR (k) concatenation of two strings,
c contains string a, followed

BIT (k) by string b.

k : = m+n

FIXED (r)
FLOAT (r) C : = a + b
FLOAT (r) (addition)
FLOAT (r)
DURATION r : = max (p,q)
CLOCK
CLOCK

....

rt

g:1---------4---------1---------f---------+------------------1
syntax type of operand a type of operand b type of result c semantics

()

0
:::s
rt
..,.

:::s
i::
(1)
p..
..

�
PI
p..
..,.

()
0
'O
(1)
li
PI
rt
0
li
(/)

a - b

a SHIFT b

a{ () } b
CSHIFT

af �}b

FIXED (p)
FIXED (p)
FLOAT (p)
FLOAT (p)
DURATION
CLOCK
CLOCK

BIT (k)

BIT (k)

FIXED (q)
FIXED (q)
FLOAT (q)
FLOAT (q)
CLOCK
DURATION

FIXED (q)
FLOAT (q)
FIXED (q)
FLOAT (q)
DURATION
DURATION
CLOCK

FIXED (p)

FIXED (p)

FIXED (r)
FLOAT (r)
FIXED (r)
FLOAT (r)
CLOCK
DURATION

FIXED (r)
FLOAT (r)
FLOAT (r)
FLOAT (r)
DURATION
CLOCK
DURATION

BIT (k)

BIT (k)

.

> BIT (1)

,,

C := a - b
(subtraction)

r : = max (p,q)

a is shifted b steps to the left,
if b)9}, and to the right, if
b(9} •
zeroes are pulled after

cyclic shift of a
b steps to the left, if b > 9}
b steps to the right, if b (�

comparison-operator
"less than"

c : = f 1 'B, if true
'9}'B, if false

comparison-precision:
p = max (q,r)

If one Operand is FLOAT 1 the other
is converted to FLOAT

1
....

°'

u,
1

N

N

N

N

..........
O'I

O'I

syntax

a{6r)b

r1 a LE
b

.g:Jb

•{:Jb

•{:Jb

type of operand a

see <

see <

see (.

see (.
CHAR (q)
BIT (q)

see (
CHAR (q)

BIT (q)

type of operand b type of result c

see < BIT (1)

see < BIT (1)

see < BIT (1)

see <

}CHAR (r) BIT (1)
BIT (r)

see <

]CHAR (r) BIT (1)
BIT (r)

semantics

comparison-operator
"greater than"

comparison-operator
"less than or equal

comparison-operator
"greater than or equal

comparison-operator
"equal to"

comparison-operator
"not equal to"

to"

to"

O'I
O'I

1

0
0
!;j
rt
1-'·
!;j
s:::
(l)
0.

0.
�
lll
0.
1-'·
0

0
"d
(l)
11
lll
rt
0
11
cn

syntax

a AND b

a OR b

a EXOR b

type of operand a

BIT (k)

BIT (k)

BIT (k)

type of operand b type of result c

BIT (m) BIT (m)

BIT (m) BIT (m)

BIT (m) BIT (m)

semantics

if m > k, a is extended on the
right end by 'O'B.

Then corresponding single bits
are logically connected according
to the following table:

a b a AND b a OR b a EXOR b

'l'B '1 'B '1 'B '1 'B 'O'B
'1 'B 'O'B 'O'B '1 'B '1 'B
'O'B 'l'B 'O'B '1 'B '1 'B
'O'B 'O'B 'O'B 'O'B 'O'B

�

O'I
-.J
1

-168-

2.2.1.3 Evaluation of Expressions

Since the operands of an expression rnay in term be

expressions, rules have to be established, how such a

complex expression is evaluated, i.e. in which order

partial operations are to be considered.

There are two criteria, familiar from ordinary algebra,

to achieve ordering of Operations:

explicitly by enclosing partial operations

in brackets

implicite bracketing by introducing precedence­

levels for operators.

There are seven precedence-levels, numbered from 1 to 7.

Nurnber 1 denotes the highest precedence, number 7 the

lowest one. Operations containing operators with higher

precedence are seen to be {irnplicitly) enclosed in

brackets before operations with lower-precedence-operators.

example: a + b* c

* is of precedence two, + is of precedence three, there­

fore the partial operation b ff c is implici tly enclosed

in brackets first, then the operation with + :

{a + {b * x))

If there are several operations with the same precedence,

ordering i s achieved by the following rules:

2.2.1.3/1

-169-

for precedence 2 to 6 implicite bracketing is done

from left to right.

example at precedence-level 3:

a + b - c - d

is implicitly enclosed in brackets in the

following way:

(((a + b) - c) - d)

for precedence 1 implicite bracketing is done from

right to left, due to mathematical conventions.

example:

is equivalent to

(a lf lf (b **'C))

monadic operators are considered to be at the same

level as prec-1-operators. The same rules for bracke­

ting are applied, too.

example:

-a f!Uf b

is equivalent to

(- (a **b))

Now, considering all the (explicite and implici te)

brackets, the rule for evaluation of a complex e x pression

is quite simple:

2.2.1.3/2

-170-

a complex expression is worked off, starting with eva­

luation of the partial operation(s) enclosed in the

innermost pair(s) of brackets.

example:

a + b (= c / (d * e) AND X tflt 2 == Y N SIGN z

After adding all the implicite pairs of brackets

this expression looks like:

(((a + b) (= (c / (d*e)}) AND ((X**2) == (Y~(SIGN z))))

' • \ • ' \,

The four lines of braces denote the steps of execution.

Braces in one line indicate that these partial operations

may be executed in parallel.

The syntax of expressions reflects all the rules given

above. Since the "most loosely bound" expression contains

an operator of precedence 7 the most general form of an

expression is called 'expression-seven'.

expression-seven: :=

[expression-seven prec-7-operatorJ

expression-six

2.2.1.3/3

-171-

expression-six::=

[expression-six preo-6-operator]

expression-five

expression-five::=

[expression-five preo-5-operator]

expression-f our

expression-four::=

[expression-four preo-4-operator]

expression-three

expression-three::=

[expression-three preo-3-operator]

expression-two

expression-two::=

(expression-two preo-2-operator l
express'l,on-one

The syntax of 'expression-one' contains the different

rules for (implicite) bracketing of 'prec-1-operator' and

'monadic-operators'.

expression-one::=

{ primitive-expression

[preo-1-operator expression-one J J
monadio-operator expression-one

primitive-expression::=

{
symbol-or-oonstant J

(expression-seven)

2.2.1.3/4

-172-

The rule for 'primitive-expression' contains inturn

'expression-seven', but explicitly enclosed in brackets.

syrriboL-or-constant::=

{
syrriboi 1
constant-denotation

symboL::=

'symbol' may be:

ideniifier [expression-seven-pack]

[• identifier]

[• BIT integer-in-brackets]

- a simple identifier

- an element of an array

- an element of a structure

- a bit out of a bit-string

2.2.1.3/5

-173-

2.2.2 Procedure Calls

2.2.2.0 General

A procedure-block is executed through a special opera­

tion, a "call".

A call may be performed in two ways:

either explicitly through a 'call-statement'

or implicitly as operand in an expression.

(1) A procedure returning no result is called through

a 'call-statement'.

aall-statement::=

CALL proaedure-identifier

r expression-seven-paak J

'expression-seven-pack' denotes the actual parameters.

How they are passed to a procedure is discussed in

the next section.

example:

P:PROCEDÜRE (A FIXED, B() FLOAT IDENT);
1

RETURN;

END;

This procedure P may be called through :

CALL P (X,Y);

2.2.2.0/1

-174-

(2) Calling a procedure within an expression is only

possible for procedures returning a result, i.e.

function-procedures.

In this case the call is denoted by

procedure-identifier [expression-seven-pack]

whereby 'expression-seven-pack' denotes the actual

parameter-list.

example:

FP:PROCEDURE (B() FLOAT IDENT) RETURNS (FLOAT); .
RETURN (B(I));

END;

This procedure returns a value of type FLOAT.

So it may be called within an expression:

X:=X + FP(Y);

As already indicated in the example above, a procedure­

block is left through execution of a 'return-statement'.

return-statement::=

RETURN [rexpression-sevenJ]

With procedures returning no result just the keyword

'RETURN' is used. This indicates:

- stop the execution of the procedure,

- return to the point wher·e i t was

called from.

2.2.2.0/2

-175-

For function-procedures (declared with the result­

attribute 'RETURNS (simple-mode) ') 'expression-seven'

in brackets has to be supplied.

After evaluation 'expression-seven' must agree in type

with 'simple-mode'.

The effect of the statement is the following:

- stop the execution of the function-procedure

- pass the result to the point of the call

- return the control to this point.

2.2.2.0/3

-176-

2.2.2.1 Passing Actual Parameters

2.2.2.1.0 General

In a procedure-call the list of actual parameters is

denoted by 'expressions-seven-pack'.

expression-seven-pack::=

({, • expression-seven ••
0

})

The elements of this list have to be compatible with

the elements of the formal-parameter-list in the

respective procedure-declaration.

The relation between formal and actual parameters may

be es.tablished in two different ways:

either by the initial-mechanism

or by the identical-mechanism

The initial-mechanism is default. It passes the value

of an object to the procedure.

The identical-mechanism is characterized by the keyword

IDENT. It passes a referenc~ to the object to the pro­

cedure. Both mechanism are detailed in the following

sections.

2.2.2.1.0/1

-177-

2.2.2.1.1 Initial-Mechanism

The initial-mechanism of passing actual parameters is

commonly. known as "call by value".

For each parameter passed with this mechanism a new

object local to the procedure is created. This new

object is initialized with the current value (i.e. the

value at the moment of the procedure-call) of the

actual parameter.

In Basic PEARL the initial-mechanism may only be used

for simple-objects, i.e. objects of type:

FIXED

FLOAT

CLOCK

DURATION

BIT

CHARACTER

with any precision or length, respectively.

For objects of these types th~ initial-mechanism is de­

faulted. This means, if the formal-parameter-list contains

elements of these types without further keyword (i.e.

without "IDENT"), the corresponding actual parameters are

passed to the procedure by the initial-mechanism.

example:

P:PROCEDURE (A FLOAT,

B INV FIXED,

c CLOCK,

D CHAR(S)};

.
END;

2.2.2.1.1/1

-178-

This procedure may be called, for example, as:

DCL (E,F) FLOAT INIT (7.32,14.08);

DCL I INV FIXED INIT (4);

DCL T CLOCK INIT (10:15:28);

DCL STR CHAR(S) INIT ('PEARL');
•

CALL P (F /E, 1 8+ I * 4, T, STR) ;

•
1

END;

In this example all parameters are passed with the

initial-mechanism.

Note, that the actual parameters may be expressions.

2.2.2.1.1/2

-179-

2.2.2.1.2 Identical-Mechanism

With the identical-mechanism no new object is created,

but an existing object is made accessible.

In other words, similar to the global-mechanism the scope

of an object is extended by this mechanism (since, in

general, the procedure-block is not part of the scope

of the actual parameters).

The identical-mechanism is the only way to change the

values of objects out of the procedure.

(Note: since such an object may be accessed from other

parts of the program, too, side-effects have to be

obeyed).

Syntactically formal parameters have to be marked with

the keyword 'IDENT' if this mechanism is to be used.

The following objects may be passed with the identical­

mechanism:

all simple types as listed in the previous section

arrays (built up of simple types)

structures

arrays of structures

dations

arrays of dations

Note: the actual parameters must be identifiable objects.

Contrary to the initial-mechanism no constant-deno­

tations (e.g. 4.0) or 'expression-seven' containing

operators (e.g. 4 * I + K) must be used.

2.2.2.1.2/1 •

example:

-180-

R:PROCEDURE (F FIXED IDENT,

•
END.

I

S STRUCT (A CHAR, B FLOAT] IDENT,

D DATION INOUT ALPHIC IDENT);

In this example all parameters are passed by

the identical-mechanism. A call may be:

DCL J INV FIXED INIT(3);

DCL S1 STRUCT [K1 CHAR, K2 FLOAT J ;
DCL T DATION OUT ALPHIC CREATED(L03);

CALL R (J , S 1 , T) ;

The relation between formal and actual parameters is estab­

lished in a similar way as between declaration and speci­

fication of global objects, i.e. they must agree in their

type. If the parameter is a structure the components must

agree. For arrays the number of dimensions must be the same,

the upper bounds are taken from the actual parameter.

As for specifications access attributes may be restricted

in the call (for J and T this is indicated in the example

above). The coercion rules are given in the sections where

the objects are introduced.

2.2.2.1.2/2

-181-

2.2.2.2 Returning a Result

A function-procedure returns a result to the point,

where it was called from.

As detailed in section 1.2.2 a function-procedure must

be declared with the result-attribute

RETURNS (simpZe-mode)

and must be left by executing a return-statement

RETURN (expression-seven)

'simple-mode' in the result-attribute indicates that

only simple objects (refer to section 1.2.1) may be

returned. The types of 'simple-mode' and (the result

of) 'expression-seven' must coincide.

The eff ect of the call of a function-procedure - as f ar

as the result is concerned - may be viewed as replacing

the call by 'expression-seven' of the return-statement.

This implies that syntactically the call may appear

anywhere, where 'expression-seven' is legal.

example: DCL LOW,SCALE FIXED;

DCL A(25) FIXED;

MIN:PROCEDURE (F () FIXED IDENT) RETURNS (F I XED);

DCL RES FIXED;
1

•
t
1

RETURN(RES);

END·
' ' ' 1
t

LOW:=MIN(A)* SCALE;
1
1

' 1

2.2.2.2/1

-182-

2.2.3 Operations on Compound Objects

2.2.3.0 General

In section 1.2.3 compound objects have been -introduced.

In the following sections it is detailed how these

objects or parts of these objects, respectively,

may be accessed. Section 2.2.3.1 describes access to

arrays, section 2.2.3.2 deals with access to structures.

In Basic PEARL bit-strings, although considered as

simple objects, may be accessed in a similar way as

structures. Therefore bit-string-selection is explained

in section 2.2.3.3.

2.2.3.0/1

-183-

2.2.3.1 Access to Arrays

In Basic PEARL there are three ways of "using" an array:

accessing single components,

using slices or

the whole array

(1) Single components are denoted in the following way:

identifier expression-seven-pack

'identifier' denotes the name of an array.

'expression-seven-pack' may contain one, two or

three expression - seven enclosed in brackets.

They represent the indices. Evaluation of expression­

seven has to result in a positive integer.

expression-seven-pack::=

(, • expression-seven •••;

cxamples for selections of single components:

A (5) denotes the Sth element of an

one-dimensional array

B (I +J, 3, J « 2)

denotes one element out of a three­

dimensional array

2.2.3.1/1

-184-

(2) Slices

A slice is an abbreviated denotation for a con­

tinous part of an array. In Basic PEARL slices are

only legal within transfer-operations and only for

one-dimensional arrays.

They are denoted by

identifier (simple-integer-constant-denotation

:simple-integer-constant-denotation)

'identifier' is again the name of an array. The

two 'simple-integer-constant-denotation's denote

the first and the last index of the slice.

example: A(2:6) is a slice with 5 elements

In a transfer-operation A(2), A(3), A(4),

A(S), A(6) is an equivalent notation

for this slice.

(3) If the array is to be accessed as a whole it is

sufficient to use the 'identifier' denoting the

name of the array. In Basic PEARL the array as a

whole may be used in a transfer-operation, in the

parameter-list of a procedure-call or as operand

for the dyadic operator "UPB'' (cf. section 2.2.1.2.2).

example: a procedure declared

MAX:PROCEDURE (A(,)FIXED IDENT);

may be called by

CALL MAX(F);

if F has been declared

DCL F(S,7) FIXED;

2.2.3.1/2

-185-

2.2.3.2 Access to Structures

Accessing a structure can only be done by selection,

i.e. by choosing one component out of the structure.

Selection of a component of a structure is achieved by

identifier [expression-seven-packJ

.identifier

The first 'identifier' denotes the name of the structure.

Since arrays of structures are legal indexing is pro­

vided by 'expression-seven-pack'.

The second 'identifier' following

the chosen component.

examples:

II II is the name of

DCL S STRUCT (I FIXED, (X,Y) FLOAT,D DURATION);

The following selections are possible:

S.I

s.x
S.Y

S.D

DCL F(3,10) STRUCT (A CHAR(5), (B,C) FIXED);

Selections may be:

F(1,1).A

F(1,7).B

F(3,1).C

2.2.3.2/1

-186-

2.2.3.3 Bit-string-selection

Although bit-strings are simple objects a selection­

operation is provided for thern. This selection is to

single out individual bits of the string. Syntacti­

cally the selection is sirnilar to the selection of

cornponents of structures.

Bits are selected by

identifier [expression-seven-pack J
(. identifier J

.BIT integer-in-brackets

The first 'identifier' either denotes the narne of a

bit-string or the narne of a structure containing a

bit-string.

'expression-seven-pack' is provided for indexing.

The second (optional) 'identifier' serves to select a

bit-string which is cornponent of a structure.

'integer-in-brackets' following ".BIT" is the nurnber of

the bit that is to be selected. (The left-rnost bit in

the string is nurnber 1, the right-rnost bit has the

highest nurnber).

exarnples: DCL BSTR BIT(S) INIT ('11101'B);

Selection of

BSTR.BIT(4)

results in 'O'B.

DCL B3STR BIT(9) INIT ('205'B3);

Selection of

B3STR.BIT(2)

results in '1'B.

DCL S STRUCT (A BIT(3), B FIXED)

The first bit of the cornponent A is

selected by S.A.BIT(1)

2.2.3.3/1

-187-

2.2.4 Transfer of Control

2.2.4.0 General

Within a task- or procedure-body statements are usually

executed in the sequence they are written down. But

there are some statements that allow to modify this

sequence. They are called "transfer-of-control

statements".

trf-of-ctrl-statement::=

goto-statement

conditional-statement

case-statement

repeat-statement

2.2.4.0/1

-188-

2.2.4.1 Goto-Staternent

A 'goto-staternent' serves to unconditionally transfer

control to a labelled staternent.

goto-statement::=

GOTO label-identifier

'label-identifier' denotes the target of the jurnp,

i.e. control is transferredto the statement which is

l.abelled with this identifier.

With a 'goto-staternent' one can transfer control within

the block the statement is attached to, or to an

enclosing (outer) block. One must not jump into (inner)

blocks.

Leaving a procedure- or task-body by a 'goto-statement'

is not possible.

2.2.4.1/1

-189-

2.2.4.2 Conditional-Staternent

The 'conditional-staternent' allows different conti­

nuation of the staternent sequence depending on a con­

di tion.

eonditionai-statement::=

IF bit-one-expression-seven

THEN { statement • • • J
[ELSE { statement ••• }l

FIN

'bit-one-expression-seven' is an expression, the

result of which has tobe of type BIT(1).

bit-one-expression-seven::=

expression-seven

Together with IF it denotes the condition. The condi­

tion is said to be true if the expression results in

'1'B, it is false, if the result is '(tS'B.

If the condition is true the staternent(s) between THEN

and ELSE is (are) executed. (If ELSE is rnissing, between

THEN and FIN, resp.).

If the condition is false the staternent(s) between ELSE

and FIN is (are) executed. If this branch is ernpty

(i.e. does not contain any staternent) ELSE has to be

ornitted, too.

2.2.4.2/1

-190-

examples:

(1) IF a < b

FIN;

THEN

ELSE

min:=a;

min:=b;

(2) IF value) max

THEN lamp:= 1 1 1 B;

FIN;

After executing one of the two branches control is

sequentially passed to the statement following FIN.

There are no restrictions for the statements following

THEN and ELSE, so that nesting of conditional state­

ments is possible.

example:

IF a = 3

FIN;

THEN IF x ~ y

THEN m: =1 ;

ELSE m:=2;

FIN;

ELSE m:=-1;

2.2.4.2/2

-191-

2.2.4.3 Case-Statement

The 'case-statement' allows to discriminate more than

two alternatives.

case-statement::=

GASE integer-expression-seven

{ALT

FIN (OUT

statement • • • j" · ·
statement • • • J

'integer-expression-seven' is an expression, the

result of which is of type FIXED.

integer-expression-seven::=

expression-seven

Each alternative that may be chosen is preceded by the

keyword ALT. It may consist of one or several statements.

(At least it must contain the empty statement ";").

The alternatives are considered to be numbered from 1

to n. If the value of 'integer-expression-seven' is n

control is transferred to the n-th alternative.

The n-th alternative starts with the statement following

the n-th ALT and ends with the next ALT, or, if there is

no more ALT with OUT. If also OUT is omitted it ends

with FIN.

If the value of 'integer-expression-seven' is less than 1

or greater the number of ALT's in the 'case-statement'

the statements between OUT and FIN, if existent, are

executed.

2.2.4.3/1

-192-

After execution of one alternative control is passed

to the statement following FIN.

example:

CASE

ALT

ALT

ALT

OUT

FIN

i

x:=3;

rn: =rn+1 ;

x:=2; y:=1;

rn:=S;

If, for exarnple, i=2 the statement rn:=rn+1 is executed.

If i=17 the statement m:=S is executed.

2.2.4.3/2

-193-

2.2.4.4 Repeat-Statement

The 'repeat-statement' allows to execute a statement­

sequence several times. It consists of a loop-body

and a mechanism to control the repeated execution of

this loop-body. This mechanism may contain a counter

and/or a condition.

repeat-statement::=

[FOR identifier J
(FROM integer-expression-sevenJ

[BY integer-expression-seven]

[TO integer-expression-seven]

[WHILE bit-one-expression-seven l
REPEAT [;J bZock-taiZ

The repeat-statement is to be considered as a begin-block

(cf. section 1. 1. 1. 4) .

The 'identifier' following FOR is called loop-index.

It is implicitly declared and may only be used within

the 'repeat-statement'. If the phrase 'FOR identifier'

is omitted the loop-index is defaulted by the system,

but then it cannot be accessed within the loop-body.

'integer-expression-seven' following FROM d~notes the

initial-value of the loop-index. If it is omitted it i s

defaul ted to 1.

'int~ger-expression-seven' following BY denotes the step­

width by which the loop-index is varied (incremented or

decremented) . If i.t is omi tted i t is def aul ted to 1 •

2.2.4.4/1

-194-

'integer-expression-seven' following TO denotes the

end-value for the loop-index. On exceeding this value

the loop is terminated. There is no defaulting if it is

omitted.

'WHILE bit-one-expression' denotes a condition. The

loop-body is executed as long as this condition is true

(i.e. evaluation of 'bit-one-expression-seven' results

in "1"B). If it is omitted the condition is defaulted

to "true".

All the expressions in the control-mechanism of the
1 repeat-statement' are evaluated together before the

'repeat-statement' is executed. They must not contain

the loop-index.

The loop-body is denoted by 1 block-tail'. It may contain

local-declaration and statements. Within the loop-body

the loop-index may be used, but not as left-hand-side

of an assignation.

The following flow chart shows an equivalent representa­

tion of the repeat-statement:

FOR i FROM Start BY step TO end

WHILE valid REPEAT group END:

The begin-blocks are enclosed in dotted lines.

2.2.4.4/2

-195-

,----- --- - - - - -- - - - -- - - - - - - - - - -1

1

'- -

J := start
K := step
L := end

r--------

I := J

= 'l'B

r- - -- - - - --,
1
1
1

' 1

group

1
1

1 L---- -----~

J : = J+K

'O'B

L--- - --- -- ------..J

- -- - - -- - - - - - - - - - - -

no

1
1
j

1

- - - - J
fig. 6: graphic representation of a repeat-statement

end

-196-

2.3 Cornmunication Operations

2.3.0 General

This chapter explains, how the cornmunication objects

data-station and control are used in I/O-operations.

There are two categories of such operations: the prepa­

ration of a "dataway" and the actual transfer.

corrurrunication::=

{
data:way-operation 1
tran.sfer-operation

'dataway-operation' comprises the creation of a dataway,

which in Basic PEARL is done within the declaration of a

data-station. Then the dataway has to be synchronized

before an actual I/0-statement is executed. Synchronization

is achieved by the open- and close-stat~ment.

Dataway operations are detailed in section 2.3.1.

Transfer-operations are classified according to

data representation

transfer direction.

If the PEARL-objects are transformed into alphic or basic

symbols, GET/PUT and TAKE/SEND resp. are used, if they

are not changed during to transport, READ/WRITE is used.

Syntax and semantics of these operations will be detailed

in 2.3.2.

2.3.0/1

-197-

2. 3. 1 Dataway-Operations

2.3.1.0 General

Prior to the use in a transfer operation some administra­

tive operations have to be carried out.

Each user-defined data-station must be connected with a

system-defined data-station. This operation is called

dataway-construction.

Furthermore the access to such a dataway has to be syn­

chronized.

dataway-operation::=

{
dataway-construction J
data:J.i)ay-synchronization

'daLaway-construction' will be detailed in section 2.3.1.1,

'dataway-synchronization' in section 2.3.1.2.

2.3.1.0/1

-198-

2.3.1.1 Construction of Dataways

In section 1.3.1.2.1 (SYSTEM-division) it has been explai­

ned, how system-defined data-stations are connected.

Now, within the PROBLEM-division each user-defined data­

station has to be connected to a system-defined data­

station before it can be used.

In Basic PEARL the construction of a dataway is a static

feature. It can only be done within the declaration of a

data-station (cf. section 1.3.1.0).

datazuay-construction::=

CREATED (dation-identifier[index1)

index::=

integer-in-brackets

'dation-identifier' is the name of a system-defined data­

station introduced in the system-division.

On constructing a dataway restrictions specified in the

implementation handbook have to be obeyed.

I.e. in this handbook one can find the attributes a user­

defined DATION may have, so that a connection to the system­

defined DATION is possible. These attributes are mapped upon

the system-defined DATION by an inner (i.e. system-defined)

interface.

user-defined DATION

inner interface

system-defined DATION

2.3.1.1/1

exarnple:

TAPE

SYSTEM;
• • •

-199-

TAPE: TPUyB ;

PROBLEM; . .
• • •
SPC TAPE DATION INOUT ALPHIC CONTROL (ALL);

DCL FILE1 DATION INOUT FIXED(10, 50)

FORWARD CONTROL (ALL)

•

CREATED (TAPE) ;

FILE1 ist created upon TPU~3,

which has been narned TAPE

A systern - interface rnaps the

attributes of FILE1 upon TAPE.

2 . 3 .1.1/2

-200-

2.3.1.2 Synchronization of Dataways

Before a DATION can be used in transfer-operations the

access rights rnust be arranged.

In Basic PEARL several tasks rnay access a DATION at the

sarne time. No task can reserve a DATION exclusively,

only shared access is possible.

Access to a DATION is guaranteed after the DATION has

been "opened". The opposite operation is "closing" a

DATION.

datauJay-synchronization::=

[

open-statement 1
cZ.ose-statement

/,, ta ·· .J.Jf,iff/ J /

Not every task acessing a DATION ~sue an 'open-state­

rnent' (or 'close-staternent', resp.) for
1
this DATION. But

at least one "opening" rnust have been done before access

to the DATION is possible.

open-statement: :=

OPEN dation-identifier (index)

[BY open-controZ.-Z.istJ

index: :=

integer-in-brackets

open-controZ.-Z.ist::=

[, • open-controZ. •• •J

2.3.1.2/1

-201-

'dation-identifier' denotes the DATION, that is to be

opened. (If it is a systern-defined data-station, specifi­

cation of an index is possible).

'open-control-list' contains open-controls, separated by

cornrnas. Sorne open-controls, which are cornrnon to all irnple­

rnentations of Basic PEARL have been explained in section

1.3.2.1.1.

Beyond that there rnay be other irnplernentation-dependent

open-controls. Their narnes and the sernantics can be found

in the irnplernentation handbook.

alose-statement: :=

GLOSE dation-identifier [indexJ

[BY alose-aontroZ-ZistJ

alose-aontrol-Zist::=

The 'close-staternent' indicates that the DATION denoted

by 'dation-identifier' is to be released again.

'close-control-list' rnay contain irnplernentation-dependent

inforrnation. Therefore 'close-controls' are not explained

in Basic PEARL, one rnay find thern in the irnplernentation

. handbooks .

The "opening" task need not be the one "closing" the

DATION.

(e.g.: TASK A opens DATION D,

TASK A, B and C access this DATION in I/O-operati ons,

TASK B closes DATION D).

2.3.1.2/2

-202-

But the number of open- and close-statements for one

DATION has to be in accordance to set the DATION free.

(One could imagine a counter for each DATION initialized by

zero. Each open-statement increments this counter by one,

each close-statement decrements the counter by one.

As long as the counter is positive, access to the DATION

is possible) .

example:

'
DCL TABLE DATION INOUT FIXED(60, 20) DIRECT

CONTROL (ALL) CREATED (DISK) ;

OPEN TABLE BY IDF ('TAB-1'), NEW;

(transfer-statements to or from TABLE)

CLOSE TABLE;

2.3.1.2/3

-203-

2.3.2 Transfer Operations

2.3.2.0 General

In section 2.3.1 operations on data-stations have been

described, that have to be executed before a transfer

takes place.

This section is to detail the actual transfer operations.

In Basic PEARL transfer operations are always carried out

between memory and a DATION.

If the DATION has one of the external attributes ALPHIC

or BASIC the PEARL•objects are transformed to (out of)

external representation. If the DATION has been declared

with 'trf-item-type' the PEARL-objects are transported

there and back in internal representation without any

conversion.

Due to the different methods of transporting objects and

the different directions there are several transfer opera­

tions.

transfer-operation::=

get-statement

put-statement

take-statement

send-statement

read-statement

wri te-statement

The following table shows the relationship between DAT I ON­

at tributes and transfer-operations.

2.3.2.0/1

-204-

�

INOUT

IN OUT s

ALPHIC GET PUT

BASIC TAKE SEND

trf-item-type READ WRITE

table 7: transfer-operations

A transfer operation is in general a compound operation

consisting of a sequence of "individual transfers".

The data-list is decomposed into transfer-items, which

are then contained in the d-channel of a DATION; the

c-list is decomposed, all the multipli.ers are evaluated.

The resulting sequence of controls is contained in the

c-channel.

An individual transfer may involve an element out of

the c-list and/or one of the data-list. The lists are

worked off in the following way:

an element of the c-list is considered: if it is a

matching control the next element of the data-list is

taken and matched (if possible; else a signal is raised);

if it is a non-matching control it is executed.

'If the data-list is exhausted before the c-list the latter

is worked off until the next matching control is found,

then the transfer is finished.

If the c-list is exhausted before the data-list the

c-list is worked off from the beginning again.

2.3.2.0/2

-205-

If the c-list is omitted in a transfer-operation the

data-list is worked off whereby formats are defaulted.

example: DCL A(S) FIXED;

DCL LPR DATION OUT ALPHIC (.* ,60,130)

FORWARD CONTROL(ALL);

PUT A(2:5) TO LPR BY X(3),

(2) ((2) F (7, 2) , SKIP) ;

Decomposing the lists results in the following:

decomposed data-list

+ „ ,._ -- -I ' ,'8' , --, , -

' 8' I \

,'81 I , (2 ' I (3) ' I ' 1 , . \ , ' I 1 I 1
1 I \ I 1 ' 1 1 \
1 1 ·a· ·e: :EfS ·e· ' 1 1 X (3) ' ' (7,2): 1\.F (7, 2 ! 1 SKIP :, (7,2)~
\ .

\ ,
\ " \ , ' ' „ - „ ' -- ~ t \. - -; '-~-'' "--'

decomposed c-list

fig. 7: individual transfers

(enclosed in dotted lines)

--, -„e,
I \
I 1

:8~ 1 ' 1 (7,2):
\ ,
'----'

In Basic PEARL on output the data-list may contain

'inv-or-var-objects':

inv-or-var-objeots::=

{, • symbo'l-or-oory.stant-or-sUoe • • • J

symbo'l-or-aonstant-or-s'lioe: :=

f oonstant-denotationl
L symbo'l-or-sUoe

2.3.2.0/3

I
I
I

'

,,-.,.
\

' 1

i'e~ 1 SKIP :
\ ,
' , "- ...

-206-

On input the data-list rnay not contain constants.

var-objects :: =

[, • symbo"l-or-siice ••• 1

symboli-:~~~~ce::=

1 {identifier (simp"le-integer-constant-denotati on

(: simp "le-integer-constant-denotation]) J

'syrnbol-or-slice' is to denote simple variables, cornpo­

nents of records, array-elernents or one-dirnensional slices.

symbo"l: :=

identifier expression-seven-pack

C. identifier]

[. BIT integer-in-brackets)

'expression-seven-pack' may contain one, two or three

' expression-seven'. The 'identifier' following '.' is to

denote components of records. The BIT-selector serves to

select bits out of a bit-string (i.e. objects declared

as BIT(n)).

examples for syrnbol:

A

B (L, 3)

S.M1

X(S) .R

BSTR.BIT(7)

examples for slice:

A (2:5)

F(3:8)

Syntax a nd sernantics of the transfer operations are

detailed i n the following sections.

2.3.2.0/4

-207-

2.3.2.1 PUT and GET

The 'put- (get-)statement' transfers PEARL-objects from

(to) memory to (from) a DATION formatting them to (from)

alphic symbols.

put-statement: :=

PUT {{inv-or-va!'-objects

TO dation-oden ti fier (index]

[BY c-list] j /

{ TO dation-identifier (index)

BY c-list JJ

'dation-identifier' must denote a DATIOn declared as

{

OUT]

IN OUT

ALPHIC

If 'inv-or-var-objects' is omitted, "BY c-list" must be

supplied and may only contain 'pos-control' (cf. section

1.3.2.1).

example: a printer can be positioned at the beginning

of the next page by ·

PUT TO PRINTER BY PAGE;

2 . 3 . 2 .1/1

-208-

get-statement::=

GET {{ var-objects

FROM dation-identifier Cindex]

[BY c-Ust]] /

{ FROM dation-identifier (index J
BY c-Ust Jj

'dation-identifier' must denote a DATION declared as

ALPHIC

If 'var-objects' is omitted, "BY c-list" must be supplied

and may only contain 'pos-control'.

In both statements the objects transferred must be compa­

tible with the controls listed in 'c-list'.

The controls in 'c-list' must be compatible with the

'access' of the DATION (cf. section 1.3.1.1.1).

If "BY c-list" is omitted implementation-dependent

conventions apply.

2.3.2.1/2 .

-209-

2.3.2.2 SEND and TAKE

The 'send- (take-)statement' transfers PEARL-objects

from (to) memory to (from) a DATION converting them to

basic symbols.

The objects transferred will in general be of the basic

types (mainly BIT). The will be formatted to (or from)

what a process-peripheral may recognize as a set of

logic levels (e.g.: lamp on-off, valve open-closed etc.).

send-statement::=

SEND ff inv-or-var-obj ects

TO dation-identifier (index)

[BY c-Zist] j /
{ TO dation-identifier [index]

BY c-Zist Jj

'dation-identifier' must denote a DATION declared

{

OUT }

IN OUT
BASIC

If 'inv-or-var-objects' is omitted, "BY c-list" must be

supplied and may only contain 'pos-control' (cf. section
1.3.2.1).

2.3.2.2/1

-210-

take-statement::=

TAKE ({ va:ro-objects

FROM dation-identifier Cindex J
CBY c-"list J J J

{FROM dation-identifier C index J
BY c-Ust JJ

'dation-identifier' must denote a DATION declared as

BASIC

If 'var-objects' is omitted, "BY c-list" must be supplied

and may only contain 'pos-control'.

example.s:

(1) DCL LAMPROW DATION OUT BASIC (8) FORWARD CONTROL (ALL);

DCL A BIT INITIAL ('1'B);

SEND A, 'O'B TO LAMPROW BY X(2), (2) B(1};

LAMPROW

(2) DCL STATUS BIT;
1

TAKE STATUS FROM SWITCH;

2.3.2.2/2

-211-

2.3.2.3 WRITE and READ

The 'write- (read-)statement' transports PEARL-objects

in internal representation frorn (to) rnernory. to (frorn)

a DATION without changing them. It is a rnere transport

without forrnatting or converting.

write-statement::=

WRITE {{inv-or-var-objects

TO dation-identifier C index J
[BY c-Zist] J /

{ TO dation-identifier C index J
BY c-Zist Jj

'dation-identifier' must denote a DATION declared

[
OUT J
IN OUT

trf-itern-type

'c-list' rnay only be used for positioning the DATION.

It rnust be supplied if 'inv-or-var-objects' is omitted.

read-statement::=

READ { { var-objects

FROM dation-identifier Cindex)

CBY c-Zist J J /

{FROM dation-identifier (indexl

BY c-Zist Jj

2. 3.2.3/1

-212-

'dation-identifier' must denote a DATION declared

trf-item...,.type

If 'var-objects' is omitted, "BY c-list" must be supplied

and may only contain 'pos-control' (cf. section 1.3.2.1).

The type of the PEARL-objects transferred must be compa­

tible with the type in 'trf-item-type'.

The 'pos-control' in 'c-list' must be compatible with

the dimension and access attribute given in the declara­

tion.

example:

DCL A DATION INOUT FLOAT (*) DIRECT CONTROL (ALL) ;

DCL F(10) FLOAT;

.
WRITE F(3:7) TO A;

•
READ FROM A BY X(-1);

READ F(7) FROM A;

2.3.2.3/2

-213-

2.4 Realtime Operations

2.4.0 General

Operations acting on the PEARL-objects event, synchronizer,

or task (which have been explained in 1.4) are called

"realtime operations".

realtime-statement::=

{

event-operation }

synchronize~operation

task-operati.on

Event-operations will be detailed in section 2.4.1 with

the exception of interrupt-reactions, which are included

in the section on task-operations (2.4.3).

In section 2.4.2 synchronization is explained, which in

Basic PEARL is restricted to explicit operations on the

object semaphore.

Section 2.4.3 deals with task-operations. Prior to the

activity-handling operations two general features of

task-operations are discussed: schedules and prioritites.

This section also contains the explanations for the

transitions in the state-diagram introduced in 1 . 4.3, and

the boundery conditions that have to be satisfied.

2.4.0/1

-214-

2.4.1 Event Operations

2.4.1.0 General

Basic PEARL of fers the following operations to control

objects of the type event, introduced in 1.4.1:

event-operation::=

{

interrupt-masking }
signal-stimulation

signal- reaction

Interrupt-masking enables the prograrruner to allow or to

inhibit the occurrence of an interrupt in his program by

using special statements. These statements are detailed

in section 2.4.1.1.

Similar explicit statements for masking signals are not

provided,since there is another way of realizing that by

specification of an empty signal-reaction (cf. section

2.4.1.3).

Mainly for testing and simulation of programs there is a

statement to stimulate signals - the induce-statement.

This is explained in section 2.4.2.2. (Note: There is no

way to stimulate interrupts in Basic PEARL).

Due to the fact that there are two types of events, two

dif f erent event-reactions can be specif ied.

2.4.1.0/1

-215-

Interrupt-reactions are explained in the section on task­

operations, since scheduling of task-operation is the only

possible way to react on the occurrence of an interrupt

(cf. section 2.4.3.0.1).

Signal-reactions are formulated as ON-blocks.

They are explained in section 2.4.1.3.

2.4.1.0/2

-216-

2.4.1.1 Interrupt Masking

Interrupt masking is based on two statements:

interrupt-masking::=

lenab 'le-statement]

disab'le-statement

After specification the state of an interrupt is imple­

mentation-dependent either "disabled" or "enabled".

"Disabled" means the interrupt cannot be recognized

at program-level but is prevented by the system.

"Enabled" means the interrupt can be recognized in the

program. Changing the state of an interrupt is achieved

by the 'enable-statement' and 'disable-statement'.

enab'le-statement : :=

ENABLE interrupt-identifier [integer-in-brackets]

So the execution of an enable-statement defines a point

of time, from which on an interrupt is recognized in the

program. From that very moment scheduled interrupt

reactions can take place.

The ENABLE-counterpart is the disable-statement.

disab'le-statement::=

DISABLE interrupt-identifier [integer-in-bracketsJ

It masks t he interrupt denoted by 'interrupt-identifier',

i.e. an occurrence of this interrupt is neglected on

program-level .

-217-

The following example shall illustrate interrupt-masking
for an implementation defaulting the initial-state to "disabled"

T: TASK;
1

'
SPC ALARM INTERRUPT;

1

1

ENABLE ALARM;

' DISABLE ALARM;

END;'

alarm neglected

occurrence of alarm is

possible

alarm neglected

2.4.1.1/2

-218-

2.4.1.2 Signal Stimulation

As already rnentioned in section 1.4.1.2 signals may be

stimulated either explicitly or implicitly.

Implicit stimulation can be seen as the 'normal' way for

the occurrence of a signal: the execution of a PEARL­

statement results in some special conditions (e.g. the

overflow-indicator has been set, EOF has been encountered ..),

and therefore a signal is raised.

This section deals with the explicit stimulation of

signals which is achieved by the induce-statement.

signal-stirrrulation::=

induee-statement

On execution of an induce-statement an occurrence of the

signal denoted by 'signal-identifier' is created.

induee-statement::=

INDUCE signal-identifier [integer-in-braekets]

This creation results in a procedure-call of the corres­

ponding ON-block or in a system reaction, if there is no

ON-block provided for this signal.

The induce-statement is mainly thought as a tool for the

programmer to test his ON-blocks without having to wait

for the occurrence of a signal.

2.4.1.2/1

-219-

2.4.1.3 Signal Reactions

Reactions on signals· can be prepared by the prograrnmer by

writing ON-blocks.

signaZ-reaction::=

ON {, • signaZ-identifier C integer-in-brackets J * „J :
C unZabeUed-statement J

'signal-identifier' (possibly with an index) must identify

a signal specified in the module containing the ON-block.

'unlabelled statement' denotes the reaction that is to be

executed as soon as the signal is raised. Any unlabelled

Basic PEARL statement is allowed except 'signal-reaction'.

(No recursion !)

If a reaction is to be valid for more than one signal one

may list all the signal-identifiers separated by commas.

(e.g. ON ALARM,ITR(3) ,OFL:

CALL TEST;)

The occurrence of any of the signals out of that list

leads to the execution of the provided reaction.

The execution of 'unlabelled statement' is performed similar

to a procedure call, i.e. the program stops as soon as

a signal is raised, performs the statements of the reaction,

and then continues at the point where it had been stopped.

(except the continuation has explicitly been formulated in a

different way within the reaction, e.g. by a goto-statement

or a terminate-statement) .

By omitting 'unlabelled statement' the progranuner can spe­

cify an empty reaction. When the signal is raised nothing is

done, the signal is ignored.

This is a way of "masking" a signal (cf. 2.4.1. 1 explicit

interrupt-masking by the 'disable-statement').

2.4.1.3/1

-220-

2.4.2 Synchronization

2.4.2.0 General

In a PEARL program different tasks can usually execute

their statements independently from each other. But some­

times a time-ordering for some statements in different

tasks is required. Th{s is called synchronization.

In section 1.4.2 special objects for synchronization

have been introduced, variables of the type 'semaphore'.

Execution of a task can be made dependent on the value

of a semaphore.

To inquire and modify this value two operations are

provided.

synchronizer-operation::=

{
request-statementl

reiease-statement

The request-statement decrements the value; it reserves

the semaphore for the requesting task, if possible.

The release statement increments the value, it sets the

semaphore free again, allowing new requests.

The semantics of these two statements will be detailed in

the following sections.

2.4.2.0/1

-221-

2.4.2.1 Request

A semaphore can be requested by the following statement:

request-statement::=

REQUEST semaphore-identifier

'semaphore-identifier' denotes a variable of the type

'SEMA'. The effect of the statement depends on the actual

value of the semaphore:

if it is greater than zer~ it is decremented by one.

The requesting task is allowed to continue its execution.

if it is zero,the task issuing the request-statement

is suspended until the value of the semaphore is

incremented by a release-statement frorn another task.

Then a further request can be granted.

The second case (the , unsuccessful request) can also be

shown in terms of th~ diagrarn in section 1.4.3.

If the value of the ~emaphore requested is zero, the task

is taken frorn the state 'runnable' to 'suspended', waiting

for a release-statement.

2.4.2.1/1

-222-

2.4.2.2 Release

The release of a sernaphore can be achieved by the

following staternent:

reiease-statement::=

RELEASE semaphore-identifier

The release-staternent incrernents the value of the sernaphore

denoted in the staternent by one.

This operation is always successfull.

Additionally it is checked if there is a task waiting for

a release of this sernaphore, i.e. whether a task is in

the state 'suspended' because of an unsuccessfull request­

staternent for this sernaphore. Of all the waiting tasks

the one with the highest priority can now issue its re­

quest again.

-223-

The following example demonstrates the explicit synchro­

nization between two tasks with the help of a semaphore.

Task A has to print the results computed in task B.

Task A

• DECLARE RESULT SEUA

GLOBAL PRESET(~);
1
1
1
1
1

REQUEST RESULT;

/~ wait for results

of task B t/

V
/* continue computations

and print results

of task B '*/
1

/*

/*

Task B

SPECIFY RESULT SEMA;

1

computation

of

results

end of

RELEASE

~/

1

1
1

computation * /

RESULT;

' 1

'

2.4.2.2/2

-224-

2.4.3 Task-Operations

2.4.3.0 General

In PEARL there are six kinds of operations of tasks:

task-operations::=

activate-statement

terminate-statement

suspend-statement

continue-statement

resWT1e-statement

prevent-statement

All these statements describe special operations on tasks,

or - more precisely - operations on one or more activities

of a task.

The statements will be explained with the help of the

virtual processor concept (introduced in section 1.4.3).

The diagram containing the states and transitions of tasks

(s. 1.4.3) will give the reader a rough impression of the

effect of the statements. It will also be helpful with the

explanation of the semantics.

Prior to the explanation of the statements two general

features of task-operations shall be discussed: schedules

and prioritites.

2.4.3.0/1

-225-

2.4.3.0.1 Schedules

Schedules are additional conditions that may be specified

with some task-operations.

These conditions have to be fulfilled before a state­

transi tion takes place.

A simple example shall illustrate this:

ACTIVATE T; This statement means that

· the activation of task T

shall take place imme­

diate ly.

AT 9:~:~ ACTIVATE T; With this statement task T

shall be activated too, but

there is an additional con­

dition, which states that

it shall happen at 9 o'clock.

In terms of the diagram in section 1.4.3 we can say:

a scheduled task-operation takes the task concerned by

that statement to the state 'scheduled' or 'suspended and

scheduled'. lt waits there until the condition of the

schedule is satisfied, then the task is transfered to the

state 'runnable' by system-action.

In Basic PEARL two kinds of schedules are provided:

time-dependent schedules

interrupt-controlled schedules

Time-dependent schedules permit the specification o f a

point of time, at which the task-operation is t o be exe­

cuted or an interval, which must pass bef o r e the operation

takes place.

2.4.3.0.1/1

-226-

The activate-statement may also be scheduled repetiti­

vely, i.e. you may specify a time-interval and a final

condition; then the statement is executed every time the

interval has passed and the final condition is not satis­

fied.

Interrupt-controlled schedules permit an execution of

a task-operation dependent on the occurrence of an

interrupt (cf. section 2.4.1.0).

schedu'le: :=

{
schedu'le-1}
schedu'le-2

'schedule-1' may be specified with the activate- and the

continue-statemen~ and must be specified with the resume­

statement.

schedu'le-1:: =

{

AT c'lock-expression-seven }
AFTER duration-expression-seven

WHEN interrupt-identifier [integer-in-brackets]

AT clock-expression-seven: this specifies a point of

time, at which the task­

operation is to be worked

Off.

e.g.: AT 9:~:~ ACTIVATE SORT;

2.4.3.0.1/2

-227-

AFTER duration-expression-seven: specifies a time-interval,

which has to pass before

the operation is executed.

e.g.: AFTER 30 MIN RESUME;

WHEN interrupt-identifier

[integer-in-brackets]

•

(a task stops its execution

for a period of 30 minutes,

then it is taken back to

the state 'runnable')

with the help of this sche­

dule interrupt-reactions

may be specified. As soon

as the interrupt occurs

the task-operation is exe­

cuted.

e.g.: WHEN ITR CONTINUE TA~1;

'interrupt-iden tifier' may

be the name of a s i ngle

interrupt or an interrupt­

array. If it is the name of

an array 'integer-in-brackets'

allows indexing .

Note: you may specify one interrupt

or a whole interrupt-array,

but no slices

(ITR(6:8) is illegal).

When 'interrupt - i d e ntifier'

denotes an arra~ the occurr e n c e

of one interrupt o u t o f tha t

array is enough to s atisfy

the condition .

2.4.3.0.1/3

-228-

e.g.: SPC ALARM(3) INTERRUPT;

WHEN ALARM ACTIVATE REACT;

This statement means: when

ALARM(1) or ALARM(2) or

ALARM(3) occurs the task

REACT shall be activated.

~chedule-2' may only be used with the activate-statement.

It permits scheduling a cyclic activation of a task.

scheduZe-2: :=

{
ALL }
EVERY

{

UNTIL

(DURING

du:ration-expression-seven

cZock-expression-seven }

du:ration-expression-seven]

ALL (or EVERY) duration-expression-seven specifies the

length of a time-interval. This in~erval starts at the

moment the schedule is worked off. At any time the interval

has passed the task-operation (activation) is executed.

(Remark: In Basic PEARL there is no differencQ between using

ALL or EVERY. It is implementation dependend, if

ALL or EVERY or both are supplied)

e. g. : ALL 2 MIN ACTIVATE LOOK;

l 2 MIN 2 MIN 2 MIN

~- -... t

ACTIVATE ACTIVATE

(\ denotes the activation)

2.4.3.0.1/4

-229-

The final condition can be denoted in two ways:

specifying a point Of time (UNTIL clock-expression­

seven) up to which the cyclic activation is executed.

e.g.: EVERY 2 HRS UNTIL 15:~:~ ACTIVATE SORT;

l 2 HRS

~

2 HRS

·~r" (

2 HRS

•

(final point
of time)

specifying an interval (DURING duration-expression­

seven) during which the cyclic activation takes place.

e.g.: ALL 15 MIN DURING 1 HRS ACTIVATE CONTR;

1 1 5 MIN ,,.._1_5.-M-IN-. 1 5 MIN ,-1-5-~M'-I-N-
~ i \ \ ~ t

1 HRS: specified interval

starting at the rnoment

the schedule is worked

off.

2.4.3.0.1/5

t

-230-

Note: Schedules for the same task and task-operation

replace each other in the sequence the schedules

are worked off. In other words task-operation can

be scheduled only once at a time for one task. If

there is a second scheduling of one operation for

one task before the first scheduled operation is

executed the second schedule replaces the first

one.

One case requires special care: since a resume­

statement acts like a scheduled continue-statement

(connected with a suspend-statement) the schedule

of a resume-statement replace the schedule of a

continue-statement of the same task and vice

versa.

example 1:

example 2:

AFTER 5 MIN CONTINUE MYTASK;

AT 1~:~:~ ACTIVATE MYTASK;

These two schedules rnay be valid at one time,

because different operations for one task are

scheduled.

WHEN ITR ACTIVATE TASK1;

ALL 5 MIN UNTIL 9:3~:~~ ACTIVATE TASK2;

These two schedules may also be valid at the

same time, because one operation has been

scheduled for different tasks.

2.4.3.0.1/6

-231-

example 3: AT 1~:~:~ ACTIVATE MYTASK;

WHEN ITR ACTIVATE MYTASK;

These two schedules may not be valid at one

time. Let us assume the first statement has

been worked off, MYTASK is scheduled to be

executed at 10 o'clock. If the second state­

ment is worked off before 10 o'clock (i.e.

before the activation is executed) the second

schedule 'WHEN ITR' replaces the first one.

MYTASK will only be activated if the interrupt

'ITR' occurs and not (no longer) at 10 o'clock.

example 4: if at 930 the two statements

AFTER 30 MIN RESUME; and

AT 9:45:~~ CONTINUE T~3;

are executed for task T~3 (in this sequence)

only the second schedule (AT 9:45:~~) will

remain valid, the first one is replaced.

2.4.3.0.1/7

-232-

2.4.3.0.2 Priorities

In section 1.4.3 a virtual processor concept has been intro­

duced. Each task has its own processor; one activity of

each task can be executed on this task-specific processor,

the othershave to wait until the first one is finished or

terminated.

All the virtual processors can do their work without regard

for the others (except explicit synchronization, cf. 2.4.2).

But in a real hardware configuration you will not have

as many processors as tasks, ruormally you will find just

one processor, the time of which is divided up among all

nmnable tasks by the operating system. For this distri-

bution of time the operating system uses certain criteria.

One of these isthe priority of a task.

The priority is a measure for the importance of a task, i.e.

it influences the time of execution.

(The time of execution is the period between the activation

of a task and the explicit or implicit termination).

lt is quantified with the aid of an integer nwnber, lower

values denoting greater importance.

priorit;y::=

{~~1 PRIO simpZe-integer-oonstan.t-denotation

In Basic PEARL priority can only be denoted with a

task-declaration (cf. section 1.4.3).

2.4.3.0.2/1

-233-

If the priority is omitted it is defaulted by a system­

dependent value.

example: T:TASK PRIO 7;

END;

R:TASK; .
1
1

END;

ACTIVATE T;

/* T is activated with priority 7 ~/

ACTIVATE R;

/* R is activated with a defaulted

priority ~/

2.4.3.0.2/2

-234-

2.4.3.1 Activate

The activate-statement takes a task to the state

'runnable' or 'scheduled'

activate-statement::=

[schedule]

ACTIVATE identifier

'identifier' raust be the name of a task.

An activate-statement without schedule irnmediately takes

the task to the state 'runnable' (i.e. a new activity of

this task is generated).

If this task has already been activated (once or several

times) this new activation (and the following) is (are)

buffered. In other words, the activity queues up for the

virtual processor. How often an activation can be buffered

is irnplementation dependent.

If no activity of this task exists (i.e. the task is

neither in the state 'runnable' nor 'suspended' nor

'suspended and scheduled') then this new activity immedia­

tely gets hold of the virtual processor.

So we can say, that by several activate-staternents for one

task several activities are created; the activity that has

been created first has occupied the virtual processor of

this task, all the others have to wait until the first one

is finished, then they are worked off sequentially.

A scheduled activation takes a task to the state 'scheduled'.

According to the rules for schedules (cf. section 2.4.3.0.1)

a n already existing schedule of an activation for this task

is de stroyed and replaced by the new one.

A scheduled activate-statement can be seen as planning the

creation of a future activity of the task in question.

2.4.3.1/1

-235-

examples for activations:

ACTIVATE ALARM;

The task 'alarm' is immediately

activated

AT 7:3~:~~ ACTIVATE GETDAT;

The task 'getdat' will start to
30 accept data at 7

ALL 2 HRS DURING 10 HRS ACTIVATE REPORT;

The task 'report' is to print

statistical results every two

hours from now on

An activate-statement always creates a new activity of a

task. Now the question arises how these activities can ex­

pire. Therefore PEARL provides three ways:

an activity can come to a "normal" end, if all statements

of the task have been executed and the end-statement is

reached. In the diagram one can see this as a dotted

line between the states 'runnable' and 'dormant' marked

with "ready".

the second way for an activity to expire is "more violent".

It can be killed (or kill itself) by a terminate-state.­

ment . This is described in the following section.

the third way is provided by the 'prevent-statement' which

is detailed in section 2.4.3.6.

2 .4.3.1/2

-236-

2.4.3.2 Terminate

As already mentioned in the previous section the termina­

te-statement is one way for an activity to expire. The

terminate-statement explicitly kills one activity. lt

is independent of whether the activity is running or

waiting.

In terms of the diagram one can say that the task is taken

either from the state 'runnable' or 'suspended' or

'suspendedand scheduled' back to the state 'dormant'.

terrrrinate-statement::=

TERMINATE identifier

A terminate-statement with an identifier kills an activity

of the task denoted by this identifier.

With the help of a terminate-statement without identifier

a task can finish its own execution.

A terminate-statement only affects the activity of a task

that has occupied the processor (i. e. the !'running" one).

All the other buffered activities and scheduled (future)

activities are not concerned.

examples: TERMINATE VALVE;

TERMINATE;

The execution of the task 'valve'

is immediately finished.

The running task finishes its own

execution and releases the processor.

2.4.3.2/1

-237-

2.4.3.3 Suspend

The suspend-statement produces the transition from the

state 'running' to the state 'suspended'.

suspend-statement::=

SUSPEND

This statement can only be executed for the own task.

The effect is a temporary stop of the execution, but in

opposition to the terminate-statement the execution of this

task can be continued at the point where it stopped. (This

has to be done with the aid of a continue-statement frorn

another task, cf. next section). The task is set waiting.

An activity of a task can only execute a suspend-statement

if it has occupied the virtual processor. Although it stops

its execution it keeps the virtual processor.

Since the processor is not released no other activity of

this task can start running (even if there are some in

the state 'runnable').

example: COMP:TASK;
•
•

IF BUFCNT = 0 THEN SUSPEND FIN;

The task 'cornp' stops its· own

execution after recognizing

that a buffer is ernpty (the

buffercounter is zero).

2.4.3.3/1

-238-

2.4.3.4 Continue

The continue-statement is the inverse operation to SUSPEND.

It takes a task from the state 'suspended' either back to

'runnable' or to the state 'scheduled'.

continue-st atement::=

[scheduZ.e-1]

CONTINUE identifier

A continue-statement without 'schedule-1' takes the task

denoted by 'identifier' irnrnediately back to the state

'runnable'. (The task can continue its execution without

waiting, since it did not release the virtual processor

when it was suspended).

By the additional specification of 'schedule-1' the task

is taken from the state 'suspended' to 'suspended and

scheduled'. Also during this transition the virtual

processor is not released.

The following conditions are admitted in the schedule:

- a point of time

- a time interval

- the occurrence of an interrupt

(no cyclic scheduling!)

After t he condition has been satisfied the task is taken

to t he state 'runnable' by system action.

2.4.3.4/1

-239-

Still having occupied the virtual processor the task can

continue its execution.

exarnple: PROD:TASK;

BUFCNT:= BUFCNT+3;

CONTINUE COMP;

The task 'prod' causes the

continuation of the task 'cornp'

after filling a buffer (and

increasing the buffercounter).

2.4.3.4/2

-240-

2.4.3.5 Resume

The resume-statement allows to delay a task in a definite

way. The task can stop its own execution but in the same

moment it plans its continuation.

So the resume statement can be seen as an indivisible

combination of a scheduled continuation and a suspend­

statement.

Syntactically it is denoted in the following way:

reswne-statement::=

schedule-1 RESUME

'schedule-1' ~ be specified. The same restrictions as

for the continue-statement have to be observed (no cyclic

scheduling allowed).

A task executing a resume-statement is taken from the

state 'runnable' to the state 'suspended and scheduled'.

It does not release its virtual processor. As soon as the

scheduled condition is satisfied (the delay-time has passed)

the task is taken back to the state 'runnable' by system­

action and continues its execution.

example: AFTER 2 MIN RESUME;

(A task delays its execution for

2 minutes)

WHEN ITR RESUME;

(A task stops its execution until

the interrupt ITR occurs)

2.4.3.5/1

-241-

2.4.3.6 Prevent

The prevent-statement is to prevent the execution of a

task, i.e. it invalidates the schedules for all opera­

tions of one task and it empties the queue of activities

built up by several unscheduled activate-statements (if

this queue exists).

Only an actually running activity (an activity having

occupied the processor) is not concerned by a prevent­

statement. (This one may be killed by a terminate-state­

ment, as detailed in section 2.4.3.2).

prevent-statement::=

PREVENT identifier

' i dentifier' denotes the name of the task that is tobe

prevented; if it is omitted the task executing the

prevent-statement .is concerned.

In the previous section the effect of scheduled task­

opera tions has been explained. We will now consider the

effect of a prevent-statement with respect to the diffe­

rent scheduled task-operations.

If the prevent-statement concerns a task for which an

activation has been scheduled, this task is taken back

from the state 'scheduled' to 'dorrnant'. The planned

creation will not take place.

If an activity is in the state 'suspended and scheduled'

(i.e. a continue has been scheduled or a resurne -state­

rnent has been executed) it is taken to the s ta t e

'suspended'. The schedule is invalidated, the activity

is set waiting.

2.4.3.6/1

exarnple:

-242-

At 9 o'clock the following scheduled activation

for the task EXAM has been executed:

ALL 2 HRS UNTIL 17:~:~ ACTIVATE EXAM;

The task has been executed at 11 o'clock, but

at 12 o'clock the statement

PREVENT EXAM;

is executed. This means, that the task EXAM

will not be executed at 1, 3 and 5 pro as

originally planned, because the scheduled

activations have been invalidated by a

prevent-statement at 12 o'clock.

2.4.3.6/2

A P P E N D I X

S SYNTAX LIST

C CROSS REFERENCE LIST

g
l7 ~
\ \f ~ 13 ~ ,1 ,, .v

'

''l ~
') \l ~ \'

t;' (0 J
;1S--b-

S Syntax List

The following pages comprise the complete syntax of

Basic PEARL.

Contrary to the notation in the Language Description

termi"nals are denoted enclosed in (double) quotes

(since no small letters were available).

examples: "TASK"
II • II

I

"F"

Not every production-rule contained in the Language

Description will be found in this syntax list, since

the former is more detailed to facilitate reading.

But~he content they are ~quivalent.

I'.,, '"" „~ ~

. . l • ..

1
?.
1
4
Cl
-:,
7
R

Q

10
11
l?
13

14

1 Cj

16
17
l~

19
20
?.1
2?.
?.3
24
?c;
26
?.7
2A
2Q
30
31
3?
33
34
35
36
37
3~
3Q
40
41

42
43
44
45
46
47
48
49
c; 0

51

RJl\IARY-f"IJr,IT

{::~::}

OCTAL-DIGIT

- 5/1 -

.. -.. -

: : =
11011 / 11111 / 11211 / 11311 / 11411 / 11511 / 11611 / 11711

nrr.:rr ::=

{
OCTAL-DIGYTJ
II .9 11

llQ II

~EXAnECI~Al-DIGIT ::=
Ol<3IT / 11 A11 / 11 R11 / 11 C11 I
11 0 11 I 11 F 11 I 11 F' 11

LETTER : : =
II A II / llA II / II C" / llf) II / II Eli
II(; II / II 1411 / III II / II , J II / 111(11

llMll / "Nii / llQ II / llp II / 11(,;l II

11 S II I 11r11 / 11 IJ II / II V II / II \lf 11

11y II / II 7- II

rnfNTJFJ~R ::=

[
{

LETTEP J •••
LFTTEP.

DIGIT

ONE-IOENTJFIER-OR-LIST ::=

/ llF II

/ llL II

/ llR II

/ II X II

{
JOENTIFIE'~
11 (11{ 11 , 11 • H>E r·JT I F I f P •••J11>11}

LAAEL-IDENTIFIER
IDENTIF'JEP.

.. -.. -

/
/
/
/

g

BASIC PEARL SYNTAX

52
53
54

55

56

57
SA
59

1:,0

1:,1
62
63

64

65

66
67

68
69

10

71
72
73
74

75
76

77
78

79

80

81
82
83

84

85

86
A7

88
89
90

91
92
93
94

95
96

97
98
99

100

101

102

103

- S/2 -

INTF.P.RUPT-IDENTJFIER

IDENTIFIER

SIGNAL-IDENTIFIER

IOfNTIFIER

. . -

. . -

SEMAPHORE-IDENTJFIER

IDfNTIFIER

TASK-IDFNTIFIER

JDENTIFIER

. . -

. . -

FORMAT-TOENTIFIER

IDENTIFIER

. . -

. . -

PROCEnURE-IDENTIFJER

IDENTIFIER

DATION-IDENTIFJER :::

I.DENTIFIER

. . -

. . -

. . -

. . -

. . -

. . -

CONSTANT-DENOTATION ::=

INTfGER-CONSTANT-OENOTATION

REAL-CONSTANT-OENOTATION

C�ARACTER-STRJNr,-coNSTANT-DENOTATION

RJT-STRING-CONSTANT-DENOTATION

CLOCK-CONSTANT-DfNOTAT 10�1

OURATION-CONSTANT-OENOTATION

INTEGEP-CONSTANT-DENOTATION :::

SJMPLE-INTEGER-CONSTANT-DENOTATION

[PRECISION l

BASIC PEARL SYNTAX

104
105
106
107
lOA
109
110
111
112
113
114
115
11 f,
117
11 FI
119
120
121
122
123
124
125
126
127
128
1 ?. 9
130
131
112
133
134
135
136
137
13~
139
140
141
142
143
144
1 4 5
146
147
l4A
149
150
151
152
153
154
155

- S/3 -

PRECISION ::=
INT~GER-IN-BRACKETS

INTEGER-IN-BRACKETS ::=
11 (11 SIMPLE-INTEGER-CONSTANT-DENOTATION 11

)
11

SJMPLE-INTEAER-CONSTANT-DENOTATJON

{
DIGIT••• }
AINARY-OJGIT ••• "A"

.. -.. -

REAL-CONSTANT-DENOTATION ::=
SI~PLE-REAL-CONSTANT-OfNOTATION C PRECISION l

SIMPLE-REAL-CONSTANT-OENOTATION .. -.. -

f
r : : : : : : : ~ J :: : :: D 1 G 1 T • • • } C EXPONENT-PART

DIGIT •• • EXPONfNT-PART

EXPONENT-PART ::=
11 E11 { (11 + 11 l/ 11 - 11 J (nr<HT l DIGIT

CHARACTER-STRING-CONSTANT-OENOTATION
11111 C STRING-CHARACTER ••• l 11111

STRING-C~ARACTER .. -.. -
LETTER / DIGIT /
II II / II+ II I 11-11 / II~ II I II /II /
II (tl / II) II / lt: II I II II I II t II / •
II 111 / 11:11 / II< II / II> II I 11, '" I
II (II I II) 11

.. -.. -

BASIC PEARL SYNTAX

lc;~

l c; 7
15.q
15Q
16 f}
l~l

l 6?.
163
l 64
165
166
167
l fiB
169
170
171
172
173
174
175
176
177
178
17Q
l.qo
181
182
183
1R4
lRS
1R6
187
18~

189
190
t<H
19?
1Q3
lQ4
195
196
197
198
199
2 0 0
2 0 1
2 02
203
204
205
206
207

- S/4 -

RIT-STPINA-CONSTANT-nf~nTATION .. -.. -
{"'"

11 t II

II t II

RINAPY-DIG!T ••• "'"
ncTAL-nIGIT ••• "'"
HEXADEC!MAL-nt~IT •• ~

{
11 A11 I "Al" j}

"83"
II' II "B4"

CLOCK-CONSTANT-OENOTATJON ::=
S!MPLE-tNTEr,Eq-coN~TANT-DENClTATION 11 : 11

s I MPLF.-1 NTJ:"~EQ-CONST ANT-DENOTA TI 0~1 II: II

{
S t~PLE-INTEGER-COMST AMT-DENOTAT ION J
~JMPLE-REAL-CONSTANT-DENOTATtON

DIJRAT l ON-CONSTANT-[)E~JOT AT I OM : : =

{

HOllQS C MJNUTES J (SECON[)S
~INUTES C SECONO~ J
SECONOS

HOIJRS : : =
ST MPLE'-1 NTF.GF.R-CON<:;T MH-DENOT AT I ()N 11 HRS"

MINlJTES ::=
s tMPLE-J NTEGF::q-cntJST ANT-DENOT AT 1 ON "MIN"

SECONOS ::=

{

SIMPLE'-I~TEGER-CONSTANT-OF:NOTATION}
"SEC"

SJ~PLE-RFAL-CONSTANT-nENOTATION

BASIC-PEARL-PROGRAM ::=
"400ULE •• •

MOOllLE : :=
1tMODULE" 11:11

{
SYSTEM-DIVISI<JN C PRORLD1-DIVISION l}
PROBLE"4-DIVISION

11 MOOF.N0 11 II: II

AASIC PEARL SYNTAX

208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
2?.A
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
2'52
253
254
255
256
257
258
259

- S/5 -

PROBLEM-DIVISION ::=
11 PRORLEM 11 11 ; 11

DECLARATIONS-AND-SPECIFICATIONS

DECLARATIONS-ANO-SPECIFICATIONS ::=
C { LENGTH-nECLARATION "P' , ••• l

PRECISION-DECLAPATION 't;"
C GLOBAL-SPECIFICATION 11

;
11 3•••

C <lLOAAL-OECLARATJON 11
;

11 3•
0

C R-FORMAT-OECLARATION 11
;

11
]

C PROCEDURE-DECLARAT ION "; 11 l •• „
[T ASK-DECLARAT ION II; II)" ...

PRECISION-DECLAQATION .. -.. -
11 LENGTH 11

{ "F' I XED"]
("F'LOAT"

PRFC l S ION

LE~GTH-OfCLARATION ::=
"LENG TH"

f ::~~!~„ 1
11 CHARACTER"

GLOBAL-SPF.CIFICATION .. -.. -

LF.:NGTH

{
"SPECIFY"J
11 SPC"

{ 11 ,11 • ONE-IDENTTFIER-OR-LIST GLOBAL-SPEC-ATTRIBUTES
c "GLOBAL II] • ,. J

GLOBAL-SPEC-ATTRIAUTES ::=
C 11 (11 C"t"l C11 t 11 l ">" l LOCAL-MODE
11 Sft.4A II
C "C" 11) 11 J DATJON-SPEC-ATTR
11 TASK"
JRPT-OR-SIGNAL-MODf
PROCEDURE-MODE C"RESIOENT"l C" REENT"J

' lt
BASIC PEARL SYNTAX

260
261
26?.
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
28Q
290
291
292
293
294
295
296
297
298
299
300
301
3 02
3 03
3 04
305
306
307
308
309
310
311

- S/6 -

LOCAL-MODE ::=
C"lNVu] f SIMPLE-MODE 1

STRUCTURE-MODE

LENG TH : : =
INTEGER-IN-ARACKETS

SJMPLE-MOOE :::
11 CLOCK"
"DUR" I "DURATION 11

{"BIT" 1
"CHAR" I "CHARACTEP"

LENGTH l

("FIXED" l
{ 11 FLOAT" J

C PRECISION l

STRUCTURE-MOOE :::
"STRUCT" f " [II I II (/II 1

{ "•" • C ONE-IDENTIFIER-OR-LIST l
SIMPLE-MODE ... }

{
11 l 11 I 11 /) 11 j

DATION-SPEC-ATTR ::=
11 DATION 11 0-CHANNEL-SPEC-ATTR

C "CONTROL" "<" "ALL" 11) 11 l

D-CHANNEL-SPEC-ATTR

f ::~~~„ J
11 INOUT"

.. -.. -

f
11 ALPHIC" J
11 BASIC 11

TRF-ITEM- TYPE
C DIM-SPEC C"TFU" C"MAX"l l

f "D IPECT" }
"FORWARD"
11 FORl3ACK 11

{
[

11 NOCYCL"lJ
11 CYCLIC 11

[C "STREM-1 11 l J
l "NOSTREAM11 l

BASIC PEARL SYNTAX

312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
3~7

32A
329
330
331
3 3 2
33 3
3 34
33c:;
336
3 37
3 38
33q
34 0
341
34 2
343
344
345
346
347
348
349
350
351
3c:; 2
353
354
355
356
357
35"
359
360
361
362
36 3

DIM-SPEC .. -.. -

- S/7 -

"<" C"•"l C"•"l ">"

IRPT- OR-SIGNAL-MOOE ::=
["<" „,„]

{
"INTERRUPT" J
11 IRPT"
"SIGNAL"

PROCEDURE-MODE ::=
11 ENTQY" [„ (" { II 9 II • PARAMf.TER-MODf ••• } II) II '

C RESULT-ÄTT~IHUTE l

PARA METER- MODE ::=

f("<" [" 9 "1 C"•"l ">" l LOCAL-MODE C "IDENT" J}
C "<" 11) 11 l OATTON-SPEC-ATTR "IDENT"

RESULT- ATTRIBUTE ::=
11 PETURNS" "<" SIMPLE-MODE ">"

GLOR.AL - OECLARATION ::=

f "DECLAPE" 1
"DCL"

{ "•" • OME - tDENT!FIER-OR - LIST
{ C BOUNO - L IST l

LOCAL-MODE C"RESIDENT"l C"GLORAL"l IN I TI AL
11 5Et-4A" C"RE~JOENT"l C"GLOBAL"l PRESETTI NG

OATJON-ATTP ["RfSIOfNT"l ["GLOBAL"]
OATAWAY-CONSTRUCTION J ~· j

BOIJNO-LIST ::=
"<" SIMPLE-INTEGER-CONSTANT-OENOTATION
C "•" SIMPLE-INTE<:;EP-CONSTANT-OENOTATION
C "•" SI~PLE-INTF:t;ER-CONSTANT-DENOTATI ON l] " >"

BASIC PEARL SYNTAX

364

365

366

367

368

36Q

370

371

372

3'73

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

38CJ

390

391

392

393

394

395

396

3c:n

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

- S/8 -

INITIAL : :=

["INIT"
11 (11 { 11 , 11

0 {C"• 11l/ 11 - 11JcoNsTANT-DENOTATION ar• J 11 > 11 l

PRESETTI"4G :::

C 11 PRESET"
II

(II
{

II, II � s IMPLE-INTEGER-CONST ANT-OENOTAT ION
„

j") II]

DATAWAY-CONSTRUCTIO� ::=
11CRE�TED"
11 <" OATION-tOENTIFIER C · INTEGER-IN-ARACKETS l ")"

DATION-ATTR ::=
1

10ATION 11 0-CHANNEL-ATTR
C "CONTROL" 11 (11 "ALL" ">" l

D-CHANNEL-ATTR ::=

DI�

f ::��;.. }
11INOUT" 1 "ALPH IC''

1 "BASIC"
TRF-ITEt�-TYPE

. . -

. . -

C Dit-4 C11TF'U" ("t--'AX"l l

{
"DIRECT"

} 11FORlriAR0 1
1

"F'ORflACK"
{ ["IIIOCYCL II l J"CYCLIC"

f C 1
1STREAM" l }"NOSTREAt-4 11 l

11 (11
1
1

01
1 / SIMPLE-INTEGF.'R•CONSTANT-DENOTATION

C "•" SIMPLE-INTEGER-CONSTANT-DENOTATION
C "•" SIMPLE-INTEGfR-CONSTANT-DENOTATION l l 11) 11

BASIC PEARL SYNTAX

416
4)7
418
4.19
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
1\37
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467

- S/9 -

TRF-ITEM-TYPE ::=

{
S·IMPLE-MODE 1
STRUCTURE-MODE

R-FORMAT-DECLARATtON ::=
FORMAT-IDENTIFIER 11:

11

11 FOR~1AT 11 II (11 STANDARD-C-LIST ")II

PROCEDURE-DECLARATION ::=
PROCEDURE-IDENTJFIER 11

:
11

I "PROCEDURE" J
11 PROC 11

["<" { 11 ,
110 0NE-IDENTIFIER-OR-LIST

PARAMETER-~ODE ••• J II) II]

C RESULT-ATTRIBUTE l
C"RESIDENT"l C"REENT"l C11 GLOBAL 11 l 11 i 11

BLOCK-TAIL

BLOCK-TAIL ::=
C LOCAL-IDENTIFIER-DECLARATION •t; 11 J ·••
C STATEMENT l •••
11END''

LOCAL-IDENTIFIER-OECLARATION :::

f "DECLARE" J
"DCL"

{"•" • ONE-IOENTJFIER-OR-LIST
[BOUND-LIST l LOCAL-MODE
INITIAL •·•}

TASK-DECLARATION ::=
TASK-IDENTIFIER II: 11-

"TASK" C PRIORITY l
C"RESIDENT"l C"GLOBAL"l 11

;
11

BLOCK-TAIL

STATEMENT ::=
C LABEL-IDENTIFIER 1':

11 1•••
C UNLABELLED-STATEMENT l 11;11

RASIC PEAQL SYNTAX

468
469
470
471
472
473
474
475
476
477
478
479
480
4Al
482
483
484
485
486
4A7
488
489
4qo
491
492
493
494
495
49f>
497
498
499
500
501
502
503
504
505
506
507
50A
509
510
5 11
512
51 3
51 4

-4515
"516
·s11
518
519

- S/10 -

UNLABELLED-STATEMENT ::=
ASSl6NMENT
REGIN-BLOCK
CALL-STATEMENT
RETURN-STATEMENT
TRF-OF-CT~L-STATEMENT
REAL TIME-STATEMENT
COMMUNICATION

ASSI6NMENT :::
SYMBOL f":="J EXPRESSION-SEVEN

"="

BEG IN-BLOCK .. -.. -
11 BEGIN" Cll RLOCK-TAIL

EXPRESSION-SEVEN-PACK ::=
"C" (11 ,

11
• EXPRESSJON-SEVEN ••• j 11) 11

EXPRESSJON-SEVEN ::=
C EXPRESSION-SEVEN PREC-7-0PERATOR l

EXPRESSION-SI X

EXPRESSION-SIX ::=
C EXPRESSTON-SIX PREC-6-0PERATOR l

EXPRESSION-FIVE

EXPRESSION-FIVE ::=
C EXPRESSION-FIVE PREC-5-0PERATOR l

EXPR.ESS ION-FOUR

EXPPESSION-FOUR ::=
C EXPRESSION-FOUR PREC-4-0PERATOR]

EXPRESSION-THREE

BASIC PEARL SYNTAX

520
521
522
523
524
525
526
527
52A
529
530
531
532
533
534
535
53f,
537
53R
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
5~4

555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571

- Sill -

EXPRESSION-THREE ::=
C EXPRESSION-THREE PREC-3-0PERATOR l

EXPRESSION-TWO

EXPRESSION-TWO ::=
C EXPRESSION-TWO PREC-2-0PERATOR l

EXPRESSION-ONE

EXPRESSION-ONE ::=

C PREC-1-0PERATOP. EXPRfSSION-ONE
{

{PRIMITIVE-EXPRESSION

MONADIC-OP~RATOR ~XPRESSION-ONE

PRIMITIVE-EXPRESSION ::=

{
SYMBOL-OP-CONSTANT 1
11 (11 EXPRESSION-SfVEN ">"

BIT-ONE-EXPRESSION-SEVEN
EXPRESSION-SEVEN

.. -.. -

CLOC~-EXPRESSION-SEVEN
EXPRESSION-SEVEN

.. -.. -

OURATION-EXPRESSION-SEVf.N ::=
EXPRESSION-SEVEN

INTEGER-EXPRESSJON-SEVF.N
EXPRESSION-SEVEN

PREC-7-0PERATOR

f ::~~~R" 1
.. -.. -

.. -.. -

BASIC PEARL SYNTAX

572
573
574
'575
576
577
57A
579
580
5-81
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
'614
615
616
617
618
6'19
f>20
62,1
622
623

- S/12 -

PREC-6-0PERAT-OR
"~ND"

.. -.. -

PREC-5-0PERATOR ::=
"==" I "EQ" I
"!=" I "NE"

PREC-4-0PERATOR ::=
"<" I "LT" I
">" I 11 GT 11 I
"<=" I "LE" I
">=" I "GE"

PREC-3-0PERATOR
"•" /
"-" /

.. -.. -

"<>" / "CSHIFT" /
"SHIFT"

PREC-2-0PERATOR
"*" I
"I" /

.. -.. -

"><" I "CAT" /
"II"

PREC-1-0PERATOR ::= „ •• „,
"UPB" /
"F'IT"

MONADIC-OPERATOR ::=
„.„ / "-" /
"NOT" / "ABS" /
"SIGN" I "ROUND" /
-t'TOF'IXED" I "TOFLOAT" /
"TOBIT" / "TOCHAR" I
11ENTIER 11

BASIC PEARL SYNTAX

624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675

- S/13 -

TRF-OF-CTRL-STATEMENT z:=

{

GOTO-STATEMENT }
CONDITIONAL-STATEMENT
CA SE-STATEMENT
REPEAT-STATEMENT

GOTO-STATEMENT ::=
"GOTO" LABEL-IDENTIFIER

CONDITIONAL-STATEMENT ::=
"IF" BIT-ONE-EXPRESSION-SEVEN

"THEN" STATEMENT • • •
("ELSE" STATEMENT „ • • l

"FIN"

CASE-STATEMENT ::=
11 CASE" INTEGER-EXPRESSION-SEVEN

{"ALT" STATf.MENT ·•• 1 ···
C "OUT" STATEMENT •. • J

11 FIN 11

REPEAT-STATEMENT ::=
C "FOR" IDENTIFIER l
C 11 FROM 11 INTEGER-EXPRESSION-SEVEN J
C "AY" INTEGER-EXPRESSION-SEVEN J
C "TO" INTEGER-EXPRESSION-SEVEN l
C "WHILE" BIT-ONE-EXPRESSION-SEVEN l
"REPEAT" C"J"l BLOCK-TAIL

CALL-STATEMENT ::=
"CALL" PROCEDURE-IOENTIFIER

C EXPRESSION-SEVEN-PACK l

RETURN-STATEMENT ::=
11RETURN 11 C 11 (11 EXPRESSJON-SEVEN ">" l \'1

BASIC PEARL SYNTAX

676
677
67A
679
680
&Al
6A2
683
6R4
685
6~6

6R7
68A
6A9
690
691
692
6Q3
694
695
696
697
698
699
700
701
702
703
704
705
706
707
70R
709
710
711
712
713
714
7 15
71 6
71 7
718
719
720
721
122
723
724
72~
726
727

- S/14 -

REALTIMF.-~TATEMF.NT ::=
FNABLE-STATEMENT
nrsAALE-STATEMENT
S!GNAL-REACTION
JNOUCE-5TATEMENT
SYNCHRON!ZER-OPF.RATION
TASK-OPF.RATION

SYNCHRONIZER-OPERATION ::=
f P.Ei~lJEST-STATEMENT J
l RELEASE-STATEMENT

TASK-OPERATION ::=
ACTIVATE-STATEMF.NT
TERMINATE-STATE~F.NT

SUSPEND-STATEMENT
CONTINUE-STATEMENT
RESUME-STATEME~T

PREVENT-STATEMENT

ENA8LE-STATEMENT ::=
11 ENABLE 11 INTERRUPT-IDfr'HIFIER C INTEGER-IN-BRACKETS l

DISABLF-STATEMENT ::=
11 DISABLE 11 JNTERRUPT-IOENTIF'IER C INTF.:GER-IN-BRACKETS l

INDUCE-STATF.:MENT ::=
11 IN01JCE 11 SJGNAL-IDENTIFIER C INTEGER-IN-BRACKETS l

SIGNAL-REACTION ::=
11 0N" { "•" • SIGNAL-If>ENTIFIER

C INTEGER-IN-BRACKETS
C UNLABELLED-STATF.MENT l

REQlJEST-5TA TEM ENT :::
11 REQllEST11 SEMAPHORF"-If>F.NTIF'IER

) ... 1 II• II .

BASIC PEARL SYNTAX

7?.A
729
730
731
732
733
734
735
716
737
73~
739
740
741
742
743
744
745
746
747
74A
749
750
751
752
753
754
7c;5
756
757
75A
759
760
7~1
7'f.i2
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
11'4
779

- 5/15 -

RF.Lf.ASE-STATEMENT ::=
11 RFLEASE 11 SEMAPHORE- I onJT I F' I EP

ACTIVATE-STATEMENT ::=
C SCHEOULE J
"ACTIVATE" TASK-IOF::NTIFIEP

TER~INATE-STATEMENT ::=
"TER~INATE" C TASl<-IDnJTIS:-JEP l

SUSPENO-STATEMENT
11 SUSPEND"

.. -.. -

CONTINUE-STATEMENT ::=
C SCl-IEOULF.:-1 J
11 CONTINUE" TASK-IDENTIFIER

RESllME-STATEMENT
SCHEDULE-1

.. -.. -
11 RESllME"

PREVENT-STATEMENT ::=
11 PRF.:VF.:NT" TASK-IOF.:NTIFIER

SCHEDULE ::=

f SCHEOULE-1 J
SCHEDlJLE-2

SCHEOULE-1 : : =

f
''AT" CLOCK-EXPRESSION-SEVEN
"AFTER" OlJRATION-EXPRESSJON-SEVf.N
"WHEN" INTERRUPT-IDENTIF'IER C INTEGER-IN-BRACKETS

-\
BASIC PEARL SYNTAX

780
781
782
781
784
785
786
787
7AS
i9q
1qo
791
792
7q3
794
7q5
796
7q7
798
799
800
801
802
803
804
805
806
807
80R
809
810
811
812
813
814
815
816
817
818
819
8 20
821
822
823
824
825
826
827
828
829
830
831

- S/16 -

SCHEDULE-2 : : =
{

"ALL
11 J

OURATION-EXPRESSION-SEVEN
"EVERY"

f
"UNTIL" CLOCK-EXPRESSJON-SEVEN J l

C "DURING" OURATION-EXPRESS!ON-SEVEN

PRIORtTY ::=

{
"PR!ORITY" 1

StMPLE-INTEGER-CONSTANT-OENOTATION
"PRIO"

COMMUNICATION ::=

{
OPEN-ST A TE~ENT J
CLOSE-STATEMENT
TRANSFER-OPERATION

OPEN-STATEMENT ::=
110PEN" DATION-IOENTIFIER C INDEX l

C "BY" OPEN-CONTROL-LIST l

OPEN-CONTROL-LIST ::=
{"'II • OPEN-CONTROL ••• 1

CLOSE-STATEMENT ::=
11 CLOSE" DATION-IOENTIFIER C INDEX J

C "8Y" CLOSE-CONTROL-LIST l

INDEX : :=
INTEGER-IN-BRACKETS

CL OSE-CONTROL-LIST ::=
{ " • " • CLOSE-CONTROL •··}

832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883

- S/17 -

CLOSE-CONTROL ::=
•••IMPLEMENTATION-OEPENDENT***

TRANSFER-OPERATION ::=
GET-STATEMENT
PUT-STATEMENT
TAKE-STATEMENT
SEND-STATEMENT
RE AD-STATEMENT
WRITE-STATEMENT

INPUT ::=
(VAR-OBJECTS 11 FROM 11 DATION-JOENTIFIER C INDEX l

C 11 BV" C-LIST l} I
f 11FROM 11 OATION-IDENTIFIER C INDEX l "BY" C-LIST}

OUTPUT ::=
{INV-OR-VAR-OBJECTS

11 T0 11 DATION-IDENTIFIER C INDEX l C "BY" C-LIST l}/
{"T0" OATION-IDENTIFIER C INDEX l 11 BY" C-LIST }

GET-STATEMENT ::=
11GET 11 INPUT

PUT-STATEMENT ::=
"PUT" OUTPUT

TAKE-STATEMENT ::=
"TAKE" INPUT

SEND-STATEMENT::=
11 SEND 11 OUTPUT

READ-STATEMENT ::=
11 READ" INPUT

\1

BASIC PEARL SYNTAX

884
8AS
886
887
88A
889
890
891
892
89~

894
895
896
897
898
899
900
901
902
903
904
905
906
907
90A
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
9 24
9 25
926
927
928
929
930
931
932
933
934
935

- S/18 -

WRITF.-STATEMENT ::=
"WRITE 11 OUTPUT

INV-OR-VAR-OBJECTS ::=
{ "•""SYMBOL-oq-coNSTANT-OR-SLICE ••• J

SYMBOL-OR-CONSTANT-OR-SLICE :::
[CONST ANT-nENOT AT ION }
l SYMBOL-OR-SLICE

SY~BOL-OR-CONSTANT ::=

f SYMBOL 1
CONSTANT-DENOTATJON

VAR-OBJECTS ::=
("• 11 .SYMBOL-OR-SLICE ·•• j

SYMROL-OR-SLICE ::=

{ Il)F.:NTIFIER "<" SJMPLE-INTEGER-CONSTANT-DENOTATION f
SYMBOL J

C "='' SIMPLE-INTfGER-CONSTANT-OENOTATION l ">"}

SYMROL ::=
JDENTIFIER C EXPRESSION-SEVEN-PACK l

C"•" IOENTIFIER l
C11 • 11 "BIT" INTEGER-1~-BRACKETS l

C-LIST ::=

f REMOTE-FOR~AT 1
STANDARD-C-LIST

RE~OTE-FORMAT ::=
"R" " <" FOPMAT-IOF.NTIFIER 11) 11

BASIC PEARL SYNTAX

936
937
938
939
940
941
942
943
944
945
946
947
94A
q49
950
9c:;1
952
953
954
955
956
957
958
95q
960
961
962
963
964
91)5
C>66
967
96A
969
970
971
972
973
974
975
976
977
978
979
9AO
9Al
9A7-
9A3
984
9~5

986
987

- S/19 -

STANOARD-C-LIST ::=
{ II' II • C-L IST-ELEMENT ••• J

C-LIST-f.LEMENT ::=

{
POS-CONTROL Z J

{

C ._,UL T

MULT

.. -.. -

J MATCHINr,-cONTROLj
"<" STANDARO-C-LJST "> 11

INTEGER-IN-RqACKETS

POS-CONTROL ::=

f ABS-POS-CTRL 1
REL-POS-CTRL

ABS-POS-CTRL :::

f"COL" 1 "<" SI~PLE-EXPR ">"
"LINE"
"POS" "<" SIMPLF'.-EXPR

C 11 , 11 SIMPLF-EXPR
C "•" SJMPLE-EXPR l J ">"

REL-POS-CTRL :::

f ::~;IP" J "<" SIMPLE-EXPR 11
)

11

"PAGE"
"ADV" "<" SIMPLE-f.XPR

C "•" SJMPLE-EXPR
C "•" SJMPLE-EXPR J J ">"

OPEN-CONTROL :::

1
"IDF" "<"
"OLD"
"NEW"
C 11 ANY 11 J

SYMBOL-OR-CONSTANT ">" }

BASIC PEARL SYNTAX

9AA
989
990
991
992
993
994
995
99f,
9•)7
99R
999

1000
1001
1002
1003
1004
1005
1006
1007
lOOR
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
l02A
1029
1030
1031
103?.
1033
1034
1035
1036
1037
l03A
1039

- S/20 -

~ATCHING-CONTROL ::=
{ {

11 A11
/ "R" / 11 A3" / 11 R4 11 }

[II (II SH~PLE-EXPP II) II] 1 /
f {"D" / 11 T11 J II (11 SJMPLF-EXPR

C 11
•

11 SIMPLE-EXPR l 11) 11) /

{ {"E 11
/

11 F11 1 II (11 SIMPLE-EXPP
C "•" Sl•1PLE-f. .XPR

"LIST"
C 11

,
11 SIMPLE-EXPR l J 11 > 11 } I

SI~PLE-EXPR ::=

{ {C 11
+

11
] /

11
-

11 J SIMPLE-INTEGER-CONSTANT-DENOTATION}
InF.:NTIFIE~

SYSTE~-DIVISION ::=
"SYSTE~" II;"

[CONNECT ION II; II J

CONNECTION :::
c < usER-0EvrcE-1DENTIFICATOR c ARRAY-RouNos 1 II= 11 r·· 1

[SYSTEM-üEVICE-IOENTJFICATOR
C I NDEX-OR-ARRAY-ROt tNOS l l

TRANSFER-DIRECTION

C f 11 + 11
• CONNECTION-POINT-DESCRIPTION ••• } l J

CONNECTION-POJNT-DESCRIPTION :::
SYSTEM-DEVICE-IDENTIFJCATOP C INDEX-OR-ARRAY-BOUNDS l

{
{SIMPLE-INTF.GER-CONSTANT-DENOTATION }

[11011 C , SJMPLE-INTEGER-CONSTANT-DENOTATION l} l
ARRAY-BOUNDS

USER-OEVICE-IDENTIFICATOR
IDENTIFIER

.. -.. -

SYSTEM-DEVICE-IDENTIFICArOR :::
IOf.NTIFIER

BASIC PEARL SYNTAX

1040
1041
1042
1043

1044
1045
1046
1047

1048
1049

1050
1051
1052
1053

1054
1055
1056
1057

1058

- S/21 -

TRANSFER-DIRECTION

{ ::::: .. } "->"

ARRAY-ROUNDS ::=

. . -. . -

11(11 SIMPLE-INTEGEP-CONSTANT-DENOTATION

": 1 1 SIMPLE-JNTEGER-CONSTANT-DENOTATION ")"

INDEX-OR-ARRAY-BOUNDS ::=
"C" SIMPLE-INTEGER-CONSTANT-DENOTATION

r "='' SIMPLE-INTEGER-CONSTANT-DENOTATION) ")"

/0

AASIC PEARL SYNTAX

. f

C Cross Ref erence List

The f ollowing Cross Reference List contains all non­

terminals of the Basic PEARL Syntax in alphabetical order.

With each non-terminal the line of its production

rule is given and a list of lines, where it is used in

rule bodies.

non-terminal

xxxxx~
nnnn nnnn nnnn

nnnn nnnn

•

used

introduced
in line #

nnnn

in line *

- C/l -

AßS-PnS-CTRL
960 955

ACT!VATE-STATfMENT
733 693

ARRAY-SOUNDS
1047 1013 1027

ASS!GNMENT
479 469

BAS!C-PEARL-PROGRAM
195 1\10 REF

BEGIN-BLOCt<
4A5 470

BINARY-DI<;IT
l 116 157

BIT-ONE-EXPRESS!ON-SF.VEN
545 b3A 65R

BIT-STRING-CONSTANT-DENOTAT!ON
156 91

BLOCK-TAIL
440 436 460 486 659

BOIJNn-L IST
355 347 451

C-LIST
925 849 850 856 857

C-LIST-ELEMENT
941 937

CALL-STATF:MENT
6fi3 471

CA<;F.-STATEMENT
645 627

CHAqACTER-STRING-CONSTANT-DENOTATIDN
1~9 90

CROSS REFERENCE LIST

- C/2 -

CLOr.K-CONSTANT-DENOTATION
1~3 92

CLOCK-EXPRESSION-SEVEN
5 5 0 772 784

CLOSE-CONTROL
832 827

CLOSE-CONTROL-LIST
826 817

CLOSE-STATEMENT
A15 799

COMMIJNICATION
797 475

CONO!TIONAL-STATEMENT
637 f,26

CONNECTION
1012 1008

CON~ECTION-POINT-DESCRJPTION

1023 1019

CONSTANT-DENOTATION
A7 366 895 902

CONTI Nl1E-STATF't.1F.'NT
74 9 696

0-CHANNEL-ATTR
3A8 383

D-CHA NN EL-SPEC-ATTR
295 290

DATAWAY-CONSTRUCTION
37f, 351

DATION-ATTR
38~ 350

OATJON-IOENTIFIER
B~ 37 8 805 816 848 850 856 857

CROSS REFERENCE LIST

- C/3 -

DATION-SPEC-ATTR
289 25? 334

DECLARATIONS-AND-SPECIFICATIONS
214 210

DIGIT
12 20 37 115 126 126 128 130 135

135 145

DI'-1
406 395

OIM-SPEC
312 302

DISARLE-STATEMENT
707 678

OURATION-CONSTANT-OENOTATION
171 93

DURATION-EXPRESSION-SEVEN
555 773 782 786

ENAALE-STATEMENT
70?. 677

EXPONENT-PART
134 127 130

EXPRESSION-FIVE
507 503 508

EXPRESSION-FOUR
513 509 514

EXPRESSION-ONE
532 528 534 535

EXPRESSION-SEVEN
495 480 491 496 541 546 55 1 556 561

670

EXPRESSION-SEVEN-PACK
490 665 919

CROSS REFERENCE LIST

- C/4 -

EXPRESSION-SIX
501 497 502

EXPRESSION-THREE
520 515 521

EXPRESSION-TWO
526 522 527

FORMAT-IDENTIFIER
72 932

GET-STATEMENT
861 838

GLOBAL-DECLARATJON
343 219

GLOBAL-SPEC-ATTRIBUTES
249 244

GLOBAL-SPECJFICATION
241 218

GOTO-STATEMENT
632 625

HEXADECIMAL-DIGIT
19 159

HOURS
178 172

I DENT JFIER
34 42 43 48 53 58 63 68 73

78 83 654 913 919 920 1002 1032
1037

IN OE X
821 805 816 848 850 856 857

INDEX•OR-ARRAY-BOUNDS
1053 1015 1024

INDUCE·STATEME NT
712 68 0

CROSS REFERENCE LIST

- C/5 -

INITIAL
364 348 452

INPUT
847 862 872 882

INTEGER-CONSTANT-DENOTATION
97 88

INTEGER-EXPRESSION-SEVEN
560 646 655 656 657

INTEGER-IN-BRACKETS 713 719 774
109 105 267~ 378 703 708

822 921 950

INTERRUPT-IOENTIFIER
52 703 70A 774

INV-OR-VAR-OBJECTS
8A9 855

IRPT-OR-SIGNAL-MODE
317 254

LABEL-IOENTIFIER
47 465 633

LENG TH
266 236 274

LENGTH-DECLARATION
233 215

LETTER
25 35 36 145

LOCAL-IDENTIFIER-DECLARATION
447 441

LOCAL-MODE
260 250 333 348 ~51

MATCHING-CONTROL
988 944

MINUTES
183 172 173

CROSS REFERENCE LIST

- C/6 -

MOnULE
200 196

MONAOIC-OPERATOR
614 535

MULT
949 943 945

OCTAL-DI(HT
'7 13 158

ONE-IOENTIFIER-OR-LIST
41 244 283 346 432 450

OPF.:N-CONTROL
980 811

OPEN-CONTROL-LIST
810 806

OPEN-STATEMENT
804 798

OUTPUT
854 867 877 885

PARAMETER-MODE
332 327 433

POS-CONTROL
954 942

PREC-1-0PERATOR
607 534

PREC-2-0PERATOR
599 527

PREC-3•0PERATOR
S91 521

PREC•4•0PERATOR
583 514

PREC-5-0PEIU TOR
577 508

CROSS REFERENCE LIS1

- C/7 -

PREC-6-0PERATOR
572 502

PREC-7-0PERATOR
565 496

PRECISION
104 99 121 ?.28 276

PRECISION-DECLARATION
226 217

PRESETTINt;
370 349

PREVF.NT-STATEMENT
760 698

PRIMITIVE-EXPRESSION
539 533

PRIORITY
790 458

PROBLEM-DIVISION
208 202 203

PROCEOURE-DECLARATION
428 221

PROCEOURE-JOENTIFIER
11 429 664

PROCEDURE-... ODE.
325 255

PUT-STATEMENT
866 839

R-FOPMAT-DECLARATION
422 220

RE AD-STATEMENT
8Al 842

REAL-CONSTANT-DENOTATION
120 89

CROSS REFERENCE LIST

- C/8 -

REAL TIME-STATEMENT
676 474

REL-POS-CTRL
970 956

RELEASE-STATEMENT
728 688

REMOTE-FORMAT
931 926

REPEAT-STATE~ENT
653 628

REQUEST-STATEMENT
724 687

RESULT-ATTRIBUTE
338 328 434

RESUME-STATE~ENT
755 697

RETURN-STATEMENT
669 472

SCHEOULE
765 734

SCHEDULE-1
771 750 756 . 766

SCHEDULE-2
780 767

SECONDS
188 172 173 174

SE~APHORE-IDENTIFIER
62 725 72Q

SEND-STATEMENT
876 841

SIGNAL-IDENTIFIER
57 713 718

CROSS REFERENCE LIS '

- C/9 -

SIGNAL-REACTION
717 679

SIMPLE-EXPR
1000 962 964 965

990 991 992

SIMPLE-INTEGER-CONSTANT-DENOTATION
166 114

SIMPLE-MOOE
271

98
407

1026

261

110
408

1048

284

SIMPLE-REAL-CONSTANT-DENOTATION
125 121 167

STANOARD-C-LIST
9 36 424 927

STATFMENT
464 442 639

STRIN\,-CHARACTfR
144 140

STRllCTURE-MODE
2Al 262 418

SUSPf.ND-STATEMENT
744 695

SYM80L
Ql~ 480 901

SYMqOL-OR-CONSTANT
900 540 981

SYMAOL-OR-CONSTANT-OR-SLICE
894 890

SYMBOL-OR-SLICE
911 896 907

SYNCHRONIZER-OPERATION
686 6Rl

409
1049

339

191

945

640

912

966 972 974 975 976

993 994 995

189 356 357 358 372

792 913 914 1001 1025

1054 1055

417

647 648

CROSS REFERENCE LIST

- C/10 -

SYSTEM-OEVTCE-IOENTIFICATOR
103~ 1014 1024

SY~TEM-DTVISION
1006 202

TAKE-STATEMENT
871 A40

TASK-DECLARATION
456 222

TASK-TDENTIFIER
'6 7 457 735 740 751 761

TASK-OPERATION
692 6A2

TERMINATE-STATEMENT
739 694

TRANSFER-OJRECTJON
1040 1017

TRANSFER-OPERATION
A37 AOO

TRF-JTEM-TYPE
416 301 394

TRF-OF-CTRL-STATEMfNT
6 2 4 473

UNL ARELLF.0-STATEMENT
468 466 720

USER-OEV ICE-IOENTIFICATOR
1031 1013

VAR-OAJECTS
906 848

WRJTE-STATEMENT
8A4 A43

CROSS REFERENCE LIST

