The MINERVA* Project:
Database Selection in the Context of P2P Search

Matthias Bender, Sebastian Michel, Gerhard Weikum, Christian Zimmer
{mbender, smichel, weikum, czimmer } @mpi-sb.mpg.de
Max-Planck-Institut fiir Informatik, 66123 Saarbriicken

Abstract: This paper presents the MINERVA project that protoypes a distributed
search engine based on P2P techniques. MINERVA is layered on top of a Chord-style
overlay network and uses a powerful crawling, indexing, and search engine on every
autonomous peer. We formalize our system model and identify the problem of effi-
ciently selecting promising peers for a query as a pivotal issue. We revisit existing ap-
proaches to the database selection problem and adapt them to our system environment.
Measurements are performed to compare different selection strategies using real-world
data. The experiments show significant performance differences between the strategies
and prove the importance of a judicious peer selection strategy. The experiments also
present first evidence that a small number of carefully selected peers already provide
the vast majority of all relevant results.

1 Introduction

The peer-to-peer (P2P) approach, which has become popular in the context of file-
sharing systems such as Gnutella or KaZaA, allows handling huge amounts of data in
a distributed and self-organizing way. In such a system, all peers are equal and all of the
functionality is shared among all peers so that there is no single point of failure and the
load is evenly balanced across a large number of peers. These characteristics offer enor-
mous potential benefits for search capabilities powerful in terms of scalability, efficiency,
and resilience to failures and dynamics. Additionally, such a search engine can potentially
benefit from the intellectual input (e.g., bookmarks, query logs, etc.) of a large user com-
munity. One of the key difficulties, however, is to efficiently select promising peers for a
particular information need.

In spite of being a young paradigm, P2P exposes large overlap with traditional database
research and can highly benefit from existing work. However, the peculiarities of such a
distributed architecture require a different view on some aspects. For example, the absence
of a centralized indexing facility together with the difficulties to calculate global metrics in
this large and highly dynamic system hamper the use of traditional methods for database
selection.

This paper presents the architecture of the MINERVA P2P Web search project and pro-
poses and evaluates strategies for routing queries to peers. Each peer is considered au-
tonomous and has its own local search engine with a crawler and a corresponding local
index. Peers share their local indexes (or specific fragments of local indexes) by posting
meta-information into the P2P network. This meta-information contains compact statistics

*Minerva is the Roman goddess of science, wisdom, and learning, and also happens to be a Greek underwear
manufacturer.

125

and quality-of-service information, and effectively forms a global directory. However, this
directory is implemented in a completely decentralized and largely self-organizing man-
ner. More specifically, we maintain it as a distributed hash table (DHT) using the (re-
implemented and adapted) algorithms of the Chord system [SMK'01]. Our per-peer en-
gine uses the global directory to identify candidate peers that are most likely to provide
good query results. A query posed by a user is first executed on the user’s own peer, but can
additionally be forwarded to other peers for better result quality. The local results obtained
from there are merged by the query initiator.

The novel contributions of our work lie in the system-oriented approach to P2P Web
search. We present measurements of a fully operational system on real-life data, consi-
dering both the quality of search results and the overhead and run-time efficiency of the
system. Novel aspects of the Minerva architecture are the way we leverage Chord-style
overlay networks for efficient managing of the peers’ postings on their index contents and
statistical summaries, and the support for a broad variety of advanced peer selection stra-
tegies. Compared to earlier work on database selection in distributed information retrieval
(e.g., [Fu99, CLC95, MYLO02]) our approach has been explicitly designed for the large
scale and high dynamics of P2P systems.

After presenting related work in Section 2, we present the P2P Lookup Service Chord in
Section 3. Section 4 gives a short introduction on Information Retrieval basics necessary
for the remainder of this paper. The system design is presented in Section 5 and formalized
to a system model in Section 6. Section 7 discusses the implementation that serves as
an experimental testbed for studying the different Peer Selection strategies introduced in
Section 8. Section 9 shows early experimental results obtained from the prototype with
real-world data. Future research directions conclude this paper in Section 10.

2 Related Work

Recent research on P2P systems, such as Chord [SMKT01], CAN [RFH*01], Pastry
[RDO1], P2P-Net [BB04], or P-Grid [APHS02] is based on various forms of distributed
hash tables (DHTs) and supports mappings from keys, e.g., titles or authors, to locations
in a decentralized manner such that routing scales well with the number of peers in the
system.

Typically, an exact-match key lookup can be routed to the proper peer(s) in at most
O(log n) hops, and no peer needs to maintain more than O(log n) routing information.
These architectures can also cope well with failures and the high dynamics of a P2P system
as peers join or leave the system at a high rate and in an unpredictable manner. However,
the approaches are limited to exact-match, single keyword queries on keys. This is insuf-
ficient when queries should return a ranked result list of the most relevant approximate
matches [ChO02].

In the following we briefly discuss some existing approaches towards P2P Web search.
Galanx [WGdWO03] is a peer-to-peer search engine implemented using the Apache HTTP
server and BerkeleyDB. It directs user queries to relevant nodes by consulting local peer
indexes similar to our approach.

PlanetP [CAPMNO?2] is a publish-subscribe service for P2P communities and the first
system supporting content ranking search. PlanetP distinguishes local indexes and a global
index to describe all peers and their shared information. The global index is replicated
using a gossiping algorithm. The system, however, is limited to a few thousand peers.

Odissea [SMW 03] assumes a two-layered search engine architecture with a global in-

126

dex structure distributed over the nodes in the system. A single node holds the entire index
for a particular text term (i.e., keyword or word stem). Query execution uses a distributed
version of Fagin’s threshold algorithm [Fa99]. The system appears to cause high network
traffic when posting document metadata into the network, and the query execution method
presented currently seems limited to queries with one or two keywords only.

The system outlined in [RVO03] uses a fully distributed inverted text index, in which
every participant is responsible for a specific subset of terms and manages the respective
index structures. Particular emphasis is put on three techniques to minimize the bandwidth
used during multi-keyword searches.

[LCO3] considers content-based retrieval in hybrid P2P networks where a peer can either
be a simple node or a directory node. Directory nodes serve as super-peers, which may
possibly limit the scalability and self-organization of the overall system. The peer selection
for forwarding queries is based on the Kullback-Leibler divergence between peer-specific
statistical models of term distributions.

Strategies for P2P request routing beyond simple key lookups but without considerations
on ranked retrieval have been discussed in [YGMO02, CGMO02a, CFKO03], but are not direct-
ly applicable to our setting. The construction of semantic overlay networks is addressed
in [LNST03, CGMO02b] using clustering and classification techniques; these techniques
would be orthogonal to our approach. [TXDO03] distributes a global index onto peers using
LSI dimensions and the CAN distributed hash table. In this approach peers give up their
autonomy and must collaborate for queries whose dimensions are spread across different
peers. [ACMHPO04] addresses the problem of building scalable semantic overlay networks
and identifies strategies for their traversal.

In addition to this recent work on P2P Web search, prior research on distributed IR and
metasearch engines is potentially relevant, too. [Ca00] gives an overview of algorithms for
distributed IR style result merging and database content discovery. [Fu99] presents a for-
mal decision model for database selection in networked IR. [NFO03] investigates different
quality measures for database selection. [GBSO01, MRYGMO1] study scalability issues for
a distributed term index.

A good overview of metasearch techniques is given by [MYL02]. [WMYLO1] discus-
ses specific strategies to determine potentially useful local search engines for a given user
query. Notwithstanding the relevance of this prior work, collaborative P2P search is sub-
stantially more challenging than metasearch or distributed IR over a small federation of
sources, as these approaches mediate only a small and rather static set of underlying engi-
nes, as opposed to the high dynamics of a P2P system.

3 Chord - A Scalable P2P Lookup Service

The efficient location of nodes in a P2P architecture is a fundamental problem that has
been tackled from various directions. Early (but nevertheless popular) systems like Gnu-
tella rely on unstructured architectures in which a peer forwards messages to all known
neighbors. Typically, these messages include a Time-to-live (TTL) tag that is decreased
whenever the message is forwarded to another peer. Even though studies show that this
message flooding (or gossiping) works remarkably well in most cases, there are no guaran-
tees that all relevant nodes will eventually be reached. Additionally, the fact that numerous
unnecessary messages are sent interferes with our goal of a highly scalable architecture.

Chord [SMK™01] is a distributed lookup protocol that addresses this problem. It provi-
des the functionality of a distributed hash table (DHT) by supporting the following lookup

127

operation: given a key, it maps the key onto a node. For this purpose, Chord uses consis-
tent hashing [KLL"97]. Consistent hashing tends to balance load, since each node receives
roughly the same number of keys. Moreover, this load balancing works even in the pre-
sence of a dynamically changing hash range, i.e., when nodes fail or leave the system or
when new nodes join.

Figure 1: Chord Architecture

Chord not only gurarantees to find the node responsible for a given key, but also can do
this very efficiently: in an N-node steady-state system, each node maintains information
about only O(log V) other nodes, and resolves all lookups via O(log N) messages to other
nodes. These properties offer the potential for efficient large-scale systems.

The intuitive concept behind Chord is as follows: all nodes p; and all keys k; are mapped
onto the same cyclic ID space. In the following, we use keys and peer numbers as if the
hash function had already been applied, but we do not explicitly show the hash function for
simpler presentation. Every key k; is assigned to its closest successor p; in the ID space,
i.e. every node is responsible for all keys with identifiers between the ID of its predecessor
node and its own ID. For example, consider Figure 1. Ten nodes are distributed across the
ID space. Key k54, for example, is assigned to node psg as its closest successor node.

A naive approach of locating the peer responsible for a key is also illustrated: since every
peer knows how to contact its current successor on the ID circle, a query for k54 initiated
by peer pg is passed around the circle until it encounters a pair of nodes that straddle the
desired identifier; the second in the pair (psg) is the node that is responsible for the key.
This lookup process closely resembles searching a linear list and has an expected number
of O(N) hops to find a target node, while only requiring O(1) information about other
nodes.

To accelerate lookups, Chord maintains additional routing information: each peer p;
maintains a routing table called finger table. The m-th entry in the table of node p; contains
a pointer to the first node p; that succeeds p; by at least 2™ ~! on the identifier circle. This
scheme has two important characteristics. First, each node stores information about only
a small number of other nodes, and knows more about nodes closely following it on the
identifier circle than about nodes farther away. Secondly, a node’s finger table does not
necessarily contain enough information to directly determine the node responsible for an

128

Lookup(54)

fingertable |
Ps ,"

Figure 2: Scalabe Lookups Using Finger Tables

arbitrary key k;. However, since each peer has finger entries at power of two intervals
around the identifier circle, each node can forward a query at least halfway along the
remaining distance between itself and the target node. This property is illustrated in Figure
2 for node pg. It follows that the number of nodes to be contacted (and, thus, the number
of messages to be sent) to find a target node in an N-node system is O(log V).

Chord implements a stabilization protocol that each peers runs periodically in the back-
ground and which updates Chord’s finger tables and successor pointers in order to ensure
that lookups execute correctly as the set of participating peers changes. But even with
routing information becoming stale, system performance degrades gracefully.

Chord can provide lookup services for various applications, such as distributed file sys-
tems or cooperative mirroring. However, Chord by itself is not a search engine, as it only
supports single-term exact-match queries and does not support any form of ranking.

4 Information Retrieval Basics

Information Retrieval (IR) systems keep large amounts of unstructured or weakly struc-
tured data, such as text documents or HTML pages, and offer search functionalities for
delivering documents relevant to a query. Typical examples of IR systems include web
search engines or digital libraries; in the recent past, relational database systems are inte-
grating IR functionality as well.

The search functionality is typically accomplished by introducing measures of simila-
rity between the query and the documents. For text-based IR with keyword queries, the
similarity function typically takes into account the number of occurences and relative po-
sitions of each query term in a document. Section 4.1 explains the concept of inverted
index lists that support an efficient query execution and section 4.2 introduces one of the
most popular similarity measures, the so-called TF*IDF measure. For further reading, we
refer the reader to [Ch02, MS99].

129

4.1 Inverted Index Lists

The concept of inverted index lists has been developed in order to efficiently identify
those documents in the dataset that contain a specific query term. For this purpose, all
terms that appear in the collection form a tree-like index structure (often a BT -tree or a
trie) where the leaves contain a list of unique document identifiers for all documents that
contain this term (Figure 3). Conceptually, these lists are combined by intersection or union
for all query terms to find candidate documents for a specific query. Depending on the exact
query execution strategy, the lists of document identifiers may be ordered according to the
document identifiers or according to a score value to allow efficient pruning.

B+ tree on terms

database selection algorithm

17:0.3 12: 0.5 11: 0.6
144: 0.4 14: 0.4 17: 0.1
52: 0.1 28: 0.1 28: 0.7
53: 0.8 144: 0.2 :

index lists with 55 06 g; gg

(Docld: tfidf) 3 :

sorted by Docld)

Figure 3: B+ Tree of Inverted Index Lists

4.2 TF x IDF Measure

The number of occurences of a term ¢ in a document d is called term frequency and
typically denoted as tf; 4. Intuitively, the significance of a document increases with the
number of occurences of a query term. The number of documents in a collection that
contain a term ¢ is called document frequency (dfy); the inverse document frequency (idf;)
is defined as the inverse of df;. Intuitively, the relative importance of a query term decreases
as the number of documents that contain this term increases, i.e., the term offers less
differentiation between the documents. In practice, these two measures may be normalized
(e.g., to values between 0 and 1) and dampened using logarithms. A typical representative
of this family of ¢ f * ¢df formulae that calculates the weight w; ; of the i-th term in the
j-th document is

w; ;= —————xlog(==)

max{tfi;} df;

where N is the total number of documents in the collection.

In recent years, other relevance measures based on statistical language models and pro-
babilistic IR have received wide attention [Fu99, CL03]. For simplicity and because our
focus is on P2P distributed search, we use the still most popular ¢ f * idf scoring family in
this paper.

4.3 Top-k Index Processing

A good algorithm should avoid reading inverted index lists completely, but limit the ef-
fort to O(k) where k is the number of desired results. In the IR and multimedia-search
literature, various algorithms have been proposed to accomplish this. The best known
general-purpose method for top-k queries is Fagin’s threshold algorithm (TA) [FLNO1],
which has been independently proposed also by Nepal et al. [NR99] and Giintzer et al.

130

[GBKOO]. It uses index lists that are sorted in descending order of term scores under the
additional assumption that the final score for a document is calculated using a monotone
aggregation function (such as a simple sum function). TA traverses all inverted index lists
in a round-robin manner, i.e., lists are mainly traversed using sorted accesses. For every
new document d encountered, TA uses random accesses to calculate the final score for d
and keeps this information in a document candidate set. Since TA additionally keeps track
of a higher bound for documents not yet encountered, the algorithm terminates as soon
as this bound assures that no unseen document can enter the candidate set. Probabilistic
methods have been studied in [TWSO04] that can further improve the efficiency of index
processing.

5 System Design

Figure 4 illustrates our approach which is layered on top of Chord and closely follows a
publish-subscribe paradigm. We assume that every database forms a peer that is completely
autonomous and has a local index that, e.g., can be imported from external crawlers and
indexers. Our (conceptually global but physically distributed) directory holds only very
compact, aggregated information about the peers’ local indexes and only to the extent that
the individual peers are willing to disclose. We use distributed hash tables to partition the
term space, such that every peer is responsible for a randomized subset of terms within the
global directory.

Every peer publishes a summary (Post) for every term in its local index to the underlying
overlay network, which is routed to the peer currently responsible for this term. This peer
maintains a PeerList of all postings for this term from across the network (for failure resili-
ence and availability, the PeerLists may be replicated across multiple peers). Posts contain
contact information about the peer who posted this summary together with statistics to
calculate IR-style measures as introduced in Chapter 4 for a term and other information
about the peer (e.g., index statistics, or quality-of-service measures like average response
times).

The querying process for a multi-term query proceeds as follows: first, the querying
peer retrieves a list of potentially useful peers by issuing a PeerList request for each query
term to the underlying overlay network. Using database selection methods, a number of
promising peers for the complete query is computed from these PeerLists (peer selection).
Subsequently, the query is forwarded to these peers and executed based on the their local
indexes. Note that this communication is done in a pairwise point-to-point manner bet-
ween the peers, allowing for efficient communication and limiting the load on the global
directory. Finally, the results from the various peers are combined at the querying peer into
a single result list (Result Merging). Chapter 8 gives details about different peer selection
strategies.

The goal of finding high-quality search results with respect to precision and recall can-
not be easily reconciled with the design goal of unlimited scalability, as the best informa-
tion retrieval techniques for query execution rely on large amounts of document metadata.
Posting only compact, aggregated information about local indexes and using database se-
lection methods to limit the number of peers that actually execute a query limits the size
of the global directory and reduces network traffic. We expect this approach to scale very
well as more and more peers jointly maintain this moderately growing global directory.

The approach can easily be extended in a way that multiple distributed directories are
created to store information beyond local index summaries, such as information about local
bookmarks [BMWZ04], information about relevance assessments (e.g., derived from peer-

131

Distributed Index Distributed Index

Term -> List of Peers Term -> List of Peers

Step 0: Step 1: Step 2:
Post per-term Retrieve list of peers Retrieve and combine local
summaries of local indexes for each query term query results from peers

Figure 4: P2P Query Routing

specific query logs or click streams), or explicit user feedback. This information could be
leveraged when executing a query to further enhance result quality.

6 System Model

In this section we formalize our design. Let P := {p;|1 < i < r} be the set of peers
currently connected to the system. Let D := {d;|]1 < ¢ < n} be the global set of all
documents; let T := {¢;|1 < ¢ < m} analogously be the set of all terms.

Each peer p; has a local index for terms in 7; C T (usually |T;| < |T|). The local index
contains IR-style statistics s; € S for each term ¢ in the set of indexed documents D; C D
(usually | D;| < | D).

A hash function hash : T' — ID is used in order to distribute terms across the availa-
ble peers by assigning identifiers to terms. The underlying distributed hash table offers a
function lookup : ID — P that returns the peer p currently responsible for an identifier.

A PeerList request plr to a peer p; about a term ¢ can now be defined as a function
plr : T x P — 2PX5 that returns a list of peers that have posted statistics about the
term ¢ to peer p;. The function call lookup(hash(t)) is used to determine which peer is
responsible for hosting statistics about aterm ¢ € T'.

In order to form the distributed directory, each peer p; posts s, for all t € T/ C T;
(T} is the subset of T; that the peer p; can select at its own discretion) forming the global
directory:

systerms : T — 2°%5

systerms(t) := plr(t, lookup(hash(t)))

This directory provides a mapping from terms to PeerLists and can be used to identify
the peer that maintains the list of Posts for a term ¢ within the directory. We consider a
query q as a set of (term, weight)-pairs and the set of possible queries as @ := 27* In
order to process a query ¢, a set of promising peers for this query has to be determined in
a database selection step using a function

132

selection : Q — 2F

selection(q) := comb(U systerms(t), q)
(t,w)€q

that selects a subset of peers by appropriately combining the results from systerms
using a function comb : 2F%5 x @ — 27,

The execution of a query ¢ is a function exec : @ x 2P — 2P that sends the query
to the peers previously determined by selection(q) and combines the peers’ local results
into one single final result set (result merging). Finally, we can define the global query
execution function result : Q — 2P that is evaluated as

result(q) := exec(q, selection(q))

7 Implementation

Figure 5 illustrates the architecture of a MINERVA P2P Search peer. The peer is layered
on top of the distributed hash table (DHT) that builds the global directory by providing
mappings from terms to peers. The directory returns a PeerDescriptor object representing
the peer currently responsible for a term. A Communicator can be established to send
messages to other peers. Every peer has an Event Handler that receives incoming messages
and forwards them to the appropriate local components.

Fro— = —»|Local QProcessor

—_ IPeerList Processor| I
.. >
Term -> PeerList -
Local
> Index >
Event Handler Communicator
Poster

—> = —>

IGlobal QProcessc

. 7y

A 4 Peer : Descriptor Peer: Descriptor
Distributed Hashtable

Figure 5: System Architecture

Every peer has a local index. The index is used by the Local QueryProcessor compo-
nent to answer queries locally and by the Poster component to publish per-term summaries
(Posts) to the global directory. To do so, the Poster uses the underlying DHT to find the
responsible peer; the PeerList Processor at this peer maintains a PeerList of all Posts for
this term from across the network. When the user poses a query, the Global QueryPro-
cessor component analogously uses the DHT to find the responsible peer and retrieves
the respective PeerLists from the PeerList Processors using Communicator components.
After running peer selection strategies on these lists, the Global QueryProcessor forwards
the complete query to the selected peers, which in turn process the query using their Local
QueryProcessors and return their results. Finally, the Global QueryProcessor merges these
results and presents them to the user.

133

B MINERVA - P2P Search

THE WAAK PLANCE SOCIETY

2000
m | i 20594
i 139.19.54.20

localhost [Find size 65536 neurareport (2799731

ring exponent 16 renarket (#2790 1

m | succ id 19320
refresh list

Jain

Queries

1P Pork LRL | Score

Peer 139.19.54.20:9003 http://139.19,50.40 wikidurmpmmajmax_planck.html 0.693147180...
Peer 139,19,54.20:9001 htbpe/f139,19,50,40 wikidump/m/mafmazx_planck_institute_For_the_history_,., 0,690610595.,,,
Peer 139.19.54.20:9003 httpe/f139,19,50,40 fwikidurmpnfnafnatural_units, kel 0.689319206. .,
Peer 139,19,.54,20:9003 httpe/ fusw, molgen. mpg.def 0686558076, ..
Peer 139.19.54.20:9001 http:/f139.19,50.40/wikidump/g/gefgenetics, html 0.685861423...
Peer 139.19.54.20:9001 http://1359.19,50.40 wikidurmp1lillist_of _physicists, html 0.685551342..,

Figure 6: Prototype GUI

MINERVA uses a Java-based reimplementation of Chord [SMKT01] as its underlying
DHT, but can easily be used with other DHTs providing a lookup(key) method. Commu-
nication is conducted socket-based, but Web-Service-based [ACKO04] peers can easily be
included to support an arbitrarily heterogeneous environment. Figure 6 shows a screenshot
of MINERVA’s user interface. The user starts a peer by either creating a new Chord ring
or by joining an existing system. Both actions require the specification of a local Chord
port for communication concerning the global directory and a local application port for
direct peer-to-peer communication. Joining an existing system requires additional infor-
mation about one existing peer. Status information regarding the Chord ring is displayed
and continuously updated. The Posts section provides information about the terms that the
peer is currently responsible for, i.e., for which it has received Posts from other peers. The
button Post posts the information contained in the local index to the directory. The Queries
section executes queries with multiple keywords entered into a form field. The results are
displayed ordered by their scores.

8 Peer Selection Strategies

Peer selection is the problem of identifying peers that can answer the query of a given
peer po with high result quality at low execution costs. Our approach consists of two steps:

1. Look up potential candidates

2. Identify the best k peers (where k is a system-configuration parameter) by assessing all
candidates using a bene fit/cost ratio

134

The first step is conducted by retrieving all Posts for each query term from the global
directory. For efficiency, we can also limit the directory lookup to return only the best
peers for a keyword, based on a score measure (e.g., number of matches above some score
threshold). In the second step, all Posts of a peer are combined to assess the expected
result quality (benefit) of the peer for this query, i.e., to perform peer selection. In this
step the benefit estimation refers to a peer’s contribution to better search results, and the
cost estimation refers to the resource consumption and responsiveness of the peers that
are involved in a query and also the network performance. For dynamic cost estimation,
many proposals exist in the literature on distributed load sharing (see, e.g., [Lu93]). A very
simple approach is to disregard the different performance capacities and utilizations of the
peers and network routes and merely assume that the overall execution cost of a query
increases proportionally with the number of peers that participate in the query. In this
paper we adopt this simple assumption and concentrate on the issue of benefit estimation.

The following sections discuss various benefit estimators for peer selection strategies;
many other approaches have been proposed in the distributed IR literature, one of the most
prominent is the decision-theoretic framework by [Fu99]. Following the terminology of
the existing literature, we refer to various statistical measures as per collection measures;
in our P2P context a collection is the local index content of a peer. We consider only
queries with equally weighted terms; so a query is simply a set of terms.

8.1 «cdf — ctf™** Approach

This very simple heuristic approach combines the collection document frequency (cdf)
with the maximum collection term frequency (ct f™%*) (the maximum number of term
occurrences in the documents of the collection) and summarizes over all query terms.
Here the cdf for term ¢ of peer p; is the number of documents containing ¢ that p; holds in
its local index, and the ct f™** value for term ¢ of peer p; is the term frequency (¢ f) of ¢
in the document d at p; that has the highest ¢ f of ¢ among all documents at p;.

The collection score s; of the i-th peer with regard to a query g is computed as
8; = Z a-logedfit + (1 —) - log et fi*"
teqQ

The value of the parameter o can be chosen between 0 and 1 and is used to emphasize
the importance of cdf vs. ct f™**. The scores s; are computed for all peers and sorted in
descending order to obtain the final peer ranking.

8.2 CORI-like Approaches

In this section we consider two approaches corresponding to the strategies presented in
[CLCY5, Ca00]. We refer to these strategies as CORI 1 and CORI 2, respectively.

821 CORI1

This approach computes the collection score s; of the i-th peer with regard to a query ¢ in
the following manner:

Sit
S; = E

= ldl

135

Sit =« + (]. — a) . Ti,t . Ii,t
The computations of T; ; and I; ; use the size of the underlying Chord identifier space as

an upper bound for the number of peers in the system, denoted np, the collection document
frequency (cdf), and the maximum collection document frequency (cdf™**):

log(cdfi + +0.5)

Ty =B+ (1
it =B+ (SN log(cdfm‘“” +1.0)
log(np+0.5)
L= ——
" log(np+1)

where the collection frequency cf; is the number of peers that contain the term ¢. We
approximate this value by the number of peers that have published Posts for term ¢, i.e.,
the length of the PeerList for ¢. The values v and 3 are chosen as a = 8 = 0.4 [CLC95].

8.2.2 CORI2

This approach was proposed in [Ca00] and differs in the computation of T} ;. It considers
the size V; of the term space of a peer (i.e., the total number of distinct terms that the peer
holds in its local index) and the average term space size V' *“9 over all peers that contain
term ¢:

Cdfz t
nt = Vil
cdfie + 50 + 150 - ravg;

In practice, it is difficult to compute the average term space size over all peers in the
system (regardless of whether they contain query term ¢ or not). We approximate this value
by the average over all collections found in the PeerLists.

8.3 GIOSS-like Approach

This strategy is based on the work presented in [GGMT99]; we refer to this strategy
as GIOSS-like. First, we need to sort the query terms ¢; € () in ascending order of their
cdf values (for simplicity, we re-index the terms ¢1, to, ..., ¢, to reflect this sorting), i.e., it
holds for any pair 4, t;41 that cdf; < cdfiq1.

In a second step, the average term frequency per document in a collection (ct f;""?) is
computed by combining the collection term frequency (ct f; - number of occurrences of a
term in the entire collection) and the collection document frequency (cdfy):

th t
Cdf t

Now we can calculate the final collection score of the i-th peer with regard to a query ¢

tfal)g

as

|Ci
dfi,u

)

u=t

= Z (cdfiy — cdfi—1) - Z(thavg log(
t=1

136

where cdf; o := 0 and |C;] is the number of documents in the i-th collection.
8.4 Language-Model (LM) based Approaches

The next two strategies use statistical language models (LMs) for computing collection
rankings.

8.4.1 LM of Callan

This approach builds upon the ideas presented in [SJCOO02] to calculate a collection score
as

s; = Z log(A-sie+(1—X)-sar,t)
teQ

where sg g+ is a statistical model of General English and X is a calibration parameter.
We approximate the model by calculating the number of occurrences of term ¢ in the
collections divided by the overall number of terms in the collections. We choose A = 0.7
and compute s; ¢+ as

where cs; is the size of the i-th peer counted in term occurrences (not distinct terms).
8.4.2 LM of Xu & Croft

The second language-model approach is based on [XC99]. We compute the distance bet-
ween the query model and the collection model as

ctfis+0.01

; 1 1)
dlSti = Z |:— . lOg(—) with Sit = TOIM
S,1 . i

e lq] la| - si.¢

The peer ranking (reflecting similarity) corresponds to the ascending order of distances.
9 Experiments
9.1 Experimental Setup

Experiments are conducted on collections that have been created by Web crawls origi-
nating from manually selected crawl seeds on the topics Sports, Computer Science, En-
tertainment, and Life, leading to 10 thematically focused collections. Additionally, one
reference collection was created by combining all collections and eliminating duplicates.
Table 1 gives details about the collections. Note the overlap between the 10 original col-
lections.

For the query workload we took the 7 most popular queries on AltaVista, as reported by
http://www.wordtracker.com for September 21, 2004, and 3 additional queries
that were specifically suitable for our corpus. Table 2 lists all queries.

For each query we obtain an ideal peer ranking as follows: the query is executed on the
reference collection with the measures introduced in Section 4 to obtain a reference query

137

| Collection || # Documents | Collection Size in MB |

Computer Science 10459 137
Life 12400 144
Entertainment 11878 134
Sport 12536 190
Computer Science mixed 11493 223
Computer Science mixed 13703 239
CS Google 7453 695
Sport Google 33856 1,086
Life Google 16874 809
Entertainment Google 18301 687
|) I 168953 | 4,348 |
[Combined Collection || 142206 | 3,808 |

Table 1: Collection Statistics

Max Planck Light Wave Particle* | Einstein Relativity Theory*
Lauren Bacall Nasa Genesis
Hainan Island Carmen Electra
National Weather Service Search Engines
John Kerry George Bush Iraq*

Table 2: List of used queries (* denotes queries not taken from WordTracker)

result. Subsequently, the query is executed on each of the collections individually, using
the same strategy. These local results are compared to the reference query result using the
rank distance function described in detail in Section 9.2. We order the peers in ascending
order of these distances to obtain the ideal peer ranking.

We evaluate our peer selection strategies by comparing their peer selection results (peer
rankings) to this ideal peer ranking, again using our rank distance function. Figure 7 illus-
trates this experimental setup.

We have a number of system parameters that influence the experimental results:

Number of peers returned by peer selection strategies

Number of documents retrieved from each peer

Number of documents retrieved from combined collection (ideal document ranking)
Number of peers in ideal peer ranking

All experiments have been conducted using 10 Peers running as separate processes on
a single notebook with a Pentium M 1.6GHz processor and 1GB main memory. All peers
share a common Oracle 10g database that is installed on a Dual-Pentium Xeon 3GHz
processor with 4GB main memory. The peers are connected to the database through a
100MBit network.

9.2 Rank Distance Function

Formally, a ranking o is a bijection (i.e., a permutation) from a domain D,, to [k] where
|Dy| = k and [k] := {1,....., k}. Metrics comparing permutations have intensively been
studied for a long time [KG90, DG88]. One of the most prominent metrics is Spearman’s

138

compute order by compute

similarity similarity similarity
scores Query Results scores scores
Peer 1
4 \
4 — y
Vs — g 4
’ \ ’
7/ \ 7/ [Peer1 |
, \ ’]
4 \ 7 | Peer2 |
+ \ ,]
Ideal 4 Query Results S 1]
Query Results |\ Peer 2 N \ ¢ []
~ \
|V N N \]
p— \ > N
\ N \
\ N N .
N \ !
S] N
\ « N H
\ . | Peert | N
\ !] N
\ =]
N]
\ !]
]
Query Results

Peer n

Peer 1

Figure 7: Experimental Setup

footrule metric [DG77, DG88] that calculates the difference between two permutations o
and o with D = D,,, = D,, as follows:

F(oy,00) ==Y |oa(i) — o1 (i) (1)

i€D

In our case, the domains D,, and D,, are not necessarily identical, because the peer
selection strategies might not return all peers. Thus, we can neither apply Spearman’s
footrule metric (1) nor other popular techniques like Kendall’s tau [KG90].

[FKSO03] gives an overview about metrics on comparing top-k lists representing ’incom-
plete’ rankings by presenting modifications of the well-known metrics for permutations.
One possibility to apply metrics for permutations on top-k lists is to extend the top-k lists
to complete rankings over a shared domain, that is, the union of the domains of the top-%
lists.

We propose the following formula to calculate the distance between two rankings oy
and o9:

F'(01,09) = Z |loa(i) — o1(3)] @)
i€Do,
Although this formula closely resembles Spearman’s footrule metric, it sums only over
elements that are contained in D,,. However, (2) is only valid if D,,, is a superset of D,
because 01(%) is undefined for all ¢ € D,, \ D,,. Thus, we need to define an extension
o1’ of oy as follows:

139

o1(%) €D,
o1’ (i) = {

|Dg, |+1 i¢Dg,

This extension of ¢y adds a particularly high penalty for misplaced entries among the
top ranks of o5. Note that we do not need an extension of o2, because we sum only over
elements in D,,,. This causes F” to be asymmetric.

Another important issue appears when trying to evaluate several rankings of different
sizes to one reference ranking. To avoid unfair comparison of short result lists with good
matches against long result lists with not so good matches at low ranks, we required a
minimum size for each query result list from each peer and supplemented shorter lists
by “dummy” documents that would correspond to the rank |D,,| + 1 in the reference
collection.

9.3 Experimental Results

Figure 8 (a) shows the distances between the peer rankings returned by the peer selection
strategies and the ideal peer ranking. The distances for each strategy are averaged over
the 10 queries in our benchmark, based on the rank distance definition given in Section
9.2. For these test quries, CORI2 produced the best results and clearly outperformed the
GLOSS-based strategy and both Language Modeling approaches. The very simple cdf —
ct f™** approach worked remarkably well provided that oz was not set too low. The poor
performance of the Language Modeling approaches contradicts the findings by [SJCO02],
but this effect may be heavily dependent on the specific nature of the queries and the
distributed corpora (e.g., the degree to which corpora of different peers may overlap).

Using the same set of collections and queries, we studied the recall relative to the top-
30 documents from the combined collection when we query the peers according to their
positions in the ideal peer ranking. Figure 8 (b) shows that sending the query to the best
peer only already yielded an average of about 60% of all relevant documents, whereas
the inferior peers typically do not contribute any new documents to the query result. Note
that this does not mean they do not contain any relevant documents, but rather that their
relevant documents have already been contributed by other peers before. So taking into
account the potential overlap of the peers’ local contents is crucial.

a) 3 b) 100%
222 95%
£
S 21 0%
o
g 20 85%
219 7 o
k5]
8 o© 75%
S 18
k] 70%
o 17
65%
16 /
60%
cdf- cdf- cd- CORI1 CORI2 GLOSS1 LMCalan LM
ctmax cff max ctf_max Xu&Croft 55%
alpha=0.0 alpha=0.6 alpha=1.0 o 2 4 s s 10 12
Routing Strategy Number of Queried Peers

Figure 8: Experimental Results

The importance of dealing with redundancy caused by overlapping indexes of different
peers becomes even clearer when looking at the query execution time and the number

140

of relevant documents obtained, as the number of queried peers increases. Figure 9 (c)
shows that, in our experiments conducted on one single computer, the query execution time
increases linearly; in a real-world scenario, the execution time is expected to remain nearly
constant as the load is spread over a number of independent processors. Note that, given
the high computational load during the experiments, a query is executed in a reasonable
time of 2 seconds per peer. This time is dominated by the execution time at the peers; the
system overhead is almost negligible. Figure 9 (b) shows the number of relevant documents
obtained when increasing the number of peers absolute and additional. As expected, less
relevant peers add only a very small number of relevant documents. The ratio between the
number of relevant documents and the execution time (Figure 9(a)) demonstrates that, in
our experimental setup, the best ratio is already achieved when asking only 1 remote peer
(in addition to the local evaluation at the querying peer itself).

L)

Relevant Documents / Query Execution Time

0,005 -
0,0045 4
0,004
0,0035 4

0,003

0,0025 4

0,002

0,0015
—

0,001

Number of retrieved relevant
documents / Execution Time

0 1 2 3 4 5 6 7 8 9 10 1
Number of Queried peers

b) Relevant Documents c) Query Execution Time
@9 354 25000
& 30
g M & 20000 -
25
3 2 / —e—Number of retrieved relevant| E 15000
8 / documents £
o 15 3 2 10000 4
g 10 '\ —e— ANumber of retrieved L £
s o relevant documents F 5000
° o I e e P o
o T T T y T g g v * d T T T T T T T T T T d
o t 2 3 4 5 6 7 8 9 10 11 o 1t 2 3 4 5 6 7 8 9 10 11
Number of Queried Peers Number of Queried Peers

Figure 9: Performance Evaluation

We also studied the run-time overhead and efficiency of our techniques. In our expe-
riments we observed the following performance characterisics (which are independent of
the peer selection strategies). The size of a single Post is about 10 to 20 bytes for typical
keywords. The overall amount of data that has to be transfered over the network during a
complete posting process for a collection containing 45 000 terms is about 650KB. Note
that we used a compression technique to reduce the size of the messages. A single PeerList
request and the query itself only account for 100-200 bytes for a typical two-keyword que-
ry. The complexity of query routing strategies that obtain the PeerLists from the preceding
step is O(nl + mlog(m)) where n is the number of query terms and [is the maximum
PeerList length. nl is an upper bound for the number of Posts that have to be processed
before the peer ranking (at most m entries) has to be sorted in O(mlog(m)), where m is
the number of distinct peers found in the PeerLists.

141

10 Conclusion and Future Work

This paper has presented the MINERVA project on building a P2P Web search engine.
We described its novel architecture, revisited existing approaches to the database selection
problem in distributed IR, and adapted these strategies to fit our system environment. Our
preliminary experiments show significant differences among the peer selection strategies
in terms of peer rankings and resulting search result quality. In our setting, CORI-like
approaches performed best and even a very simple frequency-based heuristics outperfor-
med the more sophisticated approaches based on conceptually richer statistical language
models. However, these results may be dependent on the specific nature of queries and
corpora, in particular, the degree to which the local index contents of different peers may
overlap. Our early studies also showed that the run-time overhead of MINERVA is fairly
low and that for most queries sending the query to only one remote peer achieved the best
quality/cost ratio.

We are currently preparing experiments on a larger document collection with a much
larger number of peers and a broader variety of queries including queries with many key-
words generated by automatic query expansion techniques. We are also working on en-
hancing the peer selection strategies themselves by incorporating bookmark statistics and
addressing the overlap problem among peers [BMWZ04]. Ideally, a query that has already
been executed locally on the querying peer should be sent only to peers that are likely to
provide complementary additional results (i.e., that show only little overlap with the que-
ry initiator). If a remote peer only yields the high-quality results that the query initiator
already knows from its local evaluation, the remote peer is useless.

References

[ACKO04] Alonso, G., Casati, F., and Kuno, H.: Web Services - Concepts, Architectures and
Applications. Springer. Berlin;Heidelberg;New York. 2004.

[ACMHPO04] Aberer, K., Cudre-Mauroux, P., Hauswirth, M., and Pelt, T. V.: Gridvine: Building
internet-scale semantic overlay networks. Technical report. EPFL. 2004.

[APHSO02] Aberer, K., Punceva, M., Hauswirth, M., and Schmidt, R.: Improving data access in
p2p systems. IEEE Internet Computing. 6(1):58-67. 2002.

[BB04] Buchmann, E. and Bohm, K.: How to Run Experiments with Large Peer-to-Peer
Data Structures. In: Proceedings of the 18th International Parallel and Distributed
Processing Symposium, Santa Fe, USA. April 2004.

[BMWZ04] Bender, M., Michel, S., Weikum, G., and Zimmer, C.: Bookmark-driven query rou-
ting in peer-to-peer web search. In: Callan, J., Fuhr, N., and Nejdl, W. (Hrsg.), Pro-
ceedings of the SIGIR Workshop on Peer-to-Peer Information Retrieval. S. 46-57.
2004.

[Ca00] Callan, J.: Distributed information retrieval. Advances in information retrieval, Klu-
wer Academic Publishers. S. 127-150. 2000.

[CAPMNO2] Cuenca-Acuna, F. M., Peery, C., Martin, R. P., and Nguyen, T. D.: PlanetP: Using
Gossiping to Build Content Addressable Peer-to-Peer Information Sharing Commu-
nities. Technical Report DCS-TR-487. Rutgers University. September 2002.

[CFKO03] Cohen, E., Fiat, A., and Kaplan, H.: Associative search in peer to peer networks:
Harnessing latent semantics. In: Proceedings of the IEEE INFOCOM’03 Conference,
April 2003. April 2003.

[CGMO02a] Crespo, A. and Garcia-Molina, H.: Routing indices for peer-to-peer systems. In:
Proc. of the 28th Conference on Distributed Computing Systems. July 2002.

142

[CGMO02b]
[Ch02]
[CLO3]

[CLC95]

[DG77]
[DG88]
[Fa99]

[FKS03]

[FLNO1]
[Fu99]
[GBK00]

[GBSO1]

[GGMT99]
[KG90]

[KLL*97]

[LCO3]

[LNST03]

[Lu93]
[MRYGMO1]

Crespo, A. and Garcia-Molina, H.: Semantic Overlay Networks for P2P Systems.
Technical report. Stanford University. October 2002.

Chakrabarti, S.: Mining the Web: Discovering Knowledge from Hypertext Data. Mor-
gan Kaufmann. San Francisco. 2002.

Croft, W. B. and Lafferty, J.: Language Modeling for Information Retrieval. volu-
me 13. Kluwer International Series on Information Retrieval. 2003.

Callan, J. P, Lu, Z., and Croft, W. B.: Searching distributed collections with inference
networks. In: Proceedings of the 18th annual international ACM SIGIR conference
on Research and development in information retrieval. S. 21-28. ACM Press. 1995.

Diaconis, P. and Graham, R.: Spearman’s footrule as a measure of disarray. Journal
of the Royal Statistical Society. S. 262-268. 1977.

Diaconis, P. and Graham, R.: Group representation in probability and statistics. In-
stitute of Mathematical Statistics. 1988.

Fagin, R.: Combining fuzzy information from multiple systems. J. Comput. Syst. Sci.
58(1):83-99. 1999.

Fagin, R., Kumar, R., and Sivakumar, D.: Comparing top k lists. In: Proceedings
of the fourteenth annual ACM-SIAM symposium on Discrete algorithms. S. 28-36.
Society for Industrial and Applied Mathematics. 2003.

Fagin, R., Lotem, A., and Naor, M.: Optimal aggregation algorithms for middleware.
In: Symposium on Principles of Database Systems. 2001.

Fuhr, N.: A decision-theoretic approach to database selection in networked IR. ACM
Transactions on Information Systems. 17(3):229-249. 1999.

Guntzer, U., Balke, W.-T., and Kiesling, W.: Optimizing multi-feature queries for
image databases. In: The VLDB Journal. S. 419-428. 2000.

Grabs, T., Bohm, K., and Schek, H.-J.: Powerdb-ir: information retrieval on top of a
database cluster. In: Proceedings of the tenth international conference on Information
and knowledge management. S. 411-418. ACM Press. 2001.

Gravano, L., Garcia-Molina, H., and Tomasic, A.: Gloss: text-source discovery over
the internet. ACM Trans. Database Syst. 24(2):229-264. 1999.

Kendall, M. and Gibbons, J. D.: Rank correlation methods. Edward Arnold, London.
1990.

Karger, D., Lehman, E., Leighton, T., Levine, M., Lewin, D., and Panigrahy, R.: Con-
sistent hashing and random trees: Distributed caching protocols for relieving hot spots
on the world wide web. In: ACM Symposium on Theory of Computing. S. 654—663.
May 1997.

Lu, J. and Callan, J.: Content-based retrieval in hybrid peer-to-peer networks. In:
Proceedings of the twelfth international conference on Information and knowledge
management. S. 199-206. ACM Press. 2003.

Loser, A., Naumann, F., Siberski, W., Nejdl, W., and Thaden, U.: Semantic overlay
clusters within super-peer networks. In: Proceedings of the International Workshop
on Databases, Information Systems and Peer-to-Peer Computing, 2003 (DBISP2P
03). S. 33-47. 2003.

Ludwig, T. Lastverwaltung fiir parallelrechner. 1993.

Melnik, S., Raghavan, S., Yang, B., and Garcia-Molina, H.: Building a distributed
full-text index for the web. ACM Trans. Inf. Syst. 19(3):217-241. 2001.

143

[MS99]
[MYLO02]

[NFO3]

[NR99]

[RDO1]

[RFHT01]

[RV03]

[SJCO02]

[SMK™01]

[SMWT03]

[TWS04]

[TXDO03]

[WGdWO03]
[WMYLO1]
[XC99]

[YGMO02]

Manning, C. D. and Schiitze, H.: Foundations of Statistical Natural Language Pro-
cessing. The MIT Press. Cambridge, Massachusetts. 1999.

Meng, W.,, Yu, C. T., and Liu, K.-L.: Building efficient and effective metasearch
engines. ACM Computing Surveys. 34(1):48-89. 2002.

Nottelmann, H. and Fuhr, N.: Evaluating different methods of estimating retrieval
quality for resource selection. In: Proceedings of the 26th annual international ACM
SIGIR conference on Research and development in informaion retrieval. S. 290-297.
ACM Press. 2003.

Nepal, S. and Ramakrishna, M. V.: Query processing issues in image (multimedia)
databases. In: ICDE. S. 22-29. 1999.

Rowstron, A. and Druschel, P.: Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In: IFIP/ACM International Conference
on Distributed Systems Platforms (Middleware). S. 329-350. 2001.

Ratnasamy, S., Francis, P., Handley, M., Karp, R., and Schenker, S.: A scalable
content-addressable network. In: Proceedings of ACM SIGCOMM 2001. S. 161-
172. ACM Press. 2001.

Reynolds, P. and Vahdat, A.: Efficient peer-to-peer keyword searching. In: Procee-
dings of International Middleware Conference. S. 21-40. June 2003.

Si, L., Jin, R., Callan, J., and Ogilvie, P.: A language modeling framework for re-
source selection and results merging. In: Proceedings of the eleventh international
conference on Information and knowledge management. S. 391-397. ACM Press.
2002.

Stoica, 1., Morris, R., Karger, D., Kaashoek, M. F., and Balakrishnan, H.: Chord:
A scalable peer-to-peer lookup service for internet applications. In: Proceedings of
the 2001 conference on applications, technologies, architectures, and protocols for
computer communications. S. 149-160. ACM Press. 2001.

Suel, T., Mathur, C., Wu, J., Zhang, J., Delis, A., Kharrazi, M., Long, X., and Shan-
mugasunderam, K.: Odissea: A peer-to-peer architecture for scalable web search and
information retrieval. Technical report. Polytechnic Univ. 2003.

Theobald, M., Weikum, G., and Schenkel, R.: Top-k query evaluation with probabi-
listic guarantees. VLDB. S. 648-659. 2004.

Tang, C., Xu, Z., and Dwarkadas, S.: Peer-to-peer information retrieval using self-
organizing semantic overlay networks. In: Proceedings of the 2003 conference on
Applications, technologies, architectures, and protocols for computer communicati-
ons. S. 175-186. ACM Press. 2003.

Wang, Y., Galanis, L., and de Witt, D. J.: Galanx: An efficient peer-to-peer search
engine system. Available at hitp://www.cs.wisc.edu/ yuanwang. 2003.

Wu, Z., Meng, W., Yu, C. T., and Li, Z.: Towards a highly-scalable and effective
metasearch engine. In: World Wide Web. S. 386-395. 2001.

Xu, J. and Croft, W. B.: Cluster-based language models for distributed retrieval. In:
Research and Development in Information Retrieval. S. 254-261. 1999.

Yang, B. and Garcia-Molina, H.: Improving search in peer-to-peer networks. In:

Proceedings of the 22 nd International Conference on Distributed Computing Sys-
tems (ICDCS’02). S. 5-14. IEEE Computer Society. 2002.

144

