
cbe

Vorname Nachname et al. (Hrsg.): Konferenztitel,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 1

Partial Reload of Incrementally Updated Tables in Analytic
Database Accelerators

Knut Stolze1, Felix Beier1, Jens Müller1

Keywords: accelerator, data synchronization, replication, mvcc

Abstract:

The IBM Db2 Analytics Accelerator (IDAA) is a state-of-the art hybrid database system that seamlessly
extends the strong transactional capabilities of Db2 for z/OS (Db2z) with very fast column-store
processing in Db2 Database for Linux, Unix, and Windows. IDAA maintains a copy of the data from
Db2z in its backend database. The data can be synchronized in batch with a granularity of table
partitions, or incrementally using replication technology for individual rows.

In this paper we present the enablement of combining the batch loading of a true subset of a table’s
partitions for replicated tables. The primary goal for such an integration is to ensure data consistency.
A specific challenge is that no duplicated rows stemming from the two data transfer paths come into
existence. We present a robust and yet simple approach that is based on IDAA’s implementation of
multi-version concurrency control.

1 Introduction

The IBM® Db2® Analytics Accelerator for z/OS (IDAA, cf. Fig. 1) [Pa15] is an extension
for IBM’s® Db2® for z/OS® database system (Db2z) [IB18]. Its primary objective is the
extremely fast execution of complex, analytical queries on a snapshot of the data copied
from Db2z. Many customer installations have proven that the combination of Db2z with a
seamlessly integrated IDAA delivers an environment where both, transactional workload and
analytical queries, are supported without negatively impacting existing and new applications.
In fact, many new use cases and applications have been developed specifically because of
the existence of IDAA and the performance it delivers on core business data. The achieved
query acceleration for analytical workloads is at least an order of magnitude, often even
exceeding that.

After the initial version of IDAA became available in 2011, functional enhancements were
continuously added to expand the product’s scope. Fine-granular data synchronization
mechanisms, like partial reload and incremental update, were among the first enhancements.
1 IBM Germany Research & Development GmbH, {stolze, febe, jens.mueller}@de.ibm.com

cba doi:10.18420/btw2019-27

T. Grust et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2019),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 453

2 Knut Stolze, Felix Beier, Jens Müller

Db2 for z/OS

Client
Application

TXN
Log

Optimizer

Admin Stored
Procedures

Database
Runtime

UNLOAD
Utility

Log Reader

Accelerator
Services

Db2
Warehouse
(Db2 LUW)

Accelerator
Server

Batch Load

Incremental
Update

Query
Execution

Optimizer

Database
Runtime

SQL
Db2 LUW dialect

SQL
Db2 z/OS dialect

SQL
Db2 LUW dialect

Parallel
Unload Streams

Change Records

INSERT /
UPDATE /
DELETE

Bulk INSERT

CALL Admin
Stored Procedure

Fig. 1: System Overview of the IBM Db2 Analytics Accelerator for z/OS (IDAA)

Partial reload allows batch reloading of a subset of the table on a granularity of horizontal
partitions. A table can be partitioned either by-range or by-growth. Contrary to that,
incremental update operates on individual rows. It reads the transaction log of Db2 to detect
data changes and replicates those to IDAA’s backend database system.

Starting with IDAA Version 6, a strategic business decision heavily influenced IDAA and
basically led to a new product: the backend database system changed to IBM Db2 Database2
(for Linux, UNIX, Windows platforms) [IB16]. Db2 LUW does not provide multi-version
concurrency control (MVCC) and snapshot semantics as Netezza [Fr11] did. In this paper,
we present our work to implement MVCC on top of Db2 LUW. We developed a mechanism
to allow Incremental Update to operate most efficiently, while allowing partial reload on
such tables as well. The interaction of both data synchronization processes posed several
challenges, and the solution to them is explained.

The remainder of the paper is structured as follows. The architecture of the IBM Db2
Analytics Accelerator is briefly touched on in section 2, including the simulation of MVCC
in that environment. IBM’s Change Data Capture (CDC) [Be12] is being employed as
replication technology to detect and extract data changes in Db2z and apply them to IDAA’s
backend database. Section 3 outlines how CDC deals with IDAA’s MVCC setup. How we
bring CDC and partial reload together is explained in section 4. Finally, the paper concludes
with a summary in section 5.

2 IBM Db2 Database for Linux, UNIX, and Windows is called Db2 LUW henceforth.

454 Knut Stolze, Felix Beier, Jens Müller

IDAA Partial Reload with Incremental Update 3

2 IBM Db2 Analytics Accelerator

The IBM Db2 Analytics Accelerator (IDAA) [Pa15] is a hybrid system, which uses Db2®

for z/OS® [IB18] for transactional workload with excellent performance characteristics,
proven time and again in many customer scenarios. A copy of the Db2z data resides in the
accelerator, which deals with analytical workload in an extremely high-performing way.

The benefits of this system are a reduced complexity of the necessary IT infrastructure on
customer sites for executing both types of workloads and its tight integration into the existing
Db2z system, which results in overall cost reductions for customers. A single system is used
and not a whole zoo of heterogenous platforms needs to be operated and maintained.3 Aside
from the system management aspects, existing investments into a business’ applications is
protected, which is crucial for companies of a certain size. With IDAA, existing applications
can continue to use Db2z unchanged. At the same time, the analytics capabilities of IDAA
can be exploited without any (or just with minuscule) changes.

IDAA provides the data storage and SQL processing capabilities for large amounts of
data. Fig. 1 already showed the high-level architecture. Key is the seamless integration of
all components with Db2z to leverage the appliance as analytical backend. Db2z is the
central entry point for queries and administrative functions. Its optimizer decides whether
to execute queries locally in Db2z – or to route them to the accelerator. In the second case,
a new SQL statement in the dialect of Db2 LUW will be generated by Db2z and sent to
the Accelerator Server, which passes it on to Db2 LUW for execution. Db2 LUW itself
optimizes the statement and executes it on its own copy of the data. The copy is created (and
maintained) by the admin stored procedures (running in Db2z) that are provided as part of
the IDAA solution. Thus, the interface for customers to work with IDAA is Db2z only.

2.1 Data Replication Strategies

IDAA offers three options for refreshing the data that has been shadow-copied from Db2z.
Entire tables or individual table partitions can be refreshed in the accelerator batch-wise.
The latter is called partial reload. Fig. 2 and 3 illustrate both batch-loading scenarios
conceptually. The Db2z table is on the left side, and the IDAA table on the right. The sketch
above the arrow shows which pieces of the Db2z table are copied to the IDAA table.

For tables having a higher update frequency and where a high data concurrency is desired,
the Incremental Update feature (cf. Fig. 4) is suitable. This feature uses IBM® InfoSphere®

Change Data Capture (CDC) [IB13a, Be12], which reads Db2z transaction logs and extracts
all changes to accelerated Db2z tables. Unlike the batch-load strategies, CDC replicates
only changed rows while unchanged data is not affected. A draw-back is the dependency

3 Other systems like [KN11] may also provide an integrated solution. However, customers have made significant
investments over the past decades into Db2z and applications on top of it. That’s why IDAA has been developed
as an enhancement of that platform right from the start.

Partial Reload of Incrementally Updated Tables in Analytic Database Accelerators 455

4 Knut Stolze, Felix Beier, Jens Müller

...Col BCol A
...Col BCol A

full table refresh

...Col BCol A

Fig. 2: Full Table Reload

partition update

...Col BCol A

May
May
April
April
March
March
March
February
January
January

...Col BCol A

Fig. 3: Partial Reload

on the transaction log: any data maintenance operation that bypasses the log cannot be
replicated. For example, batch-loading data into Db2z is often done using the LOAD utility,
which does not log.

incremental
update

...Col BCol A...Col BCol A
...Col BCol A

Fig. 4: Refreshing Table Data with Incremental Update

The batch-load strategies into IDAA offer great throughputs but require to copy large
data volumes and, hence, are high-latency operations. The incremental update strategy
replicates lower data volumes with larger overheads per tuple, but with low latency. It is
the responsibility of the database user/administrator to trigger the refresh of the data in
each accelerator or to set up incremental update where appropriate [IB13b]. Since many
customers have tens of thousands of tables in Db2z and also in IDAA, it is important to
understand query access patterns to the individual tables and analyzing the accelerated
workload with the help of monitoring tools.

2.2 Simulating Multi-Version Concurrency Control using Views

Multi-version concurrency control (MVCC) [WV02] is a well-known means in database
systems to enable highly parallel data access for read-only and read/write operations. The
basic idea is to not apply data modifications in-place but rather to create a new version of
the row on every such modification. The old row versions are still available for concurrently
running transactions. The following Fig. 5 illustrates the physical storage of such rows. The
arrows indicate the chain of versions that is created for a sample Row 1.

Each INSERT operation produces a new row, of course. But also each UPDATE effectively
produces a new version of the row. The prior existing row remains, but it is marked as
logically deleted. Likewise, DELETE operations only mark a row as logically deleted, but
the row remains in existence.

456 Knut Stolze, Felix Beier, Jens Müller

IDAA Partial Reload with Incremental Update 5

Fig. 5: Example for MVCC storage of rows

A key element of this approach is to determine which versions of the rows shall be visible
to data access operations to provide consistent snapshots. For example, a query may access
the table with the (physical) rows shown in Fig. 5. If the query (or rather its transaction)
was started before any of the updates took place, it should see Row 1 in Version 1 – but not
any other version of that row, which may have been created by concurrently running data
modifications. Likewise, if the query starts after the 2nd update of Row 1, it should see that
row in Version 3, but not any of the prior existing versions.

IDAA’s Db2 LUW backend database system does not provide MVCC out of the box.
Using SQL transactions to apply all data changes atomically is also not an option, due
to limitations on the available transaction log space and lock contention that can occur.
(Those are traditional issues with long-running transactions in database systems.) IDAA
uses views to define data visibility and, thus, simulates MVCC. That permits small, arbitrary
transactions to populate data in the backend and even committing the changes in between.
All data ingested into the target table in IDAA via LOAD processing will be versioned
along the way. Data visibility is not handled on individual rows but rather per partition. An
artificial column (named mapped partition ID or backend partition ID) is added to the table
in IDAA’s backend to store the mapped value for a Db2z partition.

Fig. 6: Mapping of Db2z-side partitions to IDAA table

Partial Reload of Incrementally Updated Tables in Analytic Database Accelerators 457

6 Knut Stolze, Felix Beier, Jens Müller

The view definition will use a simple predicate to ensure correct data visibility. The
generalized pattern for the predicate is the following. The NOT IN predicate is only added
if there are actually any invisible partitions.

mappedPartitionId <= maximum-mapped-id-of-all-visible-partitions AND

mappedPartitionId NOT IN (list-of-mapped-ids-of-invisible-partitions)

For our specific example in Fig. 6, the predicate becomes:

mappedPartitionId <= 100004 AND mappedPartitionId NOT IN (100001)

All LOAD operations are serialized on a table, which means that no concurrent LOADs
can happen and potentially interfere. The values used for the mappedPartitionId column
in the target table start at 100,000 and are monotonously growing. Thus, any rows that a
later LOAD operation inserts into the table will automatically be invisible, whether those
rows are committed already in the backend database or not. Once the LOAD operation
finishes, it changes the predicates in the view definition, sets the new value for the maximum
mapped partition ID, and updates the list of invisible partitions IDs. Fig. 7 visualizes
this. Subsequent SQL statements, like queries, will pick up the new view definition while
currently running SQL statements continue to use the view definition as it was in effect
when the SQL statement started its execution.

Fig. 7: View Update for Partial Reload Fig. 8: View Update for Full Reload

Changing the definition of a view is an atomic and fast operation. Furthermore, view
resolution takes place during the compilation of SQL statements. The compiled SQL
statement remains unchanged during its execution – even if the view definition changes
concurrently. Thus, stable and consistent results for the SQL statement are guaranteed.

Db2 LUW keeps track of which currently running SQL statements are using which version
of the view definition. Due to that, it is possible to determine whether a specific version of
the view definition is no longer in use. Once an old version of a view definition is no longer
used, those invisible rows will not be accessed henceforth and can be physically purged
from the table. In IDAA, this purging is implemented in asynchronous reorganization jobs
that periodically check view usage and drop outdated data using a DELETE statement.

458 Knut Stolze, Felix Beier, Jens Müller

IDAA Partial Reload with Incremental Update 7

A special case occurs if all partitions of a table are to be reloaded. In such a full table
reload, it is possible to create a new target table into which all rows are copied, and the
view definition is changed to refer to that new table (cf. Fig. 8). This optimization drastically
simplifies the physical cleanup of old data, because a DROP TABLE statement is sufficient.

3 Replication

CDC, the replication technology for IDAA’s Incremental Update feature, is not aware of the
mapping of the Db2z-side partition ID as described in Sec. 2.2. It would have been possible
to extend CDC to perform that mapping, but that raises 2 major concerns: synchronization
and performance.

Whenever a LOAD operation in IDAA happens, this mapping has to be updated. CDC
has to be aware of the new mapping, and it has to be aware of it at the right point in time.
Replication runs asynchronously, but changing the mapping has to happen synchronously.
While this can be solved with well-known techniques, implementing them reliably and
robustly requires a significant effort.

Such a synchronization of the partition ID mapping indirectly causes heavy performance
impacts for the replication itself. A lookup via that map would have to occur for each row
being replicated. Achieving throughput rates that can keep up with transactional workload
occurring on Db2z-side is virtually impossible with such a bottleneck.

IDAA’s Incremental Update takes a different route: No mapping of the partition ID occurs.
Instead, all replicated rows get the Db2z-side partition ID assigned. Those partition IDs
are in the range of 0 to 4096, which is lower than the starting value for mapped partition
IDs. Due to the filtering predicate in the view definition (mappedPartitionID <= x) new
replicated rows will be immediately visible once the Db2 LUW update transaction commits,
which also physically deletes any old rows right away. Extending the example from Fig. 6 to
include rows produced by replication in the target table leads to the situation in Fig. 9.

4 Handling Replicated Rows during Partial Reload

A partial reload on a replicated table runs into the issue that each loaded row carries a
mapped partition ID greater than 100000. Any existing version of that row with a mapped
partition ID assigned by IDAA during a prior full table load or partial reload does not pose
a problem. Such a row will become invisible once the view definition is changed at the end
of the LOAD operation. However, that very row may exist already in the target table with
the Db2z-side partition ID – which is what the replication tool would generate.

Partial Reload of Incrementally Updated Tables in Analytic Database Accelerators 459

8 Knut Stolze, Felix Beier, Jens Müller

Fig. 9: Example for MVCC storage of rows

The filtering predicate in the view definition will always treat all rows with a Db2z-side
partition ID as visible. That is, the Db2z-side partition ID must not be included in the
NOT IN list and it must not be filtered out by any other means. The reason is that data
changes occur in Db2z after the partial reload, and then those changes are replicated to the
accelerator, using the Db2z-side partition ID. Propagating those changes again via a partial
reload must not create duplicates, which implies that formerly replicated rows must be made
invisible as part of the partial reload. Fig. 10 shows the desired result.

Several ideas came to our mind to solve this problem of hiding rows replicated before the
partial reload but still allowing rows replicated after the partial reload to be visible. The
three most promising are discussed in the following.

4.1 Deleting Replication Rows

The first idea to get rid of the old replicated rows is to delete them by a SQL statement like
DELETE FROM ... WHERE mappedPartitionId = That statement could be executed
during the partial reload. However, that is not a viable option. Concurrently running queries
may still need to access those rows. In fact, such queries may run longer than the partial
reload itself. Physically deleting the rows would lead to incorrect query results.

4.2 Using Separate Tables for Partial Reload

460 Knut Stolze, Felix Beier, Jens Müller

IDAA Partial Reload with Incremental Update 9

Fig. 10: View Update on Partial Reload with Replicated Data

Similarly to the optimization for a full table reload, partial reload could use separate tables
for the newly loaded data. The view definition could be used to pick the data for each partition
from the correct table and combine all of them with a UNION ALL clause. Correctness is
not jeopardized, but this approach increases the number of base tables by several orders of
magnitude. It also impacts SQL statements accessing the view and increases the pressure
on the Db2 LUW optimizer to come up with a good access plan. Since IDAA is used by our
customers to drive their business, maintainability is at least as important as correctness and
performance. This idea was yet not further pursued since the next one has proven to meet
our expectations with much less overhead and was easy to implement.

4.3 Moving Replicated Rows into Loaded Partitions

As part of the partial reload, all previously replicated rows of the affected partition(s) are
updated. The value in the mappedPartitionId column are changed from the Db2z-side
partition ID to the IDAA-defined partition ID – as it was before the update. Referring to
Fig. 10, all rows of partition 1 (mapped to 100001) are being reloaded (now mapped to
100004). All rows that have partition ID 1 originate from the same Db2z-side partition. So
the following SQL statement moves those rows to the old mapped partition ID 100001.

UPDATE ...

SET mappedPartitionId = 100001

WHERE mappedPartitionId = 1

Partial Reload of Incrementally Updated Tables in Analytic Database Accelerators 461

10 Knut Stolze, Felix Beier, Jens Müller

Visibility of the rows being updated is not impacted – the rows are visible before the filtering
predicates in the view are changed, regardless of whether the partition ID being 1 or 100001.
After the filtering predicates are changed at the end of the batch update, those updated rows
become invisible, exactly as intended. All the way, concurrently running queries can access
the rows.

This UPDATE statement is executing concurrently to the insertion of the rows being reloaded
with mapped partition ID 100004. The statement is actually slightly more complex to limit
the number of rows being updated by one statement execution in order to inject intermediate
COMMITs. Using a sequence of small-sized intermediate transactions significantly reduces
the amount of logging and locking that has to be done on the target table. In particular, lock
escalations are avoided. For example, the following statement, which is executed in a loop
until no more rows are found and modified, limits updates the first 100,000 rows only:

UPDATE (SELECT ROW_NUMBER() OVER () as rowNumber, mappedPartitionId

FROM ...

WHERE mappedPartitionId = 1) AS table

SET mappedPartitionId = 100001

WHERE rowNumber BETWEEN < 100000

Evaluation We found that the UPDATE statement has about the same run time as an INSERT

statement to process the same number of rows. Since the INSERT and the UPDATE can run
concurrently, there is no measurable impact. Only when the system reaches its limits in
terms of CPU and I/O resources, the INSERTs need to be throttled [SBM17].

5 Summary

In this paper we have presented recent enhancements of the IBM Db2 Analytics Accelerator
to support reloading a selected subset of a table’s partitions, which is also synchronized
between Db2 for z/OS and the accelerator using the Incremental Update feature. Data
consistency has to be ensured to avoid that duplicate rows become visible on accelerator-side
due to the two different data synchronization paths. The solution turned out to be really
simple but very effective at the same time: an UPDATE statement moves the replicated rows
into the old mapped partition, which is subsequently made invisible by changing the filtering
predicate of the view definition. Since this can be parallelized with the data transfer and
insertion that has to take place as part of the partial reload anyway, no performance impact
on a used system could be observed.

The next step for our work is the further investigation of reloading partition data into separate
tables (see section 4.2). We strive to evaluate how well the Db2 LUW optimizer handles this
on all possible cases. Functionality-wise, it is not yet clear to us if replicating the deletion

462 Knut Stolze, Felix Beier, Jens Müller

IDAA Partial Reload with Incremental Update 11

of a row would try to scan all legs of the UNION ALL or if the Db2 LUW optimizer can
directly determine which of the base tables need to be processed and which ones can be
skipped. A similar question arises for insertion of new (replicated) rows through the view
and whether they will be applied to the correct target base table. It may become necessary
to employ INSTEAD OF triggers on the view to ensure the correct row distribution, whose
impact on replication performance and throughput needs to be evaluated.

Trademarks
IBM, DB2, and z/OS are trademarks of International Business Machines Corporation in
USA and/or other countries. Other company, product or service names may be trademarks,
or service marks of others. All trademarks are copyright of their respective owners.

References
[Be12] Beaton, A.; Noor, A.; Parkes, J.; Shubin, B.; Ballard, C.; Ketchie, M.; Ketelaars, F.; Rangarao,

D.; Tichelen, W.V.: . Smarter Business: Dynamic Information with IBM InfoSphere Data
Replication CDC. IBM Redbooks, 2012.

[Fr11] Francisco, P.: . The Netezza Data Appliance Architecture: A Platform for High Performance
Data Warehousing and Analytics. IBM Redbooks, 2011.

[IB13a] IBM: . IBM InfoSphere Data Replication V 10.2.1 documentation, 2013.

[IB13b] IBM: Synchronizing Data in IBM DB2 Analytics Accelerator for z/OS. Technical report,
IBM, 2013. http://www-01.ibm.com/support/docview.wss?uid=swg27038501.

[IB16] IBM: . IBM Db2 Database for Linux, UNIX, and Windows Version 11.1, 2016.
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_11.1.0/
com.ibm.db2.luw.welcome.doc/doc/welcome.html.

[IB18] IBM: . Db2 12 for z/OS documentation, 2018.
https://www.ibm.com/support/knowledgecenter/en/SSEPEK_12.0.0/home/src/tpc/
db2z_12_prodhome.html.

[KN11] Kemper, Alfons; Neumann, Thomas: HyPer: A hybrid OLTP&OLAP main memory database
system based on virtual memory snapshots. In: Proceedings of the 27th International
Conference on Data Engineering, ICDE 2011, April 11-16, 2011, Hannover, Germany. pp.
195–206, 2011.

[Pa15] Parziale, Lydia; Benke, Oliver; Favero, Willie; Kumar, Ravi; LaFalce, Steven; Madera,
Cedrine; Muszytowski, Sebastian: . Enabling Real-time Analytics on IBM z Systems
Platform. IBM Redbooks, 2015.

[SBM17] Stolze, Knut; Beier, Felix; Müller, Jens: Autonomous Data Ingestion Tuning in Data
Warehouse Accelerators. Datenbanksysteme für Business, Technologie und Web (BTW)
2017, March 2017.

[WV02] Weikum, Gerhard; Vossen, Gottfried: Transactional Information Systems: Theory, Algo-
rithms, and the Practice of Concurrency Control and Recovery. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2002.

Partial Reload of Incrementally Updated Tables in Analytic Database Accelerators 463

