
Cooperative Test-Case Generation with VeriĄers

Dirk Beyer1, Marie-Christine Jakobs2

Abstract: Software testing is widely applied in software quality assurance. Often, test suites fulĄlling
a certain coverage measure must be constructed. Manually constructing them is laborious. However,
numerous automatic test-generation approaches exist. Due to various strengths and weaknesses of
individual approaches, hybrid approaches, which combine different approaches, construct test suites
that achieve higher coverage values than test suites generated by individual approaches.

We propose the hybrid test-generation approach CoVeriTest. CoVeriTest is Ćexible, cooperative, and
based on veriĄcation technology. It iteratively executes a sequence of veriĄers that may exchange
analysis information between each other and output a test case whenever they reach a test goal. The
veriĄers, their individual time limits, and which analysis information is exchanged between them
is conĄgurable. We experimented with different CoVeriTest conĄgurations. The best conĄguration
participated in the 1st International Competition on Software Testing (Test-CompŠ19) and won the
third place. This proves the value of our CoVeriTest approach.

Keywords: Test-case generation; Software testing; Test coverage; Conditional model checking;
Cooperative veriĄcation; Model checking

1 Overview

Often, testing is an integral part of the software-development process, in which it is
used to evaluate the software quality. Thereby, coverage criteria are applied to assess the
adequacy of a generated test suite. Manually constructing adequate test suites is typically
too laborious. Hence, automatic approaches are used. However, different strengths and
weaknesses of existing approaches make it necessary to combine different approaches to
achieve good coverage values. Inspired by abstraction-driven concolic testing [DGH16] and
recent advances of software veriĄers, we therefore propose the Ćexible, cooperative hybrid
test-generation approach CoVeriTest [BJ19].

CoVeriTest is based on veriĄers, which construct a test case whenever they reach a test goal
(e. g., a branch). Figure 1 shows the workĆow of CoVeriTest. CoVeriTest iteratively executes
a sequence of n veriĄers. In each iteration, veriĄer i is run for ti time units and adds its
generated test cases to the global test suite. Before a veriĄer is run, the init procedure sets
up its context, e. g., the open test goals, the program, and the information from other veriĄers.
At the end of a veriĄcation run, the veriĄer provides all analysis information in form of the

1 LMU Munich, Institute of Informatics, Oettingenstraße 67, 80538 Munich, Germany
2 TU Darmstadt, Department of Computer Science, Hochschulstraße 10, 64289 Darmstadt, Germany

This is a summary of an article that is published in Proc. FASEŠ19 [BJ19].

cba doi:10.18420/SE2020_31

Michael Felderer (Hrsg.): SE 2020,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2020 107

https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.1007/978-3-030-16722-6_23
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/SE2020_31


VeriĄer 1
t1

. . .

VeriĄer i
ti

. . .

VeriĄer n
tn

Test goalsProgram q ARGs

Test suite

test cases

test cases test cases

init
ARG, covered goals

initARG,covered goals

init

ARG, covered goals

Fig. 1: WorkĆow of the CoVeriTest approach

reached state space (ARG). Additionally, it reports the goals it covered and that are no longer
considered. The number n of veriĄers as well as the veriĄers i and their time limits ti can be
conĄgured. Also, the cooperation, i.e., the information exchange between veriĄcation runs,
can be conĄgured. Next to no cooperation, CoVeriTest supports (1) cooperation between
different runs of the same veriĄer, e. g., reuse the abstraction level or continue the exploration
of the state space (ARG), (2) cooperation between different veriĄers, e. g., ignore already
explored paths, and (3) combinations of the previous cooperation types.

For our experiments, CoVeriTest combines value and predicate analysis3, uses either time
unit pair (10 s, 10 s), (50 s, 50 s), (100 s, 100 s), (250 s, 250 s), (80 s, 20 s), or (20 s, 80 s)
and one of the different cooperation settings mentioned above. Our evaluation with the
programs from the software veriĄcation benchmark4 revealed that the instance using value
and predicate analysis with time units (20 s, 80 s) and that lets the analyses continue their
exploration works best. Also, this CoVeriTest conĄguration often achieves higher coverage
values than (1) either value or predicate analysis alone, (2) their parallel combination, and
(3) their sequential combination (20 % value analysis followed by 80 % predicate analysis).
Furthermore, CoVeriTestŠs 3rd place in Test-CompŠ19 [Be19] conĄrms its value.

Bibliography
[Be19] Beyer, D.: International Competition on Software Testing (Test-Comp). In: Proc. TACAS.

LNCS 11429. Springer, pp. 167Ű175, 2019.

[BJ19] Beyer, D.; Jakobs, M.-C.: CoVeriTest: Cooperative VeriĄer-Based Testing. In: Proc. FASE.
LNCS 11424. Springer, pp. 389Ű408, 2019.

[DGH16] Daca, P.; Gupta, A.; Henzinger, T. A.: Abstraction-Driven Concolic Testing. In: Proc.
VMCAI. LNCS 9583. Springer, pp. 328Ű347, 2016.

3 Meanwhile we also experimented with combinations of bounded model checking and symbolic execution.
4 https://github.com/sosy-lab/sv-benchmarks

108 Dirk Beyer, Marie-Christine Jakobs


