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Abstract: An often forgotten asset of many companies is internal process data. From
the everyday processes that run within companies, huge amounts of such data is col-
lected within different software systems. However, the value of analyzing this data
holistically is often not exploited. This is mainly due to the inherent heterogeneity of
the different data sources and the missing flexibility of existing approaches to integrate
additional sources in an ad-hoc fashion.

In this paper the Smart Link Infrastructure is introduced. It offers tools that enable
data integration and linking to support a holistic analysis of process data. The infras-
tructure consists of easy to use components for matching schemas, linking entities,
storing entities as a graph and executing pattern queries on top of the integrated data.
We showcase the value of the presented integration approach with two real world use-
cases, one based on knowledge management in manufacturing from the LinkedDesign
project and another one based on an agile software development process.

1 Introduction

An often neglected, highly valuable asset of many companies is internal process data.

Huge amounts of such data is created while people work along predefined, sometimes

implicit processes that are supported by heterogeneous software tools. Examples of such

processes are software development, sales activities or customer relationship management.

Exemplary data sources can be emails, telephone logs, files in source version control sys-

tems, customer interaction protocols or time reports to name a few. If such sources can

be properly integrated and linked, it can be used to identify shortcomings of a process and

give input for optimization.

However, due to the heterogeneity of the involved tools an integration of these data sources

is cumbersome. Even if a single software tool suite is used to support many process steps

there is still often a need to flexibly integrate additional data sources that might help to

assess the overall quality of a process. Also, processes and tools change over time so
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that data source schemas, their relations and links between them suffer from continuous

changes.

A number of approaches can be found in literature that simplify the creation of feder-

ated data sources [SL90, BLN86], that use schema matching [BBR11, HRO06] or that

apply object matching to identify links between entities [NA11, KR10]. However, most

of the existing work only focuses on individual aspects of matching and storage and often

comes with the restriction of fixed schemas. First approaches try to follow a schema-

flexible graph-based integration approach as it is done with BIIIG [PJRR14]. It applies a

metadata-based integration of data sources to a unified metadata graph to finally construct

an integrated instance graph. However, BIIIG does not provide mechanisms to identify

new links at the instance level between data sources.

In this paper the Smart Link Infrastructure for graph-based data integration is introduced.

It is based on a schema-flexible integration of data sources into a common information

graph. Existing associations from the original data source are stored as edges in the graph.

But, in many cases such associations do not exist. The infrastructure supports a ”pay as

you go” approach of link generation. Links between nodes of the graph are automatically

computed at the instance level based on the analysis of the contents and relations of indi-

vidual nodes. Nodes in the graph can refer to people, documents, transactions or any other

data object that might be generated throughout a complex process. The linking results in

additional edges within the information graph which then offers new ways of interaction

and analysis. Within the information graph we are able to uniformly navigate, query and

analyze the existing information.

For analyzing the graph of nodes and links the infrastructure relies on so called process

pattern queries. Such pattern queries are different from classical relational queries. A pat-

tern describes a complex setting involving several types of entities together with a specific

set of constraints. A pattern query helps to identify the properties of a project or process

that make one project or process more successful than others. For instance, in a software

development process different kinds of data entities like tasks, code, bugs and worklogs

are typically collected. A flexible tool to integrate and link information created by dif-

ferent software systems promises unprecedented value to software companies by helping

to continuously increase the efficiency of their internal development processes. A simple

pattern query applied to information from a software development process, for instance,

could search for requirements with high complexity that might lead to the involvement of

many people or have a high likelihood for bugs.

This paper makes a number of contributions:

• The architecture of the Smart Link Infrastructure for flexible data integration and

analysis is introduced together with its core data integration services for schema

matching, graph storage and linking.

• The information graph and pattern queries are explained.

• Front-ends for search and analysis that apply a simple but effective drag and drop

metaphor are described.

• The infrastructure has been developed within a large EU project and succesfully

applied for industrial use cases. We describe two real world use cases in detail to
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illustrate the versatility of the Smart Link Infrastructure.

2 Smart Link Infrastructure

2.1 Overview

The architecture of the Smart Link Infrastructure is shown in Figure 1. It consists of three

layers. On the top are the user interface components. These are HTML user interfaces

supporting administrative tasks, i.e. data import and linking of data records as well as

graphical user interfaces for the visualization of graphs, querying and the creation of re-

ports. Since the Smart Link Infrastructure aims at an integration with existing software

systems external tools like OneNote (as used in the knowledge management processes de-

scribed in chapter 3) are supported as well.

Figure 1: Architecture of the Smart Link Infrastructure

The second layer consists of a collection of services: the Schema Matching Service, the

Link Generator Service and the Storage Service. The first two serve data import and man-

agement tasks while the Storage Service represents the general interface to the central

graph database providing operations to store and query data. The services each expose a

REST-based API towards the UI components and external clients. Communication hap-

pens largely with JSON messages.

On the bottom of the architecture the data sources can be found. One is the central graph

database itself and on the left are the multitude of sources (e.g. databases, file repositories,

SPARQL endpoints etc.) from which data is imported. To be able to holistically analyze
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and search within data that is distributed across multiple heterogeneous data sources, var-

ious data integration approaches are used. There are some similarities to ETL processes

that are used when building data warehouses to allow efficient analytic processing, e.g.

when data from independently created databases is to be combined to create a unified

view that gives new insights for analysts.

The general workflow applied within the Smart Link Infrastructure is depicted in Figure 2.

The data integration workflow starts with the data import that is supported by a service

providing schema matching methods. In this step relevant data sources can be selected

like files, databases, etc. and a mapping of their schema with the schema of the Smart

Link Store is created. Based on the mapping, new entities are added to the information

graph. The use of the schema matching service is optional and supports administrators

during the definition of the mapping. It could simplify subsequent steps if a sound input

schema is available.

In the linking step, entity resolution approaches are applied to identify relations between

entity sets that originate from different sources. In contrast to standard link approaches,

we also support text mining techniques and new mapping types. Text mining helps to deal

with unstructured data like text documents whereas new mapping types are needed to de-

termine the type of semantic relations between entities. The linking step is important for

defining a well-connected information graph, especially if the imported data sets contain

no direct references to each other.

In the center of the Smart Link workflow there is a graph database, the Smart Link Store,

which provides the capability to store and query data. In particular, it offers means for

executing pattern queries on the information graph that are crucial for the analysis. Each

step of the workflow will be detailed in the following chapters. Chapter 3 will introduce

two real-world use case scenarios that utilize the Smart Link Infrastructure and give an

insight into the actual usage.

Figure 2: Overview of the Smart Link Infrastructure information flow
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2.2 Data Import

In order to pre-fill the Smart-Link Store with entities, an administrative user can use the

Data Import Tool. Such pre-filling allows a user to connect to existing data sources such as

relational databases, Excel files or data sources that are exposed through a SPARQL end-

point. When integrating a data source into the information graph the schema of the data

source needs to be mapped to the existing flexible schema of the information graph. Such

a mapping describes how elements of the source schema correspond to elements of the

information graph schema. As discussed above, extending the graph schema is not prob-

lematic, but existing types and properties should be reused. Adding properties to existing

types or adding types is implicitly triggered when new entities are uploaded. Defining the

mappings can be complex and time-consuming. It is often done manually, with the help

of point and click interfaces. The data import tool of the Smart Link Infrastructure offers

a point and click interface similar to existing mapping solutions (see Figure 3). Moreover,

Figure 3: Point and click data import tool

a schema matching service is integrated that is able to compute suggestions for mappings.

2.3 Schema Matching Service

To reduce the manual effort in mapping, a matching service was integrated that semi-

automatically computes a mapping suggestion for a user. The matching service contains
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a number of matching algorithms and a library of schema importers for different schema

types [PER11, DR02]. It takes as input two schemas and computes a mapping sugges-

tion between them. Similarities between source and target elements are computed on

metadata level but also on instance level. Since current matching systems are often not

robust enough to be able to cope with very heterogeneous source schemas we devel-

oped an adaptive matching approach [PER12]. This approach automatically configures

a schema matching system process that consists of a set of operators for matching and fil-

tering. Based on measured features of the input schemas and intermediate results so-called

matching rules can be defined. These rewrite rules rely on analyzing the input schemas

and intermediate results while executing a process and rewrite the process to better fit to

the problem at hand.

As was already described the adaptive schema matching approach is crucial to match

the heterogeneity of schema types to an integrated schema and to finally integrate those

sources within a common information graph. The schema matching service described

above implements parts of the adaptive matching system and is therefore able to improve

the quality of matching results.

2.4 Link Generation

Creating graphs from a structured data source like a database with well-modeled meta-

data can be relatively easy. In contrast to that, creating a graph from unstructured sources

like document collections or independently created databases requires a component to find

links between entities. The Link Generator Service allows the creation, management and

execution of workflows, so called linkers, that can determine relations between entities,

the relation type and the confidence of these relations. Linkers are related to the entity res-

olution workflows used in various data integration and data quality related scenarios(e.g.

link discovery in the web of linked open data [NKH+13], web data integration [WK11]

or classic ETL processes in data warehousing [CP11]). Figure 4 shows how entity res-

olution workflows look at an abstract level (cf. [Chr12] ). Normally they are used for

detecting data objects that are equivalent in the real world but have different represen-

tations in multiple data sources. The input of an entity resolution workflow are usually

sets of data records from one or multiple databases. The operations in the preprocess-

ing step include data transformation steps (e.g. to convert data types or remove special

characters) and filter operations or blocking steps to reduce the search space for finding

matching objects [DN09]. Match operations are then applied to determine the pairwise

similarity of the candidates. Depending on the domain different distance metrics on one

attribute or a combination of attributes can be used to determine this likelihood of two

entities being equal [EIV07]. The match result usually is an instance-level mapping: a set

of correspondences of the type (entity1, entity2, sim) where sim is the confidence of two

entities being equal. In general a mapping contains correspondences of a single type, i.e.

‘sameAs’. This resulting mapping is then used to determine a set of matching objects and

a set of non-matching object pairs from the input data source. Standard entity resolution

workflows can be used to find objects in the graph store that are very similar and merge
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Figure 4: General entity resolution workflow

them under the assumption that these are duplicate nodes or slightly different versions of

the same note. These data quality related workflows, however, are not the main focus of

the Link Generator service.

Instead of searching for pairs with a high confidence of a ‘sameAs’ relation, linking work-

flows aim to search for links between arbitrary objects and their type. In the easiest case a

linker can just determine a link between two objects by calculating the similarity between

a certain field that exists in two objects. An example of this is a linker that tries to find

documents written by the same author which involves the following steps:

1. Parse the Input (e.g. a document with a meta-data field about the author).

2. Preprocessing: Split the author field into words and sort them alphabetically.

3. Matching: Calculate the trigram similarity of the sorted author list.

4. The result is a set of correspondences between documents that in effect have the

type ‘sameAuthor’.

Linking workflows like this are useful to generate certain types of edges for our property

graph that connect objects of the same type. However, more complex linking approaches

are needed. To enable the functionality needed for the current Smart Link Infrastructure,

i.e. the calculation of links between arbitrary data objects representing entities like per-

sons, documents, etc. most of the steps depicted in Figure 4 are extended and an additional,

optional, rule application step is added to the process. Figure 5 shows a general linking

workflow.

Especially when trying to support search and information discovery in knowledge manage-

ment processes the data often consists of unstructured text from documents with possibly

incomplete metadata. The string similarity of the content of two text documents, for ex-

ample, does not provide enough information about the relation between them. The only

relationship that could be derived from a low lexicographic distance is that the documents

have duplicate text or large parts of overlapping text. Named entity recognition, keyword

detection, the detection of hyperlinks and mail addresses as well as other text mining
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Figure 5: General linking workflow

approaches become important to link documents with semantic relations that go beyond

‘sameAs’ relations. A linking workflow that relies on text mining and uses a simple rule

to decide the relation type could look like this:

1. Parsing of Input data(e.g. text of a PDF file).

2. Preprocessing: Named entity recognition, Keyword detection.

3. Calculation of the similarity (e.g. amount of overlap) of list of keywords, engineer-

ing concepts.

4. Application of rules: For example, a high overlap of keywords leads to the rela-

tion ‘similarContent’ and overlapping engineering concepts extracted from the two

documents lead to the relation ‘sameTopic’.

5. Links, i.e. new edges are inserted into the graph

In addition to the use of text mining approaches linking workflows can also utilize existing

edges in the information graph. Since the Smart Link Infrastructure allows the incremen-

tal addition of new data sets, it is usually possible to use existing relations. An example

would be a relation like ‘sameTopic’ which is transitive to some degree. Once a linker

determines that a new and an already integrated document have a high confidence of such

a relation we can infer that the certain relations exist between the new document and the

already integrated documents neighborhood. This is similar to data matching approaches

that use already existing mappings (e.g., [TR07]) and can be useful to discover and ver-

ify certain types of relations as well as to increase the efficiency of a linker. Generally,

the workflows of the Link Generator service first produce mappings with instance-level

correspondences of the type (entity1 ,entity2, linking method, confidence) representing

the used linking method and its resp. confidence (e.g. (document1, document2, trigram-

author, 0.8), (document1, document2, keywordoverlap-text, 0.2) ). A final rule application

step decides based on the applied method and the confidence value what edges are added

to the graph. A set of simple conditional rules, e.g. “if confidence (author1, author2) ≥

threshold then linktype is sameAuthor” are satisfactory for most use cases, although their

definition requires some domain knowledge.
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The Link Generator service allows users the definition of suitable workflows (Linkers) for

a certain domain.

Figure 6: Linking UI

The service offers a variety of preprocessing, text mining, data matching approaches and

filtering operations that can be freely combined. These include:

• Preprocessing operations, filter operations to exclude certain entities from subse-

quent operations,

• Keyword, link, address and named entity detection operations

• Dictionary based unification of terms

• Match approaches like N-gram distance, TF-IDF distance, Edit distance to calculate

the confidence of attribute similarity

• Match approaches that determine a confidence value based on the overlap or element

similarity of lists

• Match approaches based on already known relations (i.e. the neighborhood of enti-

ties)

• Combination operations for aggregating confidence values determined by different

approaches

• Relationship detection rules based on individual or combined confidence values

The operation library of the Link Generator service can be extended by operations needed

for a certain task at any time. Workflows can be set up through a web based UI (Figure 6)

that also allows their management and setup for periodical or triggered execution.
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2.5 Smart Link Store

2.5.1 Property Graph Model

The used graph store of the Smart Link Infrastructure relies on a schema-flexible prop-

erty graph model with a navigational query access as implemented by Neo4J [Neo12] or

AIS [RPBL13]. In contrast to widely used triple stores a property graph keeps the object

identity intact. This simplifies queries since the entity construction effort can be omitted.

The used property graph stores objects together with their properties. Those properties

can either be atomic values or associations to other objects in the graph. Each object has a

type which is managed in a dedicated type store. The set of properties of an object can be

changed at any time. Also, an object type does not fix the set of types used. However, the

used graph store permits to dynamically compute statistics about existing types in the store

and their used properties together with usage counts. The statistics of property usage could

help to filter less frequent associations to get a more stable and accurate global schema.

This dynamically computed schema later helps us to generate queries.

2.5.2 Pattern Query and Query Generation

A crucial part for analyzing process data holistically are pattern queries. These are much

more intuitive for a user than navigational queries since the user does not need to know the

exact topology of the graph which is required for navigational queries. Navigational query

access refers to the ability to traverse associations in a graph within the query language.

Many graph stores only implement navigational queries such as GREMLIN in Neo4J or

WIPE within SAP AIS. Existing pattern query languages include SPARQL for triple stores

and Cypher for Neo4J property graphs. Due to the nature of triple stores, SPARQL queries

often become rather complex. The Cypher query language for property graphs of Neo4J

is much easier to use. Unfortunately it is bound to Neo4J. Typically, results to graph pat-

tern queries are computed by applying maximum common subgraph algorithms which are

expensive to execute [McG82]. Since we would like to rely on an existing internal prop-

erty graph store that only provides navigational query access we decided to implement a

pattern query interface on top of the navigational query interface. A pattern query is taken

as input and a navigational query is generated.

Figure 7 illustrates the overall process of query generation. As described earlier, the graph

model we use allows us to compute a schema dynamically from the instances that are cur-

rently in the graph. Before any query is issued to the graph store the current schema is

computed. The example assumes that there is a graph with four different kinds of entities

which are represented by different shapes and names of nodes. The generated schema

only consists of four types of entities including possible associations between instances of

these types. A user could create a pattern query by stating that there shall be two nodes

directly or indirectly connected and the nodes have to follow certain filter predicates. Such

predicates define which nodes from the set of instances of a type should be in the result

set.

From the schema graph that was initially created, a minimal connected subgraph for the
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Figure 7: Pattern query generation process

given types is computed. If the types are not connected on schema level, then the query

will return an empty answer. In the example, the intermediate type A was added to get a

minimal connected subgraph. In order to be able to generate a navigational query on that

subgraph a traversal path is needed based on the type graph. In the example the traversal

starts at B and walks to C. Note that the walk needs to be done in backwards direction

since initial filtering on the B nodes did not involve indirect filtering through the subset of

C nodes. Consider that there are B nodes that follow the predicate f1 that have no possible

path to any C node that follows predicate f2. After the traversal path has been computed,

we can now generate the navigational query using any query language that allows navi-

gating associations in both directions. That means if there is an association from A to B

then the classical navigation from A to B is possible. However, in our approach we need

to be able to navigate backwards from B to A returning all nodes A that have an associa-

tion to B. The query language used in the example is a simplified example. At the end of

the query the results of the individual navigation steps are intersected to return the correct

set of nodes for each node type. In the example, nodes are returned that were originally

not requested in the query. This can be filtered out depending on the requirements of the

respective application.

2.6 Data Analysis

The Smart Link infrastructure offers tools for search and analysis within the integrated

information graph. The information graph with its links can help to improve the ranking
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(see PageRank from Google) of a key-word based search result. Moreover, the graph that

can be found in the vicinity of a node is displayed in addition to the search result and

entities can be filtered by facets. A screenshot of the developed search interface can be

found in Figure 8.

Figure 8: Search UI

The analysis of the information graph is driven by pattern queries and a simple drag and

drop metaphor for creating charts. Figure 9 shows a screenshot of the analysis tool. It

supports a user to graphically create pattern queries. By dragging and dropping dimensions

and measures onto the axes of an empty chart, a new report can be created. In addition,

users can define functions over measures to compute complex measures on top of the

pattern query result.

3 Case Studies

3.1 Software Development Process

The Smart Link Infrastructure was used in a proof of concept implementation to analyze

process data that is created within an agile software development process. In order to get

an idea what data sources were integrated the development process is briefly described.

The development is organized as an agile project based on the SCRUM method. A project

is split into short sprints of 1 or 2 weeks. Requirements are collected within a so called

backlog. At the beginning of a sprint, tasks (issues) are taken from the backlog, their effort

is estimated and the issue is assigned to the sprint in a so called planning meeting. The

development team takes issues and marks them as resolved when finished. Software code

and documents are created and pushed to special code management systems. After each

sprint the completed issues are reviewed and the next sprint is planned. There are many

tools such as Agilefant [Agi] or JIRA [Atl] that try to support such processes. These tools

offer support for issue creation, assignment to developers as well as time and status report-

ing. For the actual development and code management, source version control systems can
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Figure 9: Analysis UI

be used such as CVS, SVN, Perforce or Git. Throughout the process, meetings are orga-

nized between team members and emails are exchanged, that contain discussions about the

current development tasks. Continuous integration and test systems take developed code

and run tests. Committed code is analyzed and executed which results in error/test reports

that provide the developer with feedback about the quality of the committed code. In later

stages, bugs are filed and attached to certain code fragments. For each of these process

steps separate software systems and data stores are typically used. However, it would be

valuable to be able to link tasks to actual commits, corresponding files and test reports.

In the proof of concept the data sources were integrated with the help of the Smart Link

Infrastructure in a common information graph that links requirements with tasks, people,

code commits and test reports. (see Figure 10).

The linking service of the Smart Link Infrastructure created a number of meaningful links

between different types of objects. A linking between commits and issues was possible

since some developers put contents from the issue description and issue names into the

commit message. Commits are also linked to people based on user ids, emails and names.

Some objects are also linked by date which helps to assign commits to sprints. Issues

are also linked to people which finally forms a nice information graph of the development

process at hand. With the help of the analysis tools the development process could now be

analyzed. It was now possible to observe interesting properties of the process that could

serve as input for improving the process in future. For instance, times of high workload

could easily be identified. Even though the actual estimated times for issues remained

similar for all sprints the actual logged working times and committed lines of code showed
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Figure 10: Linked data sources in the information graph

some strong peaks. This happened often before milestone deadlines. However, according

to the scrum method, such peaks should be avoided since they could put too much pressure

onto a development team. Moreover, the tools helps to measure the efficiency of a team

and could give an indicator to the complexity of a software system. When a software is

newly build, many lines of code are initially created in very short times. Unfortunately, the

number of changed lines per logged hour of work reduces over time since the complexity of

change increases. The exemplary analysis from Figure 9 showed a comparison of changed

lines of code to actually logged working hours for a selected set of issues. With additional

data sources like vacation times or calendar data one could certainly make further helpful

observations.

In summary, the integrated information graph provided many insights on the running pro-

cess that would otherwise be hidden. The lightweight integration approach of the Smart

Link Infrastructure helped a lot since there was no need to define a global schema up-

front. The sources could simply be integrated by letting the automatic linking identify

correspondences.

3.2 Smart Link Infrastructure for Knowledge Management Processes

To demonstrate the wide spectrum of application cases the Smart Link Infrastructure was

applied to analyze and support a knowledge management process within an oil platform

construction company. In particular the linking component was tightly integrated into a

document authoring tool (Microsoft OneNote) that is typically used within that company.

The Smart Link infrastructure is able to automatically link a document to an existing cor-

pus of documents while it is created or edited. Found links are dynamically inserted into

the currently edited document and also within related documents of the corpus. Links

can be created between documents of the same kind but also to external sources such as

taxonomies of terms or other records such as people, files on a share or a source version

control system. This approach does not require the user to collect links to entities from

each of these possible information sources manually or to manually insert them into the
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document at hand. Given that these information sources are known, all such links are

added automatically.

The prototype consists of an extension (Linking Plugin) to Microsoft OneNote. While

editing textual content the Linking Plugin extracts the content and triggers a linking work-

flow of the Linking Service. The Linking Service computes links from the newly created

document to existing documents or to other sources. Each linker can produce different

types of links such as references, is-related, is-contained-in, created. As described above,

the linking service can be extended by further linkers and workflows.

The linking result is filtered and ranked based on the computed confidence values. Selected

links are finally inserted in the currently edited document. Links can be inserted as separate

sections, but could also be added inline to the text if specific keywords relate to an entity

in one of the attached information sources. Changes to the text or referenced documents

can also trigger a removal of previously computed links. Generated links could be marked

as being strong or less strong. Also the age of the link could be visualized. The longer a

link is part of a document the more time is should take to remove the link. It should be

shown as deprecated so that a user can accept removal manually. Linked documents are

also changed to also link to the newly created document. The linking process is dynamic

so that by writing new content the dynamic links can change. The user has the option to

manually remove link suggestions or to reset linking parameters so that only links with

higher confidence are added to the document.

3.2.1 Link Generation

For generating links the linking component that was described above is used. In the fol-

lowing we introduce a few interesting linkers. A file reference linker looks up file names

and paths in existing file-shares to recognize file-names inside the text at hand. Also names

of other documents mentioned within the text can serve as indication for creating reference

links. To identify related documents text-similarity measures like TF-IDF or N-Gram are

applied. These measures attach a confidence to a link that can be used for filtering and

ranking. The linking quality can be improved by extracting most representative keywords

from the text and to compute similarity based on comparing keyword-sets. A number of

techniques propose to identify structure of documents, apply stemming to normalize and

tokenize longer terms. Such preprocessing can help to improve linking quality.

The computed links between documents, authors, files and other entities build a graph of

entities in the background. A neighborhood linker uses this graph to identify indirectly

related documents and further information such as the authors of such documents.

3.2.2 Search and Analysis

Through the above linking process a complex graph of documents and other data entities

is created.

In the proof of concept we also added facilities for users to rate created content and give

feedback. Moreover the viewer tracks when certain documents where last viewed and
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Figure 11: Document graph

edited. As a result of combining these data sources, an analysis of the age and maturity

of existing knowledge documents can be performed. If legally permitted one could also

measure the documentation quality and relevance of content from individual authors. The

authors can be clustered by their expertise for certain topics which helps users to identify

experts.

Moreover, searching over the document base improves with the help of a PageRank-like

algorithm to measure the importance of linked documents.

4 Conclusions & Outlook

The paper introduced the Smart Link Infrastructure that can be used to integrate and ana-

lyze highly heterogeneous data sources that result from implicit or explicit working pro-

cesses into a common information graph. Data import is supported by schema matching

and links between entities of the information graph are generated by linking workflows.

The integrated data of the information graph can be queried with the help of pattern queries

and reports can be generated with the help of a drag and drop metaphor. Also, a search

interface supports faceted search over the information graph and subgraphs can be visual-

ized and used for navigation.

Two real world use cases proof that the Smart Link Infrastructure can be applied for solv-

ing a broad range of data integration problems that occur when integrating process data.

Future work will focus on pattern mining and query pattern recommendation techniques

to simplify the construction of relevant pattern queries for a user.
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