Computing Minimum-Height Certificate Trees in
SPKI/SDSI

Dejvuth Suwimonteerabuth

The Sirindhorn International Thai-German Graduate School of Engineering (TGGS)
dejvuth.s.sse @tggs-bangkok.org

Abstract: SPKI/SDSI is a framework that combines a simple public-key infrastructure
and a simple distributed security infrastructure with a means of defining local name
spaces. It allows principals, which can be a person or an organization, to locally create
groups of principals and delegate rights to other principals or groups of principals by
issuing certificates. To prove authorizations, principals need to search for necessary
certificates that are, in general, in the form of certificate trees. This paper defines a
framework based on SPKI/SDSI which allows principals to give weights to certificates.
Weights can be used to address many authorization issues such as access control of
limited resources. The paper shows a connection between SPKI/SDSI and the theory
of pushdown systems, and presents an algorithm that solves the authorization problem
by computing minimum-height certificate trees.

1 Introduction

In access control of shared resources, authorization systems allow to specify a security
policy that assigns permissions to principals in the system. The authorization problem
is, given a security policy, should a principal be allowed access to a given resource?
SPKI/SDSI [EFL"99] is a framework which allows a principal to locally create groups
of principals by issuing so-called name certificates, and grant authorizations or delegate
the right to grant authorizations to other principals or groups of principals (even with-
out knowing individuals in the groups) by issuing so-called authorization certificates. In
[CEE*01], it has been shown that the authorization problem reduces to discovering a cer-
tificate chain to prove whether a given principal is allowed to access a given resource. The
certificate chain might consists of one or more name definitions or authorization grants
and delegations.

In general, however, a principal might need to find more than one certificate chain to prove
his/her authorization. SPKI/SDSI allows, for instance, Alice to issue a certificate to give
an authorization to her relatives who work in her company. Therefore, if Bob wants to
prove his authorization, he must find a set of certificates which proves (i) that he is her
relative and (ii) that he works in her company. This set of certificates forms a certificate
tree in which each branch represents a certificate chain.

In this paper, we consider a more general system where certificates can have different

340

weights. The meaning of weights depends on applications of interest. When proving an
authorization, a principal does not look for an arbitrary certificate tree, but the tree that has
the minimum height, i.e., the tree that involves certificates having the smallest weights.
This system can be applied to many applications. For instance, different weights can be
interpreted as different degrees of importance. When principals compete for a limited
resource, one can control who has the right to access it based on the importance of his/her
certificate tree.

Previous works have shown that SPKI/SDSI has a strong connection to the theory of push-
down systems [JR04, SJRS03]. A set of certificates can be seen as a pushdown system,
and certificate-chain discovery reduces to pushdown reachability. This paper proceeds in
a similar way. We propose an extension to SPKI/SDSI in which one can assign weights to
certificates. Then, we present an efficient algorithm for finding minimum-height certificate
trees.

We proceed as follows: Section 2 introduces SPKI/SDSI and formally defines the autho-
rization problem. Section 3 presents alternating pushdown systems and other theoretical
concepts used in the paper. Section 4 shows the connection between SPKI/SDSI and
alternating pushdown systems, and presents an algorithm for solving the authorization
problem. Section 5 concludes the paper.

Throughout the paper, we denote by N the set of non-negative integers and N* = N U
{oo}. If n is a positive integer, then [n] = {i e N | 1 < i < n}.

2 SPKI/SDSI

A central notion of SPKI/SDSI are principals. A principal can be a person or an organi-
zation represented by a public key. Each principal defines his/her own namespace, which
assigns roles to (other) principals. For instance, principal University can define the role
staff and associate principal A11ice with its rle. SPKI/SDSI makes such associations
by issuing so-called name certificates (name certs, for short). Remarkably, principals may
reference the namespace of other principals in their certificates. For instance, University
may state that all Engineering’s staffs are also its staffs. In this way, SPKI/SDSI allows
to associate a role with a group of principals described in a symbolic and distributed man-
ner. SPKI/SDSI then allows to assign permissions to rdles using so-called authorization
certificates (or auth certs).

More formally, a SPKI/SDSI system can be seen as a tuple S = (P, A, C), where P is
a set of principals (or public keys), A is a set of réle identifiers (or identifiers, for short),
and C' = Na W Au is a set of certificates. Certificates can be either name certs (contained
in Na), or auth certs (contained in Au).

A term is formed by a principal followed by zero or more identifiers, i.e., an element of
the set PA*. A name certificate is of the form p a — ¢, where p is a principal, a is an
identifier, and ¢ is a term. Notice that p a itself is a term. For all terms ¢, the sets [t] are
the smallest sets of principals satisfying the following constraints:

341

e if t = p for some principal p, then [¢] = {p};
o if t =’ a, then for all p € [t'] we have [p a] C [t];

e if pa — tis name cert, then [t] C [p a].

For example, if University, Engineering, Alice are principals and staff is an identifier,
then the certificate ¢; : Engineering staff — Alice expresses that Alice is an Engineer-
ing’s staff, and the certificate co : University staff — FEngineering staff means that
all Engineering’s staffs are also staffs of the university.

An auth cert is of the form p 0 — ¢ b, where p is a principal, ¢ is a term, and b is either [
or B Tt means that p grants some authorization to all principals in [¢]. If b = O, then the
principals in [¢] are allowed to delegate the authorization to others; if b = W, then they are
not. Note that auth certs can also contain details about the authorization that they confer.
We omit this detail in this paper due to the space constraint.

Formally, auth certs define a smallest relation aut : P x P between principals such that
aut(p, p’) holds iff p grants an authorization to p’:

e if there is an auth cert p 0 — ¢ b, for b € {{J, M}, and p’ € [¢], then aut(p,p’);

e if there is an auth cert p 0 — ¢t O, p’ € [¢t], and aut(p’, p”), then aut(p, p”).

For example, the certificate cs : University L1 — University staff B means that the
university grants some right to all university’s staffs. They, however, are not allowed to
delegate that right to other principals.

The authorization problem in SPKI/SDSI is to determine, given a system (P, A, C') and
two principals p and p’, whether p’ is granted authorization by p, i.e., whether aut(p, p’).
The problem can be solved by finding a certificate chain that transforms p O into p’ [or
p" . In the example, if Alice wants to prove that she has the right from the university, she
needs to find the chain c3, co, ¢1, which gives the following proof:

University O =% University staff B =% Engineering statf B =5 Alice B

2.1 Intersection certificates

The SPKI/SDSI standard provides for so-called threshold certificates, which consists of,
say, an auth cert of the form p O — {¢1 by,..., ¢, by}, where by,...,b, € {O, W}, and
an integer k < n. The meaning of such a cert is that p grants authorization to principal p’ if
there is a certificate chain to p’ from at least k out of ¢ by, .. ., t,, b,,. We restrict ourselves
to the case where k = n and use the more suggestive name intersection certificate instead.
Formally, intersection certificates extend the relation aut as follows:

o if pO0 — {t1 by,...,t, by}, then aut(p, p'), where p’ € (", [t;]; moreover,

e ifb; =0, p" € [¢t;]. and aut(p’, p”) such that p” € M., [¢:], then aut(p, p”).

342

Notice that one could analogously define threshold name certificates in a similar way.
However, in [CEET01, JR04] the use of threshold certificates is restricted to just authoriza-
tion certificates, claiming that the use of threshold certificates in name certificates would
make the semantics “almost surely too convoluted”.

In the presence of intersection certificates, proofs of authorizations are in the form of

certificate trees, where each branch corresponds to a certificate chain. Continuing the

example, if the university instead delegates the right to Bob to grant the authorization to

the staffs, we have c3: University O — { University staff B, Bob (0} and if Bob grants

the authorization to Alice c¢y: Bob 0 — Alice B, the following certificate tree proves
C2 — (1

/
. . c3—c
Alice’s authorization: 3 4

2.2 Min SPKI/SDSI

We extend SPKI/SDSI by assigning weights to certificates. A min SPKI/SDSI system is a
tuple (S, f), where S = (P, A, C') is a SPKI/SDSI system and f : C — N°° is a function
that assigns a natural number to each rule. We extend the function f to every node ¢ in
certificate trees to signify the height of the node: if ¢ is a leaf, its height is f(c); otherwise,
its height is f(c) + max?_; f(c¢;), where ¢; is a child node of ¢ for all i € [n]. The height
of a certificate tree is the height of the root.

In the example, if the university issues a similar certificate for Carol c5: University [—
{ University staff B, Carol O}, and gives this delegation more priority by assigning,
say, f(c3) =3, f(c5) = 1, and f(¢) = 0 for any other c. Therefore, assuming that there is
a chain from Carol O to Alice B, she would prefer the certificate tree where the certificate
c5 is the root, since it gives her more priority than the previous tree.

The rest of the paper deals with the problem of finding minimum-height certificate trees
by using the theory of pushdown systems.

3 Pushdown systems

An alternating pushdown system (APDS) is a triplet P = (P,T', A), where P is a finite
set of control locations, T is a finite stack alphabet, and A C (P x T') x 2(FP*I") s a
set of transition rules. A configuration of P is a pair (p, w), where p € P is a control
location and w € I'* is a stack content. If ((p,7),{(p1,w1),..., (Pn,wn)}) € A, we
write (p,y) — {{p1,w1),..., (Pn,wn)} instead. If n = 1, we write (p,~y) — (p1,w;)
(braces omitted), and call the rule non-alternating. We call P a pushdown system (PDS)
if A consists only of non-alternating rules.

A min APDS is an APDS, in which each rule is equipped with a weight which is a
natural number; formally, M = (P, f), where P = (P,I',A) is an APDS and f :
A — N is a function that assigns a value from N*° to each rule in A. If f((p,7) —

343

{{p1,w1), ..., (Dn,wn)}) = a, we often write (p,) < {{p1,w1),.- ., (Dn,wn)}. We
sometimes use the term APDS to refer to its min version when it is clear from the context.
Intuitively, a rule (p,7) <> {(p1,w1),..., (Pn,ws)} says that, from a configuration ¢
where p is the control location and ~y is the top of stack symbol, the computation of the
system forks into n parallel computations, each of them starting from the configuration
obtained from ¢ by replacing p by p; and y by w;, for all i € [n]. Therefore, a run can
be seen as a tree of computations. The height of a run is computed from the weights
corresponding to the transition rules by applying + between successive weights and max
on the parallel ones.

Formally, we define the reachability relation = C (P x I'*) x N> x 2P*I" to be the
smallest relation such that

o c:O>{c},f0rallc€P><F*,

o if (p,7) <> {{pr,w1), .., (Pn,wn)} and (p;, wiw) = C; for some w € T, b; €
N°°, and C; C P x I'*, for each i € [n], then (p, yw) otmai (0 Ui, C.

Given a configuration ¢ and a set of configurations C', we define
H(c,C) = min{a € N* | ¢ = O}

to be the minimum height of all runs starting from ¢ and reaching (precisely) the set C'.
The reachability problem is to determine whether T'(c, C') < co. If T(c, C') < oo, we say
that ¢ is backwards reachable from C. We define pre*(C) = {c € P xI'* | 3C' C C':
T(c,C") < 0o} to be the set of all configurations that are backwards reachable from C'.

An APDS is called simple if there is a set of bottom stack symbols Z C T', and all transition
rules in A are in the following forms:

e (p,v) — (p',w), where p,p’ € P,y €T\ E,andw € (T'\ E)*,

i <pa J—) — {<p17w1J—1>7 ey <pn,wnJ—n>}’ where J—a J—z € Zand w; € (F \ E)* for
all i € [n].

As we shall see later, every APDS in this paper is simple.

Let us fix a min APDS M = (P, f), where P = (P,T, A). An M-automaton (or simply
automaton) is a quintuple A = (Q,T, 9, P,qs), where Q DO P is a finite set of states,
qr € Q is the final state,and § C Q) x I' x N* x () is a set of transitions. Notice that the
initial states of A are the control locations of P. Analogously, a min M-automaton equips

each rule with a natural number; formally, B = (A4, [), where A is an M-automaton and
l:6 — N°°.

We define the transition relation — C @ X I'* x N*° x () as the smallest relation satisfying:

° qﬂqforallqé@,and

w(b)

e ift =1(q,v,¢') €4,l(t) =a,and ¢ —= ¢", then ¢ Juwleth), q".

344

Given an initial state p and a word w, we define W (p, w) = min{a € N*° | p), qr}
to be the minimum weight of the word w when starting from the state p. B accepts or

recognizes a configuration (p, w) if p M gy such that a < co. The set of configurations
recognized by B is denoted by L(B).

In [SSEO06], it has been shown that given a set of configurations C' of an (unweighted)
simple APDS P, recognized by an automaton A, we can construct another automaton
Apres such that L(Apye-) = pre*(C). (Note that the definitions of reachability relation
and transition relation in the unweighted case can be defined analogously.) The procedure
has been extended in [Suw09] to handle weighted APDSs where weights are abstractly
defined. Min APDSs can be seen as a special case in which weights are instantiated for
particular applications. For brevity, we will not elaborate on these correspondences any
further, and simply apply the appropriate pushdown theory to SPKI/SDSI. In the next
section, however, we propose a novel efficient algorithm which can be directly applied to
solve the authorization problem and compute minimum-height certificate trees.

4 Computing certificate trees

Certificates in SPKI/SDSI can be interpreted as prefix rewrite systems. For instance, if
pa— p' bcandp’ b — p” d e are two certificates interpreted as rewrite rules, then
their concatenation rewrites p a to p”’ d e c. In SPKI/SDSI with threshold certificates, a
concatenation of two or more certificates forms a certificate tree. It is easy to see that the
authorization problem, given a principal p and p’, reduces to the problem of whether there
exists a certificate tree that rewrites p [at the root into p’ (J or p’ B at its leaves.

It has been observed that the type of rewrite systems induced by a set of SPKI/SDSI
certificates is equivalent to that of pushdown systems [JRO4] and with the presence of
threshold certificates to that of simple alternating pushdown systems [SSE06]. Roughly
speaking, principals are interpreted as control locations, role identifiers as stack alphabet,
and certificates as transition rules. For example, a certificate like p a — p’ b c is interpreted
as a pushdown rule (p, a) < (p’, bc). The SPKI/SDSI authorization problem then reduces
to the pushdown reachability problem.

Notice that the corresponding APDSs are simple, since threshold certificates are limited
to authorization certificates. Given a SPKI/SDSI system (P, A, C'), we have = = {{J, B}.
All alternating rules are of the form (p,) < {p1,w1b1,...,pn, w,by,}, where p, p; € P,
w; € A*, and b; € {00, W} for each i € [n].

Reachability algorithms for PDSs have been extensively studied in e.g. [BEM97, EHRSO00,
Sch02]. The algorithms are based on saturation procedures which, given an automaton A
that recognizes a set of configurations C, repeatedly add transitions to .4 according to
certain conditions until no more transitions can be added, i.e. it is saturated. We propose a
similar saturation procedure for min APDSs.

Let us fix a simple min APDS M = (P, f), where P = (P,I',A), and a min M-
automaton B = (A,ly), where A = (Q,T',do, P, qy), such that L(B) = C for some

345

Figure 1: An example: the automata B (left) and By (right)

C C P x I'*. Without loss of generality, we assume that .A has no transition leading to an
initial state. The following procedure constructs B,,..- accepting the set of configurations
that are backwards reachable from any subset of configurations C* C C with minimum
weights. Bpc- is defined as (Apre+, 1), where Apre- = (Q, T, 6, P, qy). Initially, § = do
and I(t) = lo(t), if t € 0y and I(t) = oo, otherwise. We iteratively update § and [
according to the following saturation rule until no values can be updated, i.e. until the
automaton is saturated

If (p,~) <> {(pr,w1), ..., (pp, wn)} an M q for all i € [n], add
(p,7,q) to 6 and update I(t) = min(I(¢),a + max!_,{b;})

Lemma 1 Given a simple min APDS M = (P, f), where P = (P,T', A), and a min M-
automaton B = (A, ly), where A = (Q, T, do, P, qr), the saturation procedure constructs
Bprex = (Apre=, 1), where Aprex = (Q, T, 9, P, qy), such that L(Bpre-) = pre*(L(B)).

Given a simple min APDS M = (P, f), where P = ({p, q, 1, s,t},{a,b, L1, Lo}, A), as
an example. The rules A and the weights f are defined as follows:

(p, mlﬁ‘l (t, Ls) (p, m;i {{g,aly), (s, 11)} 3
<Q7a> — <7", b> (T, b> — <Sa€> <57L1> — (t,L2>

Figure 1 shows the automaton B, on the right when applying the saturation procedure to
the automaton /3 on the left. Notice that the configuration (p, 1 1) is backwards reachable
via two possible runs with weights 10 and 20. The weight of the transition (p, L1, g) is
the minimum one.

An implementation of the saturation procedure is shown in Algorithm 1. The algorithm
assumes without loss of generality two restrictions on every rule (p,y) — R in A:

(R1) if R = {(p/,w’)}, then |w'| < 2, and
(R2) if |[R| > 1, then V(p/,w’) € R: |w'| = 1.

In (R1), we call the rule pop rule, normal rule, and push rule when |w’| is 0, 1, and 2,
respectively. Note that any APDS can be converted into an equivalent one that satisfies
(R1) and (R2) with only a linear increase in size.

346

A AW N =

10
11
12
13
14
15

16
17
18
19
20

21
22
23
24

Input: Min APDS (P, f), where P = (P,T", A), and min automaton (A, ly), where

A= (Q7F7 501 P> Qf)
Output: The saturated min automaton By,

procedure update (¢, v)
d:=0U{t}
v :=min(v,I(t));
if v #£ [(t) then
trans := trans U {t};
L I(t) :=wv;

0 1= dg; trans := dg; [:= At.oo;
forall ¢t € &g do I(¢t) := Io(t);
A= A; f = Ar.oo; g := Ar.oo;
forallr € Ado f'(r):= f(r); g(r) :=0;
forall r = (p,v) — (p',e) € Ado update ((p,7,0), f'(r));
while trans # () do
remove t = (q,7’,q’) from trans;
forall r = (p,v) — (q,7') € A’ do
| update ((p,7,q'), f'(r) +max(g(r),1(t)));

forall » = (p,v) — (¢,7'v") € A’ do

add ' := (p,7y) — (¢,7") to A’;

S = min(f'(r"), f'(r) +1(2));

forallt’ = (¢',~v",q") € § do

| update ((p,7, "), f'(r') + (1))

orall r = <p7 '7> — {<q,’y/>} URe A st R #* ¢ do
add ' := (p,7) — Rto A;
f(r") == min(f'(r"), f'(r));
| g(r") := min(g(r'), max(g(r),1(t)));
return ((Q,T',6, P, qf),1);
Algorithm 1: A reachability algorithm for min APDSs

—ry

347

Lines 7-11 initialize the algorithm. Initially, ¢trans contains transitions from dq (line 7),
and all rules are copied to A’ (line 9). The auxiliary functions f’ and g are initialized
to f and 0, respectively (line 10). Pop rules are dealt with first (line 11). The algorithm
then repeatedly removes transitions from ¢rans (line 13) until it is empty (line 12), and
examines whether they generate other transitions via the saturation rule (lines 14-24). The
algorithm calls the procedure update (lines 1-6) when a new weight of a transition is
computed. The new transition is added to § (line 2) before computing the new minimum
value (line 3). The if-statement at line 4 makes sure that the transition is added to trans
for further computation (line 5) only if its weight changes. As a result, line 6 can change
[(t) only to a smaller value.

The idea of the algorithm is to avoid unnecessary operations. Imagine that the saturation
rule allows to add transition ¢ if transitions ¢; and ¢, are already present. Now, if ¢; is
taken from trans but 5 has not been added to By,..», we do not put ¢; back to trans but
store the following information instead: if ¢5 is added, then we can also add ¢. It turns out
that this can be done by adding new rules to A’ and storing information in the auxiliary
functions f’ and g.

Let us now look at lines 14-24 in more detail. Line 14 handles normal rules where new
transitions can be immediately added. Push rules (lines 16-20) and alternating rules
(lines 21-24), however, require a more delicate treatment. At line 16 we know that
(g,7,4¢") is a transition of B,,.- (because it has been removed from trans) and that
r = {(p,y) = {(q,7'7") is a push rule of P. We create the “fake rule” (p,~v) — (¢’,v")
and add it to A’ at line 17. Its f’-value is updated to be the minimum value of its old value
(which is initialized to oo at line 9) and f’(r) + I(¢) at line 18. Later, when a transition
(¢',7",q") is examined together with this fake rule at line 14, we update the transition
(p,7,q") with weight f'(r) + 1(t) + 1(¢’,7"”,q"). On the other hand, if the transition
(¢',v",q"), for any ¢”, is already in 6 (line 19), we need to update the transition (p, v, ¢'’)
accordingly (line 20).

At line 21 we know that ¢ = (g, ', ¢") is a transition of By« and r = (p,) — (¢’,7")U
R is an alternating rule. Therefore, we add the fake rule (p,v) <— R to A’ (line 22), and
minimize its f’-value to f’(r) (line 23) and g-value to the maximum value of g(r) and
I(t) (line 24). If the set R contains more than one element, then similar processes can take
place which result in more fake rules with less elements in the right-hand sets. Line 14
handles the case when the fake rule is non-alternating. Notice that the auxiliary function
g is used when constructing fake rules from alternating rules to store maximum values
as specified by the saturation rule. The auxiliary function f’ extends the function f by
including weights of fake rules. Their values are used in line 15.

Lemma 2 Algorithm 1 implements the saturation procedure.

The complexity of the algorithm can be derived from the unweighted result in [EHRS00].
The difference is that Algorithm 1 can process transitions several times, while in [EHRS00]
each transition is processed exactly once. Thus, the time complexity increases from
O(|Q|*|Al) in [EHRS00] by a factor that is no more than the number of transitions and the
maximum weight of all transitions. Note that weights of transitions can only decrease, and
therefore limit the number of times they can be put in trans and subsequently reprocessed.

348

Theorem 1 Given a min SPKI/SDSI and two principal p and p’, Algorithm I can be used
to prove whether aut(p,p’) by computing the minimum-height certificate tree with p O at
the root and p’ O or p’ M at its leaves.

5 Conclusions

We have proposed an extension to the SPKI/SDSI authorization framework. The extension
allows principals to assign weights to certificates, which permits principals to “prioritize”
certificates they prefer. We have shown that the process of proving a principal’s authoriza-
tion turns out to be the problem of finding certificate trees. Finding the certificate tree with
minimum height (or highest priority) is, however, a more difficult problem. We have given
a connection between SPKI/SDSI and pushdown systems, and shown that the problem of
computing minimum-height certificate trees reduces to the reachability problem of alter-
nating pushdown systems. We have consequently proposed an algorithm for solving the
reachability problem.

References

[BEM97] Ahmed Bouajjani, Javier Esparza, and Oded Maler. Reachability Analysis of Pushdown
Automata: Application to Model-Checking. In Proc. CONCUR, 1997.

[CEET01] Dwaine Clarke, Jean-Emile Elien, Carl Ellison, Matt Fredette, Alexander Morcos, and
Ronald L. Rivest. Certificate Chain Discovery in SPKI/SDSI. Journal of Computer
Security, 9:285-322, 2001.

[EFL199] Carl M. Ellison, Bill Frantz, Butler Lampson, Ron Rivest, Brian Thomas, and Tatu
Ylonen. RFC 2693: SPKI Certificate Theory. The Internet Society, 1999.

[EHRSO00] Javier Esparza, David Hansel, Peter Rossmanith, and Stefan Schwoon. Efficient Al-
gorithms for Model Checking Pushdown Systems. In Proc. CAV, LNCS 1855, pages
232-247, 2000.

[JRO4] Somesh Jha and Thomas Reps. Model Checking SPKI/SDSI. JCS, 12(3-4):317-353,
2004.

[Sch02] Stefan Schwoon. Model-Checking Pushdown Systems. PhD thesis, Technische Univer-
sitdt Miinchen, 2002.

[SJRS03] Stefan Schwoon, Somesh Jha, Thomas Reps, and Stuart Stubblebine. On Generalized
Authorization Problems. In Proc. CSFW, pages 202-218. IEEE, 2003.

[SSE06] Dejvuth Suwimonteerabuth, Stefan Schwoon, and Javier Esparza. Efficient Algorithms
for Alternating Pushdown Systems with an Application to the Computation of Certificate
Chains. In Proc. ATVA, LNCS 4218, pages 141-153, 2006.

[Suw09] Dejvuth Suwimonteerabuth. Reachability in Pushdown Systems: Algorithms and Appli-
cations. PhD thesis, Technische Universitdt Miinchen, 2009.

349

