Transformation of Preprocessor Variance to Post-Build Variance

Jochen Quante and Andreas Thums

Robert Bosch GmbH, Corporate Research

Renningen, Germany

{Jochen.Quante, Andreas.Thums}@de.bosch.com

1 Introduction

Software product lines are widely used to efficiently
develop similar variants of a software. In automotive
software development, they are often implemented ba-
sed on the C preprocessor. Even tools for model ba-
sed development generate such code. The advantage
of the preprocessor approach is that only the needed
code ends up in the control unit. This way, resource
consumption is minimized. On the other hand, for tes-
ting and creating meta program versions, post build
variance is needed or at least easier to handle. Meta
program version means that several of the possible sta-
tic configurations are integrated in a single binary file,
and the concrete configuration can be dynamically se-
lected at engine start. We have developed an approach
and tooling to transform existing C code that contains
preprocessor variance to post-build variance code.

2 Example

For illustration of the desired transformation, take a
look at the following piece of code:

#if SC1 && ((SC2 && (SC3>0)) ||
foo();

#else
bar();

#tendif

(8C4 && SC5))

Now we want to create a meta program version for
this from two customer projects. Unfortunately, sy-
stem constants (i. e., special macros) SC1-3 each have
different values in the two projects. However, SC4 and
SCH have the same values in both projects. To inte-
grate both projects into one meta program version,
we want to transform system constants SC1, SC2 and
SC3 to runtime variables, while we want to keep SC4
and SC5H as build time variance points. Furthermore,
we only want to have the code that is really requi-
red in the control unit due to limited resources. The
result should look something like shown in Figure 1.

For preprocessor directives in declaration parts of
the code, the transformation looks a bit different —
since there is no if there. This means that all decla-
rations that are guarded by system constants have to
be kept. This in turn means that there may be multi-
ple or conflicting declarations. In this case, identifiers
have to be renamed — not only in the declaration, but
also in all places where they are used.

42

Olga Pikuleva

Universitat Tiibingen
Tiibingen, Germany

Olga.Pikuleva@student.uni-tuebingen.de

if (sc1) {
if (8C2 && (SC3 > 0)) {
foo();
} else {
#if (SC4 && SC5)
foo();
#else
bar() ;
#endif
}
} else {
bar();
}

Figure 1: Transformed code.

3 Related Work

There has been quite some research on analysis and
transformation of C code with preprocessor directi-
ves. However, there is no approach that supports
our requirements. Most closely related is von Rhein’s
work [4]. He implemented such a transformation, but
only supports a specific usage pattern of preprocessor
variance — the one that is found in the Linux kernel.
It requires configurations and only supports binary
system constants (#ifdef). The approach is based
on TypeChef [3], which transforms the stream of to-
kens to conditional tokens in a very early processing
step, which eliminates our system constants. There-
fore, these existing tools (TypeChef/Hercules) could
not be used.

4 Approach

We have developed and implemented the following ap-
proach for performing such transformations. It is also
depicted in Figure 2. We refer to SCs as the system
constants that are to be transformed, and NSCs as
the system constants that shall be kept as they are.

1. Normalize the unpreprocessed C code using Gar-
rido’s approach [1, 2]. This basically means mo-
ving #ifs to the appropriate higher level and du-
plicating the code inbetween.

2. Parse the normalized code, using a C code par-
ser that is extended by preprocessor constructs.
Thanks to Garrido’s normalization, preprocessor
constructs only need to be provided at a few

Softwaretechnik-Trends 37:2, Mai 2017

Garrido | Normalized
C Code

C Code

Parse | Extended
CAST

Transt. | Transformed |Unparse] Transformed
CAST C Code

Figure 2: Processing chain for preprocessor variance transformation.

points in the C grammar. Without that, pre-
processor directives can occur at arbitrary points
in the code.

3. Build a corresponding abstract syntax tree (AST)
that contains C code and preprocessor constructs.

4. Perform transformations on the AST:

(a) Split #elifs to nested #if-#else constructs
(only when both SCs and NSCs occur in the
different conditions).

(b) Transform #if conditions into a splittable
form, which means that only system con-
stants of either class SC or class NSC are
contained in one #if condition.

(¢) Transform preprocessor constructs using
specific rules. For example, transform a #if
to an if if the condition only contains SCs.

5. Unparse the transformed AST, i.e., generate
C code.

The transformation of step 4(b) is performed in the
following way. First, the operands of the condition ex-
pression (with the same operator) are sorted by pure
SC, pure NSC, and mixed expressions. The latter are
also sorted in the same way. Then, the #if directive
is transformed to a lambda expression using Church
encoding;:

if cthentelse f=ct f (1)
aANb=ab false (2)
aVb=atruebd (3)

After the whole conditional directive (including
#elses and nested #ifs) is encoded this way, the fol-
lowing two rules can be applied to split it in case of
mixed (SC and NSC) expressions:

(anb)t f=atf)f (4)
(avVb)t f=at (bt f) (5)

Finally, the resulting lambda expression is trans-
formed back to an #if-#else-#endif construct. This
kind of transformation provides a splittable form with
a minimal number of #if branches.

5 Evaluation

We evaluated the approach on 650 C files, which were
taken from a typical embedded software from Bosch.
The prototype tool was applied on them, and they
were manually checked for correctness. The result was

Softwaretechnik-Trends 37:2, Mai 2017

that we can sucessfully transform about 93% of the
files fully automatically. The remaining files could
not be processed due to the following main reasons:

e The code contains C constructs that are not yet
supported by our prototype (e.g., structs and
unions). This could be addressed by adding these
features to the prototype.

e #defines or #undefs on the variables that are to
be transformed. However, this is irrelevant for
the meta program version use case.

e Usage of macros for code generation. If macros
are not only used like expressions or functions,
they may break the preprocessor-aware parser.

Given these restrictions, the success rate of 93% is
quite good, and there is potential for further impro-
vement.

6 Summary

We have introduced and evaluated a new approach
for transforming preprocessor variance to post-build
variance. Our prototypical implementation and eva-
luation shows that the majority of our code can be
transformed. However, there will always remain some
code with special kind of preprocessor usage that can-
not be dealt with.

The transformation allows us to simplify software
validation and to create meta program versions on
demand. Validation is supported by checking all vari-
ants of the code with a single executable. Static code
provers can also be applied on this transformed code.
Project-specific meta program versions can be created
with just those variance points transformed that are
actually needed in dynamic form for a given project.
The approach therefore helps to reduce implementa-
tion and test effort as well as resource usage.

References

[1] A. Garrido and R. Johnson. Analyzing multiple confi-
gurations of a C program. In Proc. of 21st Int’l Conf.
on Software Maintenance, pages 379-388, 2005.

[2] R. Heumiiller, J. Quante, and A. Thums. Parsing va-
riant C code: An evaluation on automotive software.
Softwaretechnik-Trends, 34(2), 2014.

[3] C. Késtner, P. G. Giarrusso, and K. Ostermann. Par-
tial preprocessing ¢ code for variability analysis. In
Proc. of 5th Workshop on Variability Modeling of
Software-Intensive Systems, pages 127-136, 2011.

[4] A. von Rhein, T. Thiim, I. Schaefer, J. Liebig, and
S. Apel. Variability encoding: From compile-time to
load-time variability. Journal of Logical and Algebraic
Methods in Programming, 85(1):125-145, 2016.

43

