
QoS-based Testing and Selection of Semantic Services

Jan Schaefer Reinhold Kroeger

Design Computer Science Media Department

RheinMain University of Applied Sciences

Wiesbaden, Germany

{jan.schaefer|reinhold.kroeger}@hs-rm.de

Simone Meixler Uwe Brinkschulte

Department of Computer Science

Johann Wolfgang Goethe University

Frankfurt am Main, Germany

{meixler|brinks}@es.cs.uni-frankfurt.de

Abstract:
The importance of context-awareness is constantly increasing. Users want systems

to react dynamically to their current context (e.g. their location). For emerging home
service platforms, this represents a key element, as it allows systems to increase the
users’ comfort tremendously by acting on sensed and deducted situations. As such
systems feature a lot of dynamic interaction between services, it has to be ensured
that service selections and bindings simply work. This paper proposes an approach for
QoS-based testing and selection of semantic services, which employs a service tester
that uses genetic algorithms to check and monitor QoS properties. These properties
are used to complete the semantic descriptions of services running on the platform,
which are managed by a semantic service registry.

1 Introduction

The increasing amount of IT hardware and software (e.g. “apps”) in personal living spaces

allows users to experience more and more services both online via the Internet and off-

line in their homes: personal computers, smartphones, tablets, home theater devices and

smart homes are becoming more and more intertwined with each other and online services

(Internet and/or cloud services) forming an Ambient Assisted Living (AAL) home service

platform. The term Ambient Assisted Living (AAL) was coined by the European Commis-

sion’s Information Society in 2004, as AAL research activities were prepared in a special

support action project that was part of the 6th European Framework Programme [Gmb04].

AAL-related technologies introduce a complexity that users can or do not want to admin-

istrate themselves anymore. The increase of networked electronics and software can be

compared to the increase of assistive and media technologies in cars during the last two

decades. Unlike in cars, however, personal electronic devices and applications are much

more open to (deliberate) modifications and data exchange, which makes securing their

handling even more difficult. Finding and selecting the right service when using this home

15

15



service platform can become a time-consuming and even dangerous process (from an IT

security perspective), if there are multiple service providers and a malicious or malfunc-

tioning service is selected. In addition, usually multiple applications are active in parallel

requiring binding decisions almost constantly.

Static binding between client consumer and provider, which usually takes place once at

the application’s compile/link time, is not a feasible approach here. Even dynamic bind-

ing with its implementation-dependent, tight coupling between consumer and provider is

not sufficient. As smart homes consist of heterogeneous, distributed systems with varying

computation capabilities, they represent an ideal environment for service-oriented comput-

ing with its loose coupling thus supporting the required runtime dynamics, which explains

the advent and propagation of home service platforms in general. However, the service

interface descriptions and, even more importantly, any existing service properties offered

by service providers (typically name-value pairs) are still statically defined, as they do not

reflect the runtime state of the provided implementations. This results in syntactic service

look-ups, in which the binding only depends on the service interface and its statically de-

fined properties. To support the definition of extended and dynamic service descriptions

that are integrated with a common context model – an ontology – for the platform, the abil-

ity to define and process semantics is needed. The approach presented here allows clients

to define semantic queries for services, which can be processed by the service platform.

As these queries can use the semantics of both services and platform, it is possible to build

adaptive, context-aware applications, in which clients can react to changing service and

context properties, as service properties reflect the runtime state of the platform and its

components.

With respect to the functional properties a service defines (e.g. regarding its input and out-

put parameters), clients (i.e., users or applications) might require non-functional service

capabilities such as Quality of Service (QoS) properties. In this case, the clients’ needs can

be formulated explicitly or as part of their preferences. Service properties, on the other

hand, are typically either defined statically or dynamically gathered at runtime (e.g. by

application instrumentation). The first approach is both hard to achieve and insufficient as

it doesn’t reflect the user experience: a service might be fast if accessed in one geographic

region but slow in another. The second approach, however, might also be inapplicable

as ongoing runtime instrumentation might lower the service’s performance too much im-

pairing end user experience. This paper proposes a third approach: The integration of

semantic service descriptions with service testing and probing capabilities. Here, service

implementations register a test interface, which is used to determine runtime QoS proper-

ties, before the service is used for the first time. The resulting QoS properties become part

of the service’s description and can be used either for service look-up or selection of the

fittest service if multiple services fulfill the client’s requirements. The subsequent service

probing adapts automatically to the currently offered services as well as to the usage of

these services. We also consider to keep the testing effort within reasonable bounds.

This paper is structured as follows: Section 2 presents required background information

and is followed by Section 3, which presents related approaches. The subsequent Sec-

tion 4 introduces the approach for QoS-based testing and selection of semantic services.

Section 5 discusses the current state of and the next steps for the work presented here.

16

16



2 Background

2.1 The Web Ontology Language

The W3C specification for the Web Ontology Language (OWL) [Gro09] defines a family

of languages to support the Semantic Web vision. While RDF already allows addressing

resources and their properties via URIs thus creating a formal, triple-based representa-

tion of information, OWL adds machine-processable semantics enabling automated in-

terpretation of this information by computers. Furthermore, OWL supports an inference

mechanism – so-called reasoning – that allows the automated derivation of new informa-

tion from existing descriptions of things and their relationships. To support reasoning and

limit its complexity, which leads to increasing processing times, the OWL specification

defines three OWL sublanguages with different levels of expressiveness: OWL Lite, OWL

DL (includes Lite) and OWL Full (includes DL), where OWL DL was designed to pro-

vide maximum expressiveness while retaining computational completeness. Apart from

these sublanguages, the OWL specification also supports several exchange syntaxes for

specification and exchange purposes with varying degrees of human readability.

An OWL ontology contains statements consisting of Resource-Property-Value triples (e.g.

Father hasName ’John’). A resource has a Class definition and features a number of Indi-

viduals, which represent the actual objects in a domain. Properties may feature Domains

and Ranges: Data Properties associate resources with constants, whereas Object Prop-

erties associate resources with each other. In addition, properties may possess more de-

tailed logical capabilities such as being functional, transitive, symmetric, reflexive, inverse

and/or disjoint.

2.2 Genetic Algorithms

Genetic Algorithms are used for solving optimization problems and are based on the bio-

logical evolution theory. Terms that are often used for genetic algorithms are listed in table

1. Furthermore, the table shows the biological and IT specific translation of these terms.

Term Biological Translation IT Translation

Population Set of individuals Set of solution candidates

Parents Mating subset of population Selected individuals for generating new solu-

tion candidates

Fitness Conformity of an individual Quality of candidate solution

Chromosom Properties of a individual String

Gen Part of a Chromosom char

Allele Characteristic of a gen value of char

Locus Location of a gen Position of a char

Table 1: Genetic terms

From random variation new advantageous properties develop and will establish oneself in

17

17



the current environment. As the environment changes, properties can become disadvan-

tageous. They may get replaced by properties that better fit to the current environment.

For generating new solutions, genetic operators are used. Before using a genetic operator,

individuals have to be selected. There exist many different types of selection methods.

Fitness proportionate selection also called roulette-wheel selection is used as basis for our

selection method, which is introduced in Section 4.4. After selecting two individuals,

the genetic crossover operator can be used. Furthermore, random variation can be ac-

complished with the mutation operator. After creating the new population, the mutation

operator can be used to choose randomly an allele and change its value. The reproduction

operator is used to take individuals unchanged into the next generation. For the testing

method, we have developed specific crossover, mutation and reproduction operators. A

detailed explanation of these newly defined operators can be found in Section 4.4.

3 Related Work

With maturing tool support and increasing processing power, semantic (context-aware)

services have gained enormous interest in recent years. Several approaches to seman-

tics definition have been developed and compared in the last decade [CDM+04, ZKN06].

However, OWL-S, the Semantic Markup for Web Services extension for OWL, which pro-

vides additional concepts for specifying semantic processes and services, remains the one

most widely used today, although it focuses on Web services environments. Due to its

modularity, however, it allows the definition of Service Groundings for other service ar-

chitectures.

Even before semantic services were examined in particular, several context modeling ap-

proaches for home service platforms emerged. Gu, Pung, Zhang [GPZ04] propose using

layered ontologies for context models in the home domain. It covers widely-acknowledged

concepts that also appear in more recent publications (e.g. activities, locations, persons,

devices including a custom service concept). However, the interaction of formal service

definitions with runtime systems (actual groundings) and how user preferences influence

the platform’s behavior are not discussed. Daz Redondo et al. [RVC+08] propose the

combination of OWL-S with an OSGi grounding called OWL-OS, although neither QoS

properties nor semantic queries for service selection are supported (only key-value pairs).

However, the authors use OWL-S service categories as a means to group services into

aspects (e.g. Lighting), which can be used by clients during service look-up. Romero et

al. [RHT+11] propose a platform based on the Service Component Architecture (SCA),

which provides similar service and component abstractions as OSGi. The paper focuses on

device integration over heterogeneous communication protocols into an event processing

architecture, which is able to process data from a wide collection of devices (including sen-

sor networks). However, a semantic abstractions for implementation details and support

for the deployment of additional (3rd party) services are not presented.

Apart from home service platforms, a broad collection of service discovery and binding

approaches have been developed in the past. The most widely used specifications for this

today, especially in living environments, is Universal Plug and Play (UPnP) [UPn11].

18

18



Apart from its convincing technical capabilities, it lacks OWL’s modeling capabilities as

well as support for rules, queries and reasoning. Thus, it rather can be seen as a potential

grounding for OWL-S services.

4 Approach

The work presented here proposes enhancements to home service platforms, which allow

extending, testing and integrating the collection of applications and services dynamically

based on semantic descriptions of service properties.

4.1 A Platform for Semantic Services

The approach presented here proposes adding semantic interfaces and continuous test-

ing to applications and services that integrate with common OWL ontologies provided by

a Semantic Service Registry. This registry allows extending an existing service registry

for non-semantic services by adding the capability to manage ontologies and supporting

semantic service queries. This extension supports the installation of non-semantic and se-

mantic services in parallel. An overview of the surrounding platform is given in [Sch10].

In addition, the Service Tester component uses the descriptions of registered services to

gather runtime QoS properties once after service registration. After that, the Service Tester

is able to probe services on demand. The Knowledge Module stores the context and ap-

plication ontologies including related rules, which are accessed by the other components.

With changing system context, the contained ontologies are updated by incoming events

resulting in constantly changing facts and, thus, also changing service properties. This

dynamic can be used by clients in service look-ups, as bound services can differ between

two subsequent look-ups due to interim model changes (e.g. state, location or performance

change). The interaction between the involved components is displayed in Figure 1.

Figure 1: Service Registration and Testing

The context model has been constructed around the core concepts Person, Computational

Entitiy, Location and Activity and is based on the context model from Gu et al. [GPZ04]

introduced in Section 3, which has been extended with more detailed concepts for compu-

tational entities, services, activities and user preferences (among others) for this approach,

19

19



although the latter two are not covered here. Figure 2 presents a condensed version of

the context model, in which the colored shapes represent some of the additions to the

original model. The service-related ontologies contain service descriptions from service

groundings (implementations) to formal service models and are defined using OWL-S. The

Service Registry is responsible for registering and looking up services in the knowledge

module and the platform’s registry mechanism.

Figure 2: Context Model (condensed)

4.2 Service Registration

If a service implementation is installed by a service provider, it registers its implementa-

tion details – the service grounding – with the service registry assuming that the ontology

describing the implementation integrates with the context and service ontologies. Sub-

sequently, this integration allows the registry to find the service implementation, if the

associated service is looked-up.

Figure 3: Service Registration Process

Apart from functional service properties (interfaces and parameters), services register ad-

ditional context-related or QoS-related properties that can be specified as requirements by

clients during service look-up. If these properties are dynamic, they are updated by the

registry at runtime (e.g. by testing as described in Section 4.4). The registry is also re-

sponsible for removing service groundings, if service implementations are uninstalled or

unavailable (e.g. caused by service failures). It is also possible for clients or services to

register and update context or service ontologies without providing an implementation for

them, as ontologies and implementations are decoupled.

20

20



4.3 Service Selection

If clients require a service, they can query the service registry for implementations of that

service. This can be done using the platform’s own service selection approach (if one

exists), or by executing SPARQL queries [PE08] on the semantic service registry. The

latter approach is required, if semantic properties are used for the service look-up. For

the definition of look-ups, clients can use both functional and non-functional properties

resulting in comprehensive queries. This can lead to situations, in which no service is

able to meet these requirements. However, typically clients only define a limited set of

requirements and end up with a selection of functionally equal services. In this case, the

registry relies on the results of the service tests to select the fittest service. The service

selection process is shown in Figure 4.

Figure 4: Service Selection Process

As an example, a client might look for a service providing off-site health monitoring. Here,

services might feature more or less static properties such as the service provider’s general

trustability or service cost. Properties such as availability or response time, on the other

hand, are dynamic properties, which would be collected by the service tester.

4.4 Service Testing

Given the new situation of being able to dynamically extend the service platform by ser-

vices from different providers results in a great responsibility for testing these services.

The need of testing is rooted in the fact that services can be added, deleted or substituted.

Therefore no proven information exists how they perform on given client requests. As

services of different service provider are supposed to interact, it is necessary to be able

to rely on information given for these services (for example QoS Properties). Hence, a

testing method should fulfill the requirements of adapting to currently offered services and

client requests as well as being independent from the service provider offering a service.

Therefore, we combine the approach of using a knowledge module with the approach of

using genetic algorithms [MB10] for creating test sets.

21

21



QoS Property Category Valid Values

Response Time

1 ≤ 5ms

2 6ms− 10ms

3 11ms−20ms

4 ≥ 21ms

Table 2: Category Example

4.4.1 Test Case Adaption

In the following, a test set denotes a number of l different test cases. It should be taken

care that a test set does not contain too many test cases because every test case results in

a service-request and every service-request generates load for the service provider system.

Therefore, it is necessary to find a suitable selection of test cases to compare and test

services. As suggested in [Xia06], test cases are categorized by QoS properties and quality

levels. Therefore, every QoS property is divided into different quality categories on the

test system. These categories are used to distinguish between different QoS requirements.

The test system manages m test sets for one category. A QoS property is e.g. the response

time. Table 2 shows an example for such response time categories.

If a client discovers a non-functional error,
Crossover Oper-

ator

Modified

Crossover

Operator

Two offspring One offspring

Locus of a gen is

important

Locus of a gen is

not important

All alleles are

handed on to the

offspring

A distinction is

made between

dominant and

recessive allels

Table 3: Crossover Operator Modifications

he has to send the ID of the service caus-

ing this error to the test system, the cor-

responding input, and the violated require-

ments. The test system uses these errors as

test cases and generates test sets with this

information. An error counter is attached

to every test case. The value of the error

counter reflects the up-to-dateness of a test

case. When an error is reported, the corre-

sponding error counter will be increased.

In case of a new error, a test set will be

chosen randomly and a test case to be sub-

stituted will be selected. For the selection,

it has to be checked if the test set contains test cases having an error counter of value zero.

In this case, one of them will be chosen randomly to be substituted. Otherwise, the selec-

tion of a test case will be based on a probability reverse proportional to its error counter.

Test sets cannot be generated by errors only, but also by recombination of existing test

sets. The advantage of recombinations is that good test cases can be unified to one test set.

Hereby, is it possible to create better test sets from already existing ones. The approach

presented in this paper is based on a genetic algorithm. This algorithm shows differences

to standard genetic algorithms to reflect the considered application. Individuals are given

by test sets of a QoS property category.

Test cases form the alleles and the fitness of a test set (individual). tj is denoted as f(tj)
and equals the sum of the error counters belonging to test cases of tj . Let eci be the

22

22



error counter of test case i. Using the fitness, we can calculate the probabilities of the

individuals. The probability pj of an individual j depicts its possibility to survive, because

an individual is chosen for the reproduction operator as well as for the crossover operator

with probability pj =
f(tj)
F

, where f (tj) =
l

i=1

eci and F =
l

j=1

f (tj)

For the crossover operator, two individuals have to be chosen. The crossover operator will

produce one offspring from these two individuals. Not all alleles will be handed to the

offspring, it will be distinguished between dominant and recessive alleles. The selection

of alleles, which will be part of the subsequent generation, is affected by the probabilities

calculated based on the error counters. The probability to include a test case (allele) in

the next generation is proportional to the value of its error counter. First of all, the sum

S of all error counters for both test sets has to be provided to calculate the probability

S =
2

j=1

l

i=1

ecij , where ecij is the error counter of test case i in test set j. Afterwards,

the probability pCij =
ecij
S

can be calculated. Because we do not put back a selected

allele, the values of S and pCij change after every selection. Test cases handed on to the

next generation by the crossover operator are called dominant alleles while the others

are called recessive. Changes made to the crossover operator compared to the standard

crossover operator are listed in Table 3.

The reproduction operator moves
Mutation Operator Modified Mutation

Operator

Random selection of an

allele which is to be

mutated

The probability of se-

lecting an allele to be

mutated depends on its

error counter

New allele is chosen

randomly

New allele is chosen

from parent generation

with the help of the Fit-

ness and error counters

Mutation is not can-

celled

Mutation will be can-

celled if it causes a du-

plicate allele

Table 4: Mutation Operator Modifications

an individual to the next genera-

tion without any changes. The only

modification of this operator is not

to allow an individual to be cho-

sen twice. Therefore the value of

F as well as pj change after ev-

ery selection. A major problem of

the crossover and reproduction op-

erator is their seldom appliance to

test sets having a low fitness value.

Even with this low fitness value,

these test sets might contain some

test cases with high error counter

values. Due to low error counter

values of the majority of test cases,

the overall sum nevertheless would be low. These high rated test cases would rarely have

a chance to be handed on to the next generation without the mutation operator. For every

mutation a test set has to be chosen from the current generation. The selection of test set

j from all available test sets is done with probability pMj = 1− pj , where pj is defined as

described before. A test set is chosen for mutation with a probability reverse proportional

to its fitness. This allows to extract test cases with high error counter values from test sets

with a low fitness. From the chosen test set, a test case si will be taken with the probability

pMST
i . This probability is proportional to the value of the corresponding error counter eci

23

23



of test case si : p
MST
i = eci

l

j=1

ecj

. A test case ek from the next generation has to be chosen

to be substituted by test case si. The test set in which the substitution takes place is chosen

randomly. If the test case si is already an element of this test set, the mutation will be

cancelled. This avoids the presence of duplicate test cases in a test set. Test case ek, which

has to be substituted, will be chosen with probability pMET
k = 1 − eck

l

j=1

ecj

. This results

in test cases with a low error counter having a higher probability to be substituted. The

modifications of the mutation operator are summarized in Table 4.

Genetics provide a solution for adaption of individuals to a changing environment. This

is one reason for taking genetic algorithms to address the issue of test case adaption. An-

other important issue is that genetics only takes the sum of all properties of an individual

to calculate its fitness. This means an individual having a high fitness may even have low

rated properties. The importance of handing on properties with a low rating is given by

the changing environment. The rating of a property can improve as the system context

changes. This reflects the changing ability of test cases to detect faults as the offered ser-

vices and the requests change. We are confronted with the problem of an always changing

search space and the consequence of never reaching a final optimum. The goal is to keep

a variety of test cases and also to consider their rating changes over time. This implies

giving newly registered test cases a chance to improve. Therefore, test cases with a low

error counter should also get a chance to be integrated into the used test set.

4.4.2 Initial Test Setup

Initially, no test sets exist. However, services have to be tested from the start to find

out which requirements they fulfill. Therefore, this phase will be conducted similarly to

[TPC+03]. When a service is registered to the test system, the service provider has to

deliver test cases for this service. Furthermore, the service provider has to deliver infor-

mation about the service’s QoS properties. Optionally, the service provider can specify, for

which QoS property a test case is especially applicable. If no information is given, the test

case will be seen as relevant for all QoS properties. The QoS property category of a test

case is given by the QoS properties of the corresponding service. These initial test cases

will be put into a pool belonging to the corresponding QoS property and category. There

is a dedicated pool for every type of service and QoS property category. Furthermore, the

pool can have test cases sent by a client. These test cases might not have caused any errors

yet, but the client favors them to be tested. In this case, the client has to act like a service

provider. The client has to send the type of service to be tested, the QoS property and

the QoS property category. This enables testing a service not only with its own provided

test cases, but also with other test cases provided by services of the same category or by

clients.

The m test sets are generated with randomly chosen test cases from the corresponding

pool. Test cases are removed from the pool as soon as they are used in a test set. As

an improvement to the work of [TPC+03], services are also tested with inputs, which are

currently used by clients and already have caused errors.

24

24



The step of generating a pool and m test sets is only necessary, if a service of a not existing

functional domain is registered. Errors and inputs can be reported continuously to the

service registry. Furthermore, the adaption and testing is a continuously repeating process

of our test system.

5 Current State and Outlook

The approach presented in this paper is part of ongoing research, which focuses on enhanc-

ing the (self-)management capabilities of emerging home service platforms. Although the

context model and the semantic service extensions presented here are fundamental ele-

ments of context-aware systems, they are just the basics for the creation of these self-

management capabilities. As the introduction of semantics, just like service-orientation,

decouple concepts from implementation technologies, the semantic service registry con-

cept presented here is not limited to a specific implementation technology. For the pro-

totypical implementation, however, the OSGi service platform [OSG09] was selected in

combination with the Jena Semantic Web Framework [jen08] and the Pellet OWL 2 Rea-

soner [SPG+07] for ontology and SPARQL query processing. Here, the semantic service

registry extends the default OSGi service registry and offers an additional client API for

semantic service selection. Service registrations use either distinct or default OSGi API

methods. In the case of the latter, OSGi service registration calls are intercepted and their

associated bundles inspected for ontologies using OSGi’s Event Hook mechanism that

allows the inspection of OSGi services, whenever their runtime state changes (i.e., they

are registered or unregistered). As clients have to formulate specific queries for seman-

tic service look-ups, the semantic API offers an additional query-based method for this.

At the current stage, however, the client still has to address the OSGi service interface

of the targeted semantic service as part of the invocation, as abstract service queries in-

cluding parameters cannot be mapped to arbitrary OSGi services currently, yet. For goal-

or intention-driven semantic services, the service semantics have to be decoupled from

service interfaces as well.

Part of this research focuses on the development of a self-management module for ser-

vice platforms, which relies on dedicated management ontologies and associated rules to

manage the platform – applications, services and devices – autonomically. As monitoring

and state assessment are critical for this task, this management module relies on sensors

and tests (as described in Section 4.4) to gather runtime information required to compute

an appropriate management action to improve the managed system’s state. Here, the ap-

proach for service testing with test sets plays an important role, as the effectiveness of

management actions could be tested in this setup as well. Apart from the self-management

module, test sets are generated by occurring faults and with a genetic algorithm. This re-

sults in test sets, which adapt to the current faults and offered services. The advantages

of this testing method, therefore, lie in dynamic service environments. Future work will

implement, test, and compare this approach with other solutions. Furthermore we think

about expanding the fitness function to include other parameters besides the error counter.

25

25



References

[CDM+04] Liliana Cabral, John Domingue, Enrico Motta, Terry R. Payne, and Farshad Hakimpour.
Approaches to Semantic Web Services: An Overview and Comparison. In European
Semantic Web Conference, May 2004.

[Gmb04] VDI/VDE Innovation + Technik GmbH. Ambient Assisted Living - Preparation of an
Article 169 Initiative. http://http://www.aal169.org, September 2004.

[GPZ04] T. Gu, H.K. Pung, and D.Q. Zhang. Toward an OSGi-based infrastructure for context-
aware applications. Pervasive Computing, IEEE, 3(4):66 – 74, Oct.-Dec. 2004.

[Gro09] W3C OWL Working Group. OWL 2 Web Ontology Language Document Overview
(W3C Recommendation). http://www.w3.org/TR/owl2-overview/, Octo-
ber 2009.

[jen08] Jena - Semantic Web Framework for Java. http://openjena.org, January 2008.

[MB10] Simone Meixler and Uwe Brinkschulte. Test Case Generation for Non-functional and
Functional Testing of Services. Object-Oriented Real-Time Distributed Computing,
IEEE International Symposium on, pages 245–249, 2010.

[OSG09] OSGi Alliance. OSGi Service Platform Release 4 (Version 4.2) Core Specification.
http://www.osgi.org/Download/Release4V42/, May 2009.

[PE08] Eric Prud’hommeaux and Andy Seaborne (Editors). SPARQL Query Lan-
guage for RDF (W3C Recommendation). http://www.w3.org/TR/

rdf-sparql-query/, January 2008.

[RHT+11] Daniel Romero, Gabriel Hermosillo, Amirhosein Taherkordi, Russel Nzekwa, Romain
Rouvoy, and Frank Eliassen. The DigiHome Service-Oriented Platform. Software:
Practice and Experience, 2011.

[RVC+08] R.P. Diaz Redondo, A.F. Vilas, M.R. Cabrer, J.J.P. Arias, J.G. Duque, and A.G. Solla.
Enhancing Residential Gateways: A Semantic OSGi Platform. Intelligent Systems,
IEEE, 23(1):32 –40, Jan.-Feb. 2008.

[Sch10] Jan Schaefer. A Middleware for Self-Organising Distributed Ambient Assisted Living
Applications. In Workshop Selbstorganisierende, Adaptive, Kontextsensitive verteilte
Systeme (SAKS), March 2010.

[SPG+07] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and Yarden Katz.
Pellet: A Practical OWL-DL Reasoner. Web Semant., 5:51–53, June 2007.

[TPC+03] W. T. Tsai, R. Paul, Z. Cao, L. Yu, A. Saimi, and B. Xiao. Verification of web services
using an enhanced uddi server. Object-Oriented Real-Time Dependable Systems, IEEE
International Workshop on, 0:131, 2003.

[UPn11] UPnP Forum. About UPnP Forum. http://upnp.org/about/, August 2011.

[Xia06] Jinchun Xia. Qos-based service composition. In COMPSAC ’06: Proceedings of
the 30th Annual International Computer Software and Applications Conference, pages
359–361, Washington, DC, USA, 2006. IEEE Computer Society.

[ZKN06] Jiehan Zhou, J.-P. Koivisto, and E. Niemela. A Survey on Semantic Web Services and
a Case Study. In Computer Supported Cooperative Work in Design, 2006. CSCWD ’06.
10th International Conference on, pages 1 –7, May 2006.

26

26


