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ABSTRACT
Parallel and concurrent design has become paramount to
achieving good performance in the era of multi-socket and
multi-core architectures. Thread pools often play a crucial
role in system software but finding the right number of
threads is a tedious task, which often falls on the users to fine-
tune this parameter. The best setting is not only different per
application, but can also vary with the workload. We believe
this decision should be made at the level of the operating
system and offered as a service to benefit from metrics the
kernel collects on the application performance. In this paper,
we present a first step towards this vision in the form of a self-
adaptive thread pool which uses OS-metrics to automatically
control the optimal number of threads over time.
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1 INTRODUCTION AND BACKGROUND
The end of Moore’s law has also marked the end of the conve-
nient delivery of additional of computational power through
an increase of clock frequency by every new chip genera-
tion [9, 32]. Instead, we have gotten used to a new world in
which we need to invest significant effort into structuring
our software in ways that leverage the capabilities of new
CPUs [16]. For instance, with entering the multi-core era,
the clock frequency of CPUs actually temporarily decreased
and the only way to benefit from the added resources was
to effectively parallelize the programs and make them multi-
threaded [30, 31], otherwise software could have experienced
a slow-down [36]. The problem of thread-based paralleliza-
tion was indeed not new and the discussions on how to best
achieve this are as old as the first SMP machines [8, 26, 28].
However, while those were primarily reserved for the most
demanding server-based applications, the advent of multi-
core architectures for even mainstream CPUs (now all the
way to mobile phones) has turned this into a universal prob-
lem.
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Several architectural patterns exist that provide blueprints
for building scalable systems, some avoiding the use of threads
(e.g., the fork-join pattern [23] or the single-threaded event-
driven architecture [8]). Multi-threaded designs often closely
resemble the producer-consumer pattern with producer(s) en-
queuing work items and the worker threads consuming the
work by performing the necessary operations to serve the
request. Since using an unbounded number of threads on
the consumer side has the potential for overwhelming the
system, the pattern is typically implemented with either a
fixed-sized or limited-sized thread pool. Re-using the same
threads through a pool also eliminates the overhead in the
operating system of repeatedly allocating new threads. Given
the prominence and importance of thread pools in modern
software systems, it is surprising that no standardized solu-
tion (e.g., as an extension of POSIX threads) and only few
reusable building blocks [14, 21, 22, 24] for thread pools exist.
Instead, most software packages implement their own thread
pools and consequently make their own autonomous deci-
sions on how to scale the pool sizes (e.g., web servers [10],
NO-SQL DBs [15], or message queues [25]).
In most cases, the thread pool size and/or limit is set to

match the number or a multiple of the physically available
cores as a default and then configuration parameters are
exposed to the user for overriding this setting. For best con-
currency and overall efficiency, finding the right thread pool
size to maximize application performance is critical but also
a tedious effort [17]. In many cases, however, it is ultimately
a futile effort because the workloads handled by the applica-
tion are not static. They can exhibit different phases that are
bottlenecked by different resources. For instance, in some
cases it is more advantageous to decrease the number of
threads when the workload becomes I/O-bound [13, 29] be-
cause adding more threads only leads to more contention.
Some modern systems have identified this issue and use ded-
icated thread pools, e.g., for I/O in Redis [3], RabbitMQ [33],
and MongoDB [5], or more fine-grained for different tasks
in RocksDB [2], unfortunately with the net effect of even
increasing the tuning effort.
The severity of the problem in practice lead to several

efforts with the goal of effectively taking the decision of
threading out of the hands of programmers or operators.
Von Behren et al. were among the first to criticize the under-
lying virtual processor model of threading [34] and instead
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presented Cappricio [35], a user-level threading library built
around a central resource-aware scheduler which adapts the
number of threads according to the global system utilization.
Apple introduced a task-based abstraction for concurrent
processing in OS X through the Grand Central Dispatch [27].
This centralized OS service requires developers to submit
tasks to a single system-wide thread pool, thereby relieving
the developer and operator frommanual tuning and ensuring
fairness across multiple applications.
In this paper, we argue that we should follow this trend

and make the handling and tuning of threading a centralized
service of the OS, instead of leaving it to the programmer of
each application tomake unilateral decisions. In practice, this
leads to massive tuning efforts and friction when the work-
load (through inherent dynamics) or the environment (e.g.,
through containerization or co-locating of multiple work-
loads on one machine) changes. In view of the increasing
heterogeneity of modern computers and the growing impor-
tance of off-CPU resources for efficient data flow, we believe
that better abstractions over concurrent flows of execution
can provide crucial leverage for future-proofing applications
for new architectures.

2 TOWARDS A SELF-ADAPTING THREAD
POOL SERVICE

Offering thread execution as a service requires the OS to pro-
vide interfaces for submitting tasks, implementing a central
controller for the different thread pools, and employ mecha-
nisms to monitor the progress of the individual application
as well as the state of the computer system. This is required
to decide on the scheduling of threads based on a global
optimization strategy but also to adjust the total number of
threads that is dedicated to each individual application.
We consider this to be an open research challenge; even

Grand Central Dispatch as the closest existing and practically
adopted concept is only used for very specific tasks like
UI components and has not been able to substitute hand-
made thread pools in applications. However, we have gained
significant experience in replacing thread pools in individual
applications through a system-wide and portable abstraction
that fits closely into the pthread model but automatically
adapts the pool size.
For the common use case of thread pools executing a

restricted set of disk-I/O 1 bound jobs (e.g asynchronous
runtime libraries such as Tokio [20] and NodeJS [19] use a
thread pool solely for disk-I/O related operations), we present
a solution approach solely based on information provided
by the OS. The adaptive thread pool we propose maximizes

1Our experimentation included modern storage devices like SSDs and
NVMes and we use the traditional term "disk-I/O" liberally for all mod-
ern forms of storage

Figure 1: rwchar rate & runtime over pool size

throughput (/minimizes total runtime) while minimizing the
amount of worker threads.

Our approach integrates a controller that determines scal-
ing actions based on a single target metric computed from
OS-metrics into a thread pool to make it adaptive. The con-
troller has to be periodically invoked in order to update inter-
nal state (such as target metric’s value over the last interval
and the current controller phase). It offers a single method
for both updating itself and reporting the amount of worker
threads that need to be terminated or newly spawned. This
method may be invoked by the worker threads themselves
before execution of jobs or an extra manager thread may
be spawned that sleeps for regular intervals and calls the
controller method in between.

Targetmetric For disk-I/Oworkloads the disk throughput,
i.e., bytes read & written per second, is presumably a good
indicator for general throughput (jobs completed per second).
We used a few workloads (description follows in section 3.1)
that consist of reading and writing files to disk to confirm
that disk throughput is indeed highly correlated with general
throughput and thus also with total runtime of a workload.
On Linux a logical disk throughputmetric is exposed through
through the /proc virtual filesystem, the rchar value for a
given thread equals the total amount of bytes a thread has
requested to read since creation, conversely the wchar value
equals written bytes [12].

We define the rwchar rate over an interval [𝑡1, 𝑡2] to be:𝑅 =

(∑𝑤∈𝑊 (𝑟𝑐ℎ𝑎𝑟𝑤,𝑡2+𝑤𝑐ℎ𝑎𝑟𝑤,𝑡2 )−(𝑟𝑐ℎ𝑎𝑟𝑤,𝑡1+𝑤𝑐ℎ𝑎𝑟𝑤,𝑡1 ))/(𝑡2−
2
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Figure 2: States of the controller

𝑡1), where 𝑊 is the set of workers in the pool at 𝑡2 and
𝑟𝑐ℎ𝑎𝑟𝑤,𝑡 and 𝑤𝑐ℎ𝑎𝑟𝑤,𝑡 are the reported rchar and wchar
values respectively for the worker thread𝑤 at time 𝑡 (if the
worker thread 𝑤 does not exists yet at 𝑡 , then 𝑟𝑐ℎ𝑎𝑟𝑤,𝑡 =

𝑤𝑐ℎ𝑎𝑟𝑤,𝑡 = 0). Figure 1 shows the average rwchar rate in
bytes/second over the whole execution (orange) and the total
runtime in seconds (blue) for different pool sizes for two read-
write workloads (both experiments were repeated 3 times,
the mean values are reported here).
For both workloads the total runtime decreases with an

increasing amount of worker threads, reaching an optimal
size at 6 and 14 worker threads. The function average rwchar
rate over pool size is highly inversely correlated with the
runtime over pool size function, therefore maximizing the
rwchar rate should be equivalent to maximizing general
overall throughput (as in jobs completed per second). Even
though total runtime does not monotonically decrease up
to the optimal amount of threads, we show that a controller
that uses a hillclimbing approach that maximizes the rwchar
rate shows promising results.

Scale Controller We propose a feedback-based adaptive
thread pool that uses a controller to adapt pool size based
on observed rwchar rate. The controller switches between
different states depending on the rwchar rate it observes,
attempting to maximize the throughput while keeping the
pool size low. Generally it will be either in a phase of scaling
the thread pool down/up, settled on a fixed size, or exploring
smaller/bigger pool sizes. The controller state is reevalu-
ated at fixed intervals, according to the rwchar rate over
the respective last interval. Figure 2 illustrates the whole
state machine that defines states and state changes of the
controller.

The algorithm is based on the assumption of increasing
throughput as the pool size is increased up to some threshold
where throughput stagnates or drops. So the controller will
remain in the Scaling state, where the pool size is increased
after every interval, until no significant increase in rwchar
is observed anymore. Then the controller switches to the
Settled state where pool size is not changed anymore. How-
ever, as we can see for the top workload shown in Figure 1
the function runtime over pool size is not monotonically
decreasing up to the optimal pool size, so the pool size may
not be optimal when entering the Settled state. Secondly, the
optimal pool size most likely changes throughout the work-
load, the load may change, the jobs and their characteristics
may change.

In order to address this, the controller enters the Exploring
state after a timeout or if the rwchar rate changed signifi-
cantly compared to the previous interval. With the addition
of the explore mechanism the controller continuously adjusts
the pool size according to the current logical disk throughput.

The algorithm has two core parameters that have a big im-
pact on the scaling behavior; the interval length over which
the rwchar is measured and which also determines the fre-
quency of scaling actions, and the stability factor which
determines the sensitivity to changes in rwchar rate, i.e., the
relative increase/decrease considered to be significant. For
the experiments in the following section an interval length
of 1500ms and a stability factor of 0.9 (10% increase/decrease
of target metric are considered significant) were used, as this
combination delivered good performance over all workloads.

3 PRELIMINARY RESULTS
3.1 Workloads & Setup
We use three workloads to illustrate the correlation of rwchar
rate with runtime and to experimentally evaluate the pro-
posed adaptive thread pool. All workloads consist of a set
of homogeneous jobs that are all submitted at once to the
thread pool at the beginning of execution. They read a single
2Mb file into memory, then write the whole file to disk. The
second workload then uses fsync to sync the file to disk, we
call it the sync workload (and the first workload the nosync
workload). The third workload consists of two phases, the
first batch of jobs submitted are nosync jobs, the second
batch are sync jobs, so the pool first executes all nosync
jobs to completion and then continues with all sync jobs.
In the final experiment, we run a write-heavy workload on
RocksDB with our scale controller integrated into its flush
pool responsible for flushing files to disk (by use of fsync).
Every experiment was run 3 times, the graphs show the

mean over the 3 executions, error bars show the standard
deviation. All experiments were run on a machine with an
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Figure 3: Avg runtime & pool size for fixed / watermark
/ adaptive

Intel i5-6500 CPU with 4 cores at 3.2GHz clock rate and a
6MB cache, 16GB DDR4 memory and an SSD.

3.2 Experimental results
We compare the adaptive pool to the optimal fixed-size pool
and a watermark scheme pool with a thread limit of 64. The
watermark scheme is a commonly implemented adaptive
scheme that keeps the pool size between a minimum and
maximum number of worker threads, scaling up when more
jobs are available and terminating workers after some period
of being idle (e.g Java’s ThreadPoolExecutor and MariaDB’s
thread pool). The optimal pool size for the fixed pool is deter-
mined experimentally, the smallest size with maximum 3%
longer runtime than the minimum is chosen as optimal as it
results in smaller pool size with near-minimum runtime.
The controller of the adaptive pool is initialized with an

interval length of 1500ms and a stability factor of 0.9, which
was overall a good configuration for all the workloads tested.
Figure 3 shows the average runtime (top graph) and average
pool size (bottom graph) for the optimal fixed-size (blue), wa-
termark (orange), and adaptive pool (green). The left barplots
are the results of the sync workload (20000 jobs), the middle
for the nosync (30000 jobs) one, the right for the 2-phase
nosync-sync (30000+10000 jobs).

Sync workload The adaptive pool has slightly lower av-
erage runtime than the fixed-size pool, whereas the wa-
termark pool performs much worse. Thus, this workload
serves to highlight the problem with the watermark scheme

when used for disk I/O only jobs, it not only creates ex-
cessive amount of worker threads, but may result in sig-
nificant throughput loss due to the unnecessary extra disk
contention.

Nosync workload The watermark pool’s runtime is just
less than 1% higher than the fixed-size pool’s, the adaptive
pool’s runtime in turn is less than 1% higher than the water-
mark pool’s. While the differences in runtime are insignif-
icant, the watermark’s average pool size is more than 10
times higher than the optimal pool size, the adaptive pool
size averages at around twice the optimal pool size.

Nosync-Sync workload The adaptive pool slightly out-
performs the fixed-size pool here and the watermark pool
again performs much worse, due to the negative effect on
runtime of overscaling during the phase of sync read-write
jobs. The average size of the adaptive pool of 9.7 is almost
equal to the optimal fixed size of 10. Especially for multi-
phase workloads, where optimal pool size may vary dras-
tically between different phases, a fixed-size scheme (even
when tuned perfectly) is most likely not able to reach the
best throughput.
Figure 4 shows the scaling behavior of the adaptive pool

during execution of the 2-phase workload. The rwchar rate
over time is depicted in red, the pool size over time is depicted
in blue. During the first phase the controller quickly scales
up the pool size initially and then slowly reduces pool size,
due to rwchar not decreasing after scaling down. The rwchar
rate stays roughly constant around 1Gb/sec until the start of
the second phase, where it drops sharply and then stabilizes
around 150Mb/sec for a short while. While mostly stable
with small fluctuations in the first phase, the rwchar rate
shows a lot of variation with only short periods of stability in
the second phase. During the period of the most fluctuations
from around 230-270 seconds the controller scales down the
pool to sizes ranging from 1-7. The high rate of manual fsync
operations presumably leads to excessive disk contention
and periodic drops and peaks in logical disk throughput.

Write-heavy workload - RocksDB We compare the run-
time for a sequential key insertion workload that is part
of RocksDB’s benchmarking tools (fillseq) for the recom-
mended2 flush pool size (2, in blue), the experimentally de-
termined optimal size (12, in red) and the adaptive version
making use of our scale controller (in green for the same
parameter values as previously and olive for a shortened
interval length of 1000ms). Figure 5 shows these results, the
adaptive pool with the previous controller configuration
beats the default but is outperformed by the optimally sized

2by the official wiki at https://github.com/facebook/rocksdb/wiki/Setup-
Options-and-Basic-Tuning
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Figure 4: Adaptive pool - pool size & rwchar rate during
execution

Figure 5: Avg. runtimes for fillseq workload,
fixed/adaptive

pool, whereas the adaptive pool with a shorter controller
scale interval of 1000ms approaches optimal performance.

4 RESEARCH CHALLENGES AND
DISCUSSION

The most challenging and crucial aspect of an OS-feedback
based pool size adaption scheme is the OS-metric or the OS-
metrics that are used as performance indicators. For work-
loads restricted to specific jobs, such as the disk I/O-bound
workloads we investigated, it is possible to use a single metric
that is highly correlated with overall throughput. However,
a highly correlated metric such as the rwchar rate may still
be fluctuating heavily, as observed in the second phase of the
workload execution seen in Figure 4. This is problematic for
a controller-based approach, which is intrinsically sensitive
to fluctuations in the target metric.

An even more effective target metric would be predictive
of expected throughput, so the controller can reduce pool
size preemptively to avoid throughput drops as a result of
disk contention. Alternatively a second metric that captures
contentionmay be used to detect the onset thereof, triggering
the controller to scale down once a specific threshold is
reached.

In order for the controller-based approach to be applicable
for general workloads a global kernel-side implementation

with jobs at the granularity of single system calls may be the
most effective approach, as scheduling of jobs and adjust-
ment of concurrency levels can be performed according to
resource usage of a job and current resource utilization. The
controller would have the most complete knowledge over
system-wide outstanding jobs and system resources to make
these decisions. The recently introduced io_uring interface
to Linux offers a mechanism for submission of asynchronous
system calls and collection of results, so there is already in-
frastructure in place for a kernel-side implementation that
is exposed to the user at a system call granularity [1, 6].
io_uring is already used in concurrency libraries such as
Glommio to replace dedicated I/O thread pools, shifting the
responsibility of concurrent execution to the kernel, where
an adaptive scheme to determine concurrency levels would
benefit all user applications [7].
Scaling the single-application dynamic thread pool to an

OS-wide service requires a deep integration into the resource
management and the scheduler. Doing so, however, would
provide much better control over QOS requirements and
fairness between multiple concurrent application. We expect
positive synergies (but also additional research challenges)
with container frameworks but also with unikernel archi-
tectures which both through their own mechanisms would
extend the scope from isolated processes to multi-process
applications and services.

5 CONCLUSIONS
In this paper, we have argued why multi-threading is one
of the most important methods for achieving performance
on modern multi-core computers but also a burden for pro-
grammers that not only requires plenty of deliberation when
designing the application but also a great amount of tuning
to reach the promised performance in practice. Thread pools
are an important part of many systems and turning them
into self-adaptive, reusable components could provide a crit-
ical improvement over the current DIY approach. Ultimately,
however, we believe that the decision on threading should
be fully centralized in the operating system and offered as a
service to benefit from the existing metrics that the kernel
already collects on the application performance and at the
same time enable global optimization.

We decided to not challenge the thread as the vehicle for
concurrent execution. While alternative abstractions exist
(e.g., Futures [4], Promises [18], Coroutines [11], etc.), they
typically impose structural limitations on programs (e.g.,
a more asynchronous structure) and often internally use
threads to implement these abstractions. Therefore, we be-
lieve that threads will always play a role in the design of
performance-critical scalable applications, either explicitly
or hidden behind libraries.
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