
Guiding Transaction Design through Architecture-Level
Performance and Data Consistency Prediction

Philipp Merkle
Software Design and Quality Group

Karlsruhe Institute of Technology (KIT)
76131 Karlsruhe, Germany

merkle@kit.edu

Abstract: Designing transactional software which operates not only in a timely fash-
ion but also preserves data consistency is challenging. While it is easy to preserve
data consistency by choosing a high isolation level, this can quickly become a per-
formance bottleneck due to limited concurrency. Conversely, relaxing the isolation
between concurrent transactions may lead to data inconsistencies. Solving this trade-
off systematically requires quantitative knowledge on the relation between transaction
performance and the likelihood of data consistency violations under a given isolation
level. Architecture-level performance prediction is a promising approach to address
the first half of this trade-off but often neglects the influence of transactions. The sec-
ond half—data consistency—is not addressed at all by existing approaches. Therefore,
we plan to integrate transaction modelling into the Palladio approach for component-
based software quality prediction. This creates the opportunity to predict not only
performance metrics more accurately, but also to estimate data consistency violations.

1 Introduction

Transactional software is built to support use cases where data inconsistencies are intolera-
ble or acceptable only to a certain extent. Transactions serve as a bundling mechanism for
operations to be executed in an atomic, consistent, isolated and durable (ACID) fashion.
Transaction isolation (the “I” in ACID) ensures that concurrent transactions do not affect
each other concerning the data they access, or that at least the mutual influence is limited
to a specified level—the so-called isolation level. For almost any relational DBMS, one
can adjust the isolation level: globally for all transactions, per database session or even on
a per-transaction basis.

Relaxing isolation is popular for optimising performance. Higher performance, however,
comes often at the expense of data inconsistencies. This trade-off becomes apparent espe-
cially for the highest level of isolation: serialisability. Under this isolation level, concurrent
transactions never interfere on a functional level. The database state resulting from execut-
ing two transactions t1 and t2 concurrently must have the same effect as executing them
in a serial order; i.e. executing first t1 followed by t2 or vice versa. This inherently limits
concurrency, mostly due to locks on shared data items. Serialisability, however, prevents
all kinds of consistency violations due to concurrent data access including the well-known

559



dirty read and lost update anomalies. When choosing a relaxed isolation level, one must
be well aware of potential data inconsistencies.

It is up to the software engineer to balance the transaction design between high perfor-
mance and high consistency. For this, it is essential to understand how design alternatives
influence performance and consistency. Design alternatives for transactions include trans-
action boundaries, database statements issued within these boundaries, the isolation level
as well as the database schema.

Architecture-level software quality prediction is a promising approach to obtain quality
metrics, on which design decisions can be based upon. For this, we plan to use the Palladio
approach for component-based quality prediction [BKR09] as a foundation. Our goal is
to integrate transaction modelling into the Palladio approach to obtain transaction quality
metrics. These include throughput, abort and retry rates, as well as the degree of data
consistency.

The scientific contribution of our research is a model-based approach for transaction qual-
ity analysis, integrated with architecture-level quality prediction. The envisioned approach
includes a meta-model for transaction modelling, along with a corresponding model solver
for predicting transaction quality metrics.

2 Research Goal and Questions

With our research, we intend to support software engineers in designing responsive yet
consistency-preserving transactional information systems. We assume a component-based
development process (cf. [KH06]) because it is well-suited for quality analyses [KBH07].
In our envisioned approach, component developers specify for each component its trans-
actional behaviour—however, without having to provide each database statement in its full
depth. Instead, a suitable abstraction is used. A model solver such as a simulator operates
on these specifications to analyse how assembled components in a system influence each
other. The solver yields predictions on the overall system performance and on the degree
of data consistency.

The sketched approach raises various research questions, which are presented below. These
questions mainly focus on performance influences of transactions while a detailed discus-
sion of consistency is left for future work. Each research question comprises a motivation
and a suggested solution. More details on the overall approach can be found in Sec. 3.

RQ1: What are the major performance factors of a transaction? For creating a suit-
able performance abstraction of transactions, it is vital to understand what factors influence
a transaction’s performance the most, and how they interact. We distinguish between fac-
tors stemming from a developer’s design space, the deployer’s configuration space, and
performance factors due to concurrency. Design related factors are transaction bound-
aries, the complexity of encapsulated database statements and the isolation level under
which these statements operate. Configuration related factors stem from the choice be-

560



tween different database management systems and from rich configuration options thereof.
Concurrency factors include lock contention for database objects (e.g. tables, rows or in-
dices) and contention for processing resources such as processors and storage devices.
Contention is basically caused either by concurrent transactions or by competing software
systems deployed along with the database on the same physical or logical machine.

Not all factors and interactions between them can be studied in the given timeframe, which
makes a preselection inevitable. The selection process will favour design related factors
since our goals in particular include early feedback on the quality of transaction design.
Taking these factors as a starting point, we investigate their interrelation using two trans-
action processing benchmarks, TPC-W1 and Apache Day Trader2. For automated and sys-
tematic experiments, we employ the SPA benchmark harness3. Initial experiments show
how an increased abort rate due to serialisability leads to a significant drop in throughput.

RQ2: What is an appropriate abstraction level for modelling transactions? The
purpose of this research question is to find a good balance between ease of modelling
and prediction accuracy. A detailed model is hard to create in early development stages
since many details are not known yet; it may, however, yield accurate predictions. By
contrast, a highly abstract model is rather easy to create, e.g. from previous experience,
but likely reduces prediction accuracy due to neglected factors. An example of a highly
abstract model is the mere number of database statements issued by a single transaction;
read versus write access is neglected as is the statements’ complexity. An example for
a detailed model is a full-fledged logical database schema along with a statistical data
distribution per table column.

For specifying transaction boundaries and the isolation level, there is not much space for
abstraction and we do not see a need to do so. Finding an appropriate abstraction for
database statements is more challenging. We believe that probabilistic modelling may
be well suited. For each database statement, the software engineer would characterise a
number of parameters (e.g. read versus write access and read selectivity) using random
variables. For example, one could specify that the customers table is read in 80% of the
cases and written in the remaining cases; the selectivity of a read access could be set to
10%. An accompanying schema specification characterises the customers table in terms
of its size. On this basis, a model solver could reason on the probability for a read-write
conflict under a given concurrency level.

RQ3: How can transaction modelling be integrated with architecture description lan-
guages? As has been motivated before, we plan to base our approach on the existing Pal-
ladio approach. The Palladio approach includes the Palladio component model (PCM)—a
meta-model for component-based software architectures—along with various analytical
and simulative solvers capable of predicting the performance for instances of the PCM.
Much research effort has been spent to make the PCM a conceptually clean language for

1http://www.tpc.org/tpcw/
2https://cwiki.apache.org/GMOxDOC20/daytrader.html
3http://sdqweb.ipd.kit.edu/wiki/Storage Performance Analyzer

561



architectural descriptions while being at the same time suited for different quality analyses.
Preserving these properties throughout the process of integrating transaction modelling is
challenging and is addressed by this research question.

Integrating transaction modelling means to extend the expressiveness of the PCM by intro-
ducing additional metaclasses on the metamodel level. For transaction demarcation, one
could think of three additional actions BeginTX, CommitTX and AbortTX integrated into
PCM’s control flow abstraction. In between, a DatabaseStatement might issue a database
demand similar to plain resource demands in the PCM. The database statement will likely
be aligned with SQL statements but is in no case a full-fledged SQL statement.

RQ4: How can transaction-oriented quality prediction and architecture-level quality
prediction be combined? Several analysis approaches exist for performance prediction
based on a PCM model. Analytical approaches include layered queuing networks and
queuing Petri nets. Simulative approaches include discrete-event simulators pursuing a
generative [BKR09] or interpretive [MH11] approach. These solvers differ in expres-
siveness imposed by the underlying formalism, but also in maturity and coverage—some
support just a subset of the PCM meta-model.

One of the main arguments for analytical approaches is their speed, which usually out-
performs simulative approaches by magnitudes; however, at the cost of limited predictive
power due to what is called the state space explosion problem. If one of the analytic ap-
proaches proves to be sufficiently powerful, we will stick to it for predicting transaction
quality metrics. Otherwise, discrete-event simulation will serve this purpose.

3 Envisioned Approach

The artefacts involved in our approach and their interrelation are depicted in Fig. 1. The
central component is the transaction simulator, which imitates a DBMS’s transaction man-
ager. Supplied with a transaction model and a DBMS profile, the transaction simulator
predicts transaction quality metrics, including throughput, abort rates and the likelihood
for various consistency violations.

The transaction model contains abstract behaviour characterisations for each transaction to
be simulated. An example characterisation is the probability to access a certain database
table, along with the total number of database accesses issued by that transaction. The
transaction model references elements from the architecture model to allow for assigning
transactional behaviour to certain architectural entities like a component specification.

The DBMS profile takes into account that transaction managers (TM) behave different,
leading to different implications on performance and consistency. A locking-based TM,
for instance, differs fundamentally from a TM based on multi-version concurrency control
(MVCC); while the former acquires read locks in most isolation levels, the latter avoids
read locks entirely. Even in the class of locking-based TMs, there are wide differences in
the granularity of locks. While one TM features a sophisticated lock hierarchy, another

562



Figure 1: Artefacts in our approach and their interrelation. Dashed boxes indicate existing artefacts.

TM operates with fine-grained row-level locks only. This is why the transaction simulator
is parametrised by a DBMS profile, which captures the characteristics of a DBMS. This
way, the DBMS profile factors out product specifics from the transaction simulator.

To obtain system-level predictions, we integrate the transaction simulator into an existing
but slightly modified software architecture simulator. For this, we use one of the sim-
ulators developed in the scope of the Palladio approach, e.g. EventSim [MH11], which
has been specifically developed for extensibility. The architecture simulator expects two
inputs: a PCM software architecture model, whose expressiveness is enhanced by the
transaction model, and a corresponding PCM usage model. The software architecture
model specifies the components and how they are assembled and deployed; the usage
model specifies common use cases (called usage profiles), i.e. the workload. Whenever
the architecture simulator encounters a transaction, it delegates the responsibility to the
transaction simulator. This way, the usage profile propagates through the architecture
down to transactions, where the transaction simulator keeps track of transaction-induced
contention such as lock contention.

4 Related Work

A general overview of software performance evaluation (SPE) is provided in [BDMIS04].
SPE for component-based systems is surveyed in [Koz10]. From [Koz10], it becomes
apparent that performance prediction approaches with a focus on middleware (includ-
ing transactions) often neglect the influence of business logic and vice versa. A notable
exception is the work by Menascé and Gomaa [MG00], who predict performance of a
transaction-intensive client/server system. Using their CLISSPE language, they create de-
tailed models of transaction behaviour along with information on the database schema and
the DBMS. The high level of detail, however, makes it difficult to use their approach in
early development stages. Data consistency prediction is covered by a few publications,
e.g. [FGA09]. However, we do not know of approaches aimed at predicting data consis-
tency on the system level.

563



5 Conclusion

In this paper, we argued for representing transactional behaviour explicitly in approaches
for software quality prediction. Such an integrated prediction creates the opportunity to
predict not only performance metrics more accurately, but also provides an estimate of data
consistency violations. These metrics are supposed to help software engineers in finding a
suitable balance between performance and data consistency. We base our approach on the
existing Palladio approach for component-based software quality prediction, which has
been successfully applied in a number of case studies.

References

[BDMIS04] Simonetta Balsamo, Antinisca Di Marco, Paola Inverardi, and Marta Simeoni. Model-
based performance prediction in software development: a survey. Software Engineer-
ing, IEEE Transactions on, 30(5):295 – 310, may 2004.

[BKR09] Steffen Becker, Heiko Koziolek, and Ralf Reussner. The Palladio component model
for model-driven performance prediction. Journal of Systems and Software, 82:3–22,
2009.

[FGA09] Alan Fekete, Shirley N. Goldrei, and Jorge Pérez Asenjo. Quantifying isolation anoma-
lies. Proceedings of the VLDB Endowment, 2(1):467–478, 2009.

[KBH07] Heiko Koziolek, Steffen Becker, and Jens Happe. Predicting the Performance of
Component-based Software Architectures with different Usage Profiles. In Proc. 3rd
International Conference on the Quality of Software Architectures (QoSA’07), volume
4880 of Lecture Notes in Computer Science, pages 145–163. Springer-Verlag Berlin
Heidelberg, July 2007.

[KH06] Heiko Koziolek and Jens Happe. A QoS Driven Development Process Model for
Component-Based Software Systems. In Proc. 9th Int. Symposium on Component-
Based Software Engineering (CBSE’06), volume 4063 of Lecture Notes in Computer
Science, pages 336–343. Springer-Verlag Berlin Heidelberg, 2006.

[Koz10] Heiko Koziolek. Performance evaluation of component-based software systems: A
survey. Performance Evaluation, 67(8):634–658, 2010. Special Issue on Software and
Performance.

[MG00] Daniel A. Menascé and Hassan Gomaa. A method for design and performance
modeling of client/server systems. Software Engineering, IEEE Transactions on,
26(11):1066–1085, 2000.

[MH11] Philipp Merkle and Jörg Henss. EventSim – An Event-driven Palladio Software Ar-
chitecture Simulator. In Proc. Palladio Days 2011, Karlsruhe Reports in Informatics ;
2011,32, pages 15–22, Karlsruhe, 2011. KIT, Fakultät für Informatik.

564


