Knowledge Services for Experience Factories

Eric Ras, Jorg Rech, Sebastian Weber

Division Competence Management
Fraunhofer IESE
Fraunhofer-Platz 1
67663 Kaiserslautern, Germany
{Forename.Surname } @iese.fraunhofer.de

Abstract: The Experience Factory (EF) is an infrastructure designed to support
experience management (e.g., the reuse of experience) in software organizations. It
supports the collection, processing, management, analysis, and dissemination of
experiences made on the job. One key issue of experience management is the
aggregation of these documented experiences into more valuable patterns and
laws. In this article, we describe how the different activities in an experience
factory can be supported by knowledge services. Knowledge services are
especially valuable for maturing activities, such as formalization and
generalization. We describe how to leverage Web 2.0 concepts as features of an
experience management system in order to implement the knowledge services.

1 Introduction

Experience is knowledge that can let us act in a practiced and automatic manner, or that
helps us to assess, select, and apply an appropriate problem solving strategy, method,
technique, or tool. It has been gained by acting/doing and may either result from
unprocessed and unreflected events in specific situations or from conscious reflection
and interpretation about ongoing issues. Several approaches have shown how parts of
this knowledge and the related observations could be externalized and hence become
easier to share with others. Without the reuse of well-proven knowledge, e.g., in the
form of software patterns, software engineers would have to rebuild and relearn the
knowledge again and again.

The research fields concerned with the management and maturing of experiences are
software reuse and experience management (EM). They have increasingly gained
importance during the past thirty years. EM is based on concepts from the Experience
Factory (EF) [3], Case-Based Reasoning [1], and Knowledge Management [9].

In this article, we propose leveraging common features of Web 2.0 applications (e.g.,
syndication, recommendation, etc.) within experience management systems by
supporting the EF activities (e.g., retrieving, searching, packaging, formalizing,
generalizing, etc.). Section 2 describes the EF paradigm, explains what an experience
package is and what kind of context characteristics need to be considered, and lists
common Web 2.0 application features. Section 3 assigns Web 2.0 features to EF
activities and explains how the features support the user or the experience engineer,

232

respectively. Finally, we summarize the paper and give an outlook on further work in
Section 4.

2 Background

This section will highlight important aspects of the experience factory and experience
packages, in order to make the mapping of Web 2.0 features to the activities of an
experience factory easier and more comprehensible.

2.1 Experience Factory

The Experience Factory (EF) is an infrastructure designed to support experience
management (e.g., the reuse of experiences regarding software products or IT projects)
in software organizations. Further, it supports the collection, processing, analysis, and
dissemination of experiences and represents the physical or at least logical separation of
the project and the experience organization as shown in Figure 1. This separation is
meant to relieve the project teams from the burden of finding and preserving valuable
new experiences that might be reused in later projects.

Project Organization Ee i = === Experience Factory

.
ledge . Experience l
ulting . l Base ’

Tailored Knpwledge
Formalize
Experience

lacteristics
Needs

Project
Manager

Artifacts

Software
Engineer

Obser
Data, Models and
Software

Figure 1: The Experience Factory ([3], [10])

In the “knowledge dust to pearls” approach [4], the observations made in day-to-day
work (i.e., the knowledge dust) are analyzed, synthesized, and transformed into
knowledge pearls (i.e., patterns or antipatterns).

233

For example, if we begin a project (Plan Project), the project manager uses the EF to
search for reusable knowledge in prior to the project. This knowledge comes in the form
of effort models, reference architectures, design patterns, or process models based upon
our project context (Support Project). As described in [10], this phase is split into the
process steps “Specify”, “Identify”, “Evaluate”, “Select”, and “Utilize”. In the execution
phase (Execute Project), the EF is used by the project manager and the software engineer
to retrieve knowledge on demand. During the project and at the project’s end, it is
analyzed (e.g., using a post-mortem analysis) in order to extract reusable knowledge
(i.e., observations or artifacts) that might be useful in other projects (Package
Knowledge). Later during the lifecycle of experiences and observations, this knowledge
is then formalized, generalized, or forgotten (i.e., removed) in order to be more usable in
future projects (Maintain Knowledge).

2.2 The Experience Package and its Context Characteristics

An experience package is defined as an explicit representation of an experience that can
be stored, categorized, and disseminated in an organization. It stems from formalizing
and generalizing either experience knowledge or experience gained through systematic
measurement and improvement. An experience package description contains a problem
statement, optionally a proposed solution including the expected benefit/effect when
applying it in a new situation, a context description, and additional administrative
information. The so-called A2E structure encompasses all information that is required in
the experience factory to describe an experience package. The elements used in this
structure are described in Table 1.

Table 1: The A2E structure for experiences

. Description of an activity that was applied to cause an outstanding

Description of the positive or negative effect that was caused by the
Benefit action.

Context Characterization of the environment the action was performed in.
L Detailed explanation and depiction of the problem, solution, intent,
Description applicability, etc. of the software pattern — based on a pattern template.
. Report and list of evidence that back up the claim of the software
Evidence pattern (e.g., used experiences) as well as other relevant references.

The context of a reusable artifact can be seen as all information that does not describe
the artifact itself. When the core of the artifact/experience represents the “how”, the
context characterizes the “where”, “when”, “why”, “what”, “by whom”, etc. the artifact
was created/used in. In general, the artifact represents the data, and all environmental
metadata (i.e., data about data) is context. Context explains the environment the
knowledge was created in and is a way of giving knowledge meaning and focus, and the
more understandable and focused it is, the most effectively it can be captured and reused

in a given situation [2].

234

We derived the following context categories, which are essential for describing the
context of experiences:

¢ individual context (e.g., role, skill and competence profiles, learning preference,
activity history)

group context (e.g., team size, team members, team competencies and experience)
process context (e.g., activity, lifecycle model)

product context (e.g., type of product, complexity, quality, application context)
project context (e.g., size, effort, resources, costs)

organization context (e.g., competence development strategies, corporate quality
strategy, business targets)

e customer context (e.g., business domain, market strategies, etc.)

The refinement of each context category depends on the domain where reuse is applied.
In addition to the abovementioned context characterization, each artifact needs a
description of the observation itself as well as additional environmental and non-
environmental information (i.e., metadata), such as classification, abstract, keywords,
definition, explanation, relationship to other artifacts, etc.

Describing the context of experiences has several advantages: Context characteristics
help the software engineer to search and find appropriate experiences for reuse. Context
categories can help the reusing person in understanding, evaluating, selecting, utilizing,
and eventually adapting the experience to a new context.

In addition, context categories support the generalization (i.e., aggregation) of
experience. This so-called de-contextualization is necessary to increase the range of
applicability of a specific experience. De-contextualization does not mean the removal of
the context information, but its stepwise abstraction by combining and generalizing parts
of the context description.

2.3 Common Features of Web 2.0 Applications

This section describes widespread features that can be found in many Web 2.0
applications. In Section 3, we assign the described features to concrete EF activities.
Weber et al. [11] described common Web 2.0 features based on the survey of Wong and
Hong [12]. These features can be part of so-called knowledge services that support the
previously mentioned activities in the context of the EF. A knowledge service is
provided to the software engineer through applications — in our case Web 2.0
applications.

The following list shows an extract of the relevant features together with examples (the
examples constitute mashups [8] as a special type of Web 2.0 applications):

e Syndication: The mashup summarizes multiple websites/services or data sets (e.g.,
Vidmeter.com aggregates videos charts from multiple websites, Yahoo Pipes
(pipes.yahoo.com) enables users to create combined feeds).

e Search: The mashup provides a search over multiple external data sources (e.g.,
Kayak.com aggregates multiple search results from different engines).

235

e Visualization: The mashup provides the user with some kind of visualization of
external data sets (e.g., liveplasma.com visually suggests to users those artists who
might be of interest by leveraging the Amazon API).

e Personalization: The mashup makes use of the user’s personal information exposed
by other websites/services (e.g., leveraging personalized feeds of Del.icio.us as
input source) or enables the construction of a personalized data set from the original
service (e.g., the mobile shopping service Wishpot.com).

o Folksonomy: The mashup leverages a tagging mechanism for organizing its
content. Tag clouds help to navigate through the content (e.g., TagBrowsr.com as an
alternative way for browsing Flickr content).

e Alternate Ul & In-situ Use: A mashup provides an alternative Ul to external
services (e.g., oSkope.com provides a visual interface to Amazon, Ebay, etc.). In-
situ use refers to mashups that support specialized usage of a service outside the
typical use case (e.g., HeyWhatsThat.com utilizes GoogleMaps to describe
mountains and terrain areas to users).

e Recommendation: The mashup utilizes recommended content originating from
social communities or where users suggest related content with regard to the content
of the Web page (e.g., recommended Del.icio.us bookmarks).

e Rating: The mashup shows content that was either assessed by users or that has
been referred to often (e.g., Amazon’s stars, bookmarks in Del.icio.us).

e Commenting/Annotating: The mashup integrates all kinds of comments attached
to some content (e.g., sticky notes in Diigo.com).

3 Web 2.0 Features for Experience Management Systems to Support
Experience Factory Processes

This section deals with assigning common Web 2.0 features to EF activities. We
elaborate how these features could support the activities of retrieving, analyzing,
formalizing, generalizing, adapting, and discarding experiences. We provide
suggestions, for how to leverage these Web 2.0 concepts as features of an experience
management system.

The following table shows in the first column the activities performed during a project to
reuse experience and within the EF itself. The other columns represent the Web 2.0
features and their support for specific activities (marked with an “x”).

236

Table 2: Activities within the Experience Factory

Experience Factory Activities Features
(=
o
c —
o ® ~
c S | E > f 3 o
) 2 N EPaol § E =2
- © = O |0 e S
© N © c (=D € i
Q = = c o © £ o S
B O © 1) o |E2 2 E%
— =1) X = 5= [} — E
c @©) - = (8 0| © = c
> Q am— () 0O (= & () © O C
h|lon | S |o |l |8 ¢ | KoL
Specify X X X X
Identify X X X X
€
o
g [Evaluate x | x
=]
n
Select X
Utilize X X
"é, /Analyze Artifact X
=
®
o |Formalize Observation X X X
Formalize X X X
£
©
o -
£ |Generalize X X X X
©
=
Forget X X

The first activity Specify intends to formulate the query to be processed by the search
engine. The query reflects the specification of the required reuse candidate [5]. Specify
can be supported by recommending search keywords that originate from all specified
queries of users, groups, roles, etc. In doing this, the current user context (provided, e.g.,
through the user profile, user profiling, or a separate form associated with the query) is
considered. A syndication feature allows collecting the previously used queries of
different persons, groups, roles, etc. in order to process the data (e.g., providing an RSS
feed). The folksonomy feature visualizes the relevance of recommended keywords via a
tag cloud in order to assist the user in selecting adequate keywords. The alternate Ul
feature provides a role-specific search view, for example, according to a manager or
developer role.

The activity Identify uses the formulated query to retrieve experience packages from the
database. Finding queried experience packages can be supported by the Web 2.0 feature
Search. Here, the experience management system searches over diverse data sources,
e.g., experience base, corporate blog, enterprise wiki, etc. Recommendation enables
ranked results (e.g., based on user ratings (“stars”) or links (“page rank™)). Visualization

237

of clusters within the search results enables fine-grained ranking. Personalization enables
the filtering of search results based on a personal profile (i.e., interests, preferences,
knowledge, etc.), work context (see Section 2.2), and access rights.

The search results, i.e., the reuse candidates, are now evaluated. The evaluation is
supported by a list of evaluation criteria defined by the reusing person. Recommendation
helps the user to find his own personal and prioritized list of criteria, which enables him
to filter relevant artifacts from the search result. Examples of criteria, i.e., experience
characteristics, include language, learnability, modification and application costs,
comments by other users, etc. A characteristic rating feature is the basis for
recommending candidate characteristics.

The activity Select is done based on the characteristics of the reuse candidates. After the
user has selected the relevant experience, he has to document why he has made this
selection. This can be achieved by using a commenting/annotating feature, where the
comments are associated with the current context (user context and query).

The application of the selected experience may require a modification. After using the
selected experience (activity Utilize), the user has to document how the experience (i.e.,
artifacts) was applied, which can again be supported by a commenting/annotating
feature. In addition, he has the possibility to rate how good the application of the
experience was.

An experience engineer [7] has to analyze project artifacts as a prerequisite for
formalizing and storing experience within the experience base (activity Analyze). This
step implies complex cognitive activities, which are difficult to support by tools.
However, the engineer can be assisted by being informed about changes in the project,
which may lead to a new experience to be analyzed. As an example, the engineer
registers to be notified of activities in particular folders of the enterprise net drive. This
information can be provided unobtrusively, e.g., as an RSS feed.

During the activity Formalize Observation and Formalize, the experience engineer
formalizes observations or semi-formal experiences and stores new experiences within
the experience base (see Figure 2). Recommendations suggest artifacts similar to a
specific topic or task as examples in order to assist the formalization process.
Syndication help to collect information related to a topic or task from different sources.
Furthermore, the experience engineer registers for particular topics (e.g., by specifying
relevant keywords, tags, categories, etc.) in order to be notified about interesting
artifacts, e.g., via RSS feeds. A tag cloud supports him in finding adequate keywords for
characterizing the artifacts.

The activity Generalize is used to summarize multiple project-specific Experiences (E)
into a software pattern, for example, a design pattern such as “Abstract Factory”, and
finally (together with other patterns) into a Law (L). A law is a generally applicable
statement, principle, or heuristic that is valid for all software systems — e.g.,
Constantine’s Law, “A structure is stable if cohesion is strong and coupling low” [6].
The core goal of this step is the partial de-contextualization (i.e., abstraction) of the
experience from its project, domain, language, or technology context. Combining
artifacts or existing experience packages into new experiences can be supported by
recommending similar or related artifacts or experience packages. These artifacts or

238

experiences can be aggregated via syndication from diverse sources. User ratings help
the experience engineer to decide on which artifacts should be integrated. In addition,
user comments may influence the decision.

Project Experience Factory
Organization 0 0 A

Maturing Proces

<

(0} e Forma Formalize

Figure 2: Experience maturity levels

The activity Forget helps to remove obsolete artifacts from the experience base. This
activity can be supported by recommendations and ratings. Potential artifacts may be
suggested based on the number of artifact accesses or ratings, for example. Additionally,
manual classification of artifacts, e.g., a user tagging a document as obsolete, can be
seen as a selection of an identification of deletion candidates.

Summary and Outlook

The Experience Factory (EF) is an infrastructure intended to support the collection,
processing, management, analysis, and dissemination of experiences made on the job.
We described how the different activities in an EF can be supported by knowledge
services and proposed leveraging Web 2.0 concepts as features of an experience
management system in order to implement these knowledge services.

Up to now, only a few experience engineers [7] have analyzed data from projects with
the intent of packaging valuable experiences. Nevertheless, the EF will profit from a
shift towards collaborative authoring and sharing of experiences. Knowledge services
will support not only the experience engineer but also the project staff in conducting EF-
related activities. The challenge of an experience engineer is to support several
concurrent projects with up-to-date information just in time. Many software projects
follow an evolutionary approach, which means that software is developed in teams
working under tight deadlines and with changing stakeholder requirements. Hence, the
experience engineer is often not able to perform activities such as formalizing,
generalizing, or forgetting.

In this paper, we made suggestions on how common Web 2.0 features may support EF
activities. It is hardly possible for the knowledge of the experience engineer to cover the
knowledge of the collective intelligence in the enterprise all the time. Everybody should
have the possibility to contribute to those activities by using Web 2.0 technologies, such

239

as Wikis, blogs, podcasts, or social networking platforms, which are used for knowledge
capturing and transfer, collaborative work, and workplace learning.

The idea for the future is to integrate different Web 2.0 technologies in order to build an
EF mashup environment. In short, the term mashup refers to an ad-hoc composition of
information and services from different sources into new services [8]. In the context of
EF, one approach might be to combine the experience base with diverse enterprise data
sources, such as content in learning content management systems, corporate globs,
project wikis, social networks, discussion forums, and maybe data originating from
sources outside the enterprise firewall. Web 2.0 concepts, such as user-generated content
or recommendations, as shown in this paper, would help to increase the quality and up-
to-dateness of the experiences.

References

1. Althoff, K.-D.: Case-based reasoning, In (S.-K. Chang (eds.)): Case-based reasoningvol. 1, pp.
549-587. World Scientific, Singapore, 2001

2. Araujo, R.; Santoro, F. M.; Brézillon, P.; Borges, M. R.; Rosa, M. G. P.: Context Models for
Managing Collaborative Software Development Knowledge, In First International Workshop
on Modeling and Retrieval of Context (KI 2004), MRC2004, Ulm, Germany, 2004.

3. Basili, V. R.; Caldiera, G.; Rombach, H. D.: Experience Factory, In (J. J. Marciniak (eds.)):
Experience Factoryvol. 1, pp. 469-476. John Wiley & Sons, New York, 1994

4. Basili, V. R.; Costa, P.; Lindvall, M.; Mendonca, M.; Seaman, C.; Tesoriero, R.; Zelkowitz,
M.: An experience management system for a software engineering research organization, In
26th Annual NASA Goddard Software Engineering Workshop, 2001. IEEE Computer; pp. 29-
35

5. Basili, V. R.; Rombach, H. D.: Support for Comprehensive Reuse, Journal of Software
Engineering, vol. 6, no. 5, pp. 303 - 316, 1991.

6. Endres, A.; Rombach, H. D.: A handbook of software and systems engineering: empirical
observations, laws, and theories (1st Edition), Pearson Education Limited, Harlow, England,
2003.

7. Feldmann, R. L.; Frey, M.; Mendonca, M.: Applying roles in reuse repositories, In
International Conference on Software Engineering and Knowledge Engineering (SEKE'2000),
Chicago, USA, 2000. Knowledge Systems Institute; pp. 1-15

8. Merrill, D.: "Mashups: The New Breed of Web App,"
http://www.ibm.com/developerworks/library/x-mashups.html, last accessed on 24 November
2008.

9. Nonaka, I.; Takeuchi, H.: The Knowledge-Creating Company Oxford University Press, New
York, 1995.

10. Tautz, C.: Customizing Software Engineering Experience Management Systems and Related
Processes for Sharing Software Engineering Experience, Ph.D Thesis. Kaiserslautern:
University of Kaiserslautern, Germany, Department of Computer Science, 2000.

240

11. Weber, S.; Thomas, L.; Ras, E.: "Investigating the Suitability of Mashups for Informal
Learning and Personal Knowledge Management," in Workshop on Mash-Up Personal
Learning Environments (MUPPLEOS). Maastricht, The Netherlands (2008)

12. Wong, J.; Hong, J.: "What Do We "Mashup" When We Make Mashups?," in 4th international
Workshop on End-User Software Engineering (WEUSE 2008). Leipzig, Germany: ACM, New
York (2008)

241

