KfK-PDV 141
August 1977

PDV-Berichte

PEARL
Survey of Language Features

Axel Kappatsch
IDAS GmbH, Limburg

Kernforschungszentrum Karlsruhe

PDV-Berichte

Die Kernforschungszentrum Karlsruhe GmbH koordiniert und betreut im Auftrag des Bun-
desministers fir Forschung und Technologie das im Rahmen der Datenverarbeitungspro-
gramme der Bundesregierung gefoérderte Projekt ProzeBlenkung mit Datenverarbeitungsan-
lagen (PDV). Hierbei arbeitet sie eng mit Unternehmen der gewerblichen Wirtschaft und Ein-
richtungen der offentlichen Hand zusammen. Als Projekttrager gibt sie die Schriftenreihe
PDV-Berichte heraus. Darin werden Entwicklungsunterlagen zur Verfiigung gestellt, die einer

raschen und breiteren Anwendung der Datenverarbeitung in der ProzeBlenkung dienen sol-
len.

Der vorliegende Bericht dokumentiert Kenntnisse und Ergebnisse, die im Projekt PDV gewon-
nen wurden.

Verantwortlich fur den Inhalt sind die Autoren. Die Kernforschungszentrum Karlsruhe GmbH
Ubernimmt keine Gewahr insbesondere fir die Richtigkeit, Genauigkeit und Vollstandigkeit
der Angaben, sowie die Beachtung privater Rechte Dritter.

Druck und Verbreitung:

Kernforschungszentrum Karlsruhe GmbH
Posttach 3640 7500 Karlsruhe 1

Bundesrepublik Deutschland

PEARL

PROCESS AND EXPERIMENT AUTOMATION

REAL-TIME LANGUAGE

Survey of Language Features

AXEL KAPPATSCH

IDAS GMBH, LIMBURG

AUGUST 1977

I1L

IV.

INTRODUCTION

PROGRAM STRUCTURE
1. MODULE:s

2. SYSTEM-division

3. PROBLEM-division

ALGORITHMIC FEATURES

DECLARATIONS AND SPECIFICATIONS

DEFINITION OF NEW DATA TYPES
DEFINITION OF NEW OPERATIONS

1.

2. BASIC DATA TYPES

3. LABELS

4. ASSIGNATION PROTECTION
5. COMPOUND OBIJECTS

6. POINTERS

7. PROCEDURES

8.

9.

INPUT AND OUTPUT

1. DATA-STATIONS
2. INTERFACES
3. I/O-INSTRUCTIONS

REAL-TIME FEATURES

1. TASKS

2. SYNCHRONISATION
3. EVENTS

REFERENCES

/2

/2

/2
/3
/4

15

/5
]
/6
/6
/7
/8
/8
/9
/10

/10

/10

/12

/13

/14

/14

/15
/16

/18

/1

[. INTRODUCTION

The high-level language PEARL (Process and Experiment Automation Real-time
Language) has been developped for the purposes of real-time programming. It has been
designed to permit an efficient control of processes of all kinds, for example

communication processes in information systems
cxperiment control in scientific research
control of industrial production etc.

The special requirements imposed on a language for process control essentially necessi-
tate '
administration of concurrent activities

and

adaptability to a variety of peripherals.

Thus. the main emphasis in the development of PEARL has been upon input/output
and real-time features.

The following discussion of language features is intended as an informal survey of Full
PEARL. details and definitions are to be found in the defining document [1]. The
standard-subset ‘Basic PEARL' is described in [2]. Historical background information
concerning the PEARL development can be found in [3].

II. PROGRAM STRUCTURE

I. MODULES

PEARL-programs are composed of independently compilable units, the so called
‘MODULEs"‘. Connections between MODULEs are established through GLOBAL
objects (fig. 1).

In general. a MODULE consists of a part describing the environment of the system
(SYSTEM-division) and another one containing the formulation of the problem
(PROBLEM-division).

/2

MODULE;
SYSTEM,

1

PROBLEM;

7

I,
e

Fig. 1: MODULEs and their communication via GLOBALs (C);
arrows symbolize "import/export” relations, hatching

marks the storage location

2. SYSTEM-DIVISION

The SYSTEM-division of a MODULE displays the peripheral environment of a

PEARL-program or a part of it. It permits, in particular, to attach user-identifications
to devices and to list their connections (fig. 2):

SYSTEM ;
CHANNELx6 —> MONITOR:MO0100 ;
CHANNELx4 —> PRINTER:;
CHANNEL#*3 < —> PROCESSCHANNEL ;
PROCESSCHANNELx0 —> DIGOUT;
DIGOUT*3 —> RELAY:;
DIGOUT*S —> VALVE::
PROCESSCHANNEL*1 <— ANALOGIN;

ANALOGIN%*2 <-TEMPERATURE::

CHANNEL MONITOR

;":'Eﬁ:"‘; i 3l Al
O
\-- ;).:_‘—:l- ’l

PROCESSCHANNEL PRINTER
TT[T -
e :
r---- o R
DIGOUT ANALOGIN :
Il Lo _
oo 1D ?
RELAY VALVE TEMPERATURE

Fig. 2: Peripheral configuration described by a SYSTEM-division

The SYSTEM-division partly serves as the function of a Job Control Language by
separating program-modifications required by a different peripheral configuration from
the application part (PROBLEM-division). As an example, replacing the monitor
MO100 in figure 2 by a device of type MO110 connected to a different channel w-
ould require substitution of the corresponding SYSTEM-division statement by

CHANNELx*1—> MONITOR : MO110 ;

3. PROBLEM-DIVISION

The PROBLEM-division is composed of a set of declarations and specifications, in
particular of those program parts which may be executed concurrently, so-called
"TASKs'. Tasks may ‘activate' each other, i.e. a task may schedule the executions of
another task (or its own execution). The first task of a PEARL-program is activated by
external action, i.e., not at language level.

/4

III. ALGORITHMIC FEATURES

The algorithmic language concepts of PEARL are based on ALGOL 68 and - as far as
possible - have been adapted syntactically to PL/I.

1. DECLARATIONS AND SPECIFICATIONS

User-introduced language objects have to be declared prior to their use in operations:
DCL (X,Y,Z) FLOAT ;

A declaration can either be executed when executing a task, a procedure, an interface

or an operator or not. In the latter case, the declaration is said to stand ‘on module-

level' and the declared objects are known within this module for the whole time of

program execution. Whenever an object is to be ‘exported’, i.e. to be made known

in other modules. the declaration must be completed by the clause ‘GLOBAL‘:

DCL X FLOAT GLOBAL;

Where the properties of an object declared in one module have to be made known
(‘imported‘) in another one, this object needs a specification, e.g.:

SPC X FLOAT GLOBAL;

Besides specifications of GLOBAL objects, those of formal parameters in procedures
play an important role.

2. BASIC DATA TYPES

Six basic data types represent

numbers:

FIXED for integers : 07
FLOAT for floating-point numbers : 71
strings:

CHARACTER for character-strings : ‘PEARL®
BIT for bit-strings : ‘0101‘B

IS

times:
CLOCK for ‘points in time* : 11:55:04
DURATION for time-intervals : 3HRS 4 MIN 3 SEC

For numbers. a precision may be supplied, for strings a length. Precisions and lengths
enter significantly when operations with basic data types are considered.

3. LABELS
PEARL has label-constants as well as label-variables:

DCL TAG LABEL;

Mi: A:=B+C;

TAG := M1

A label-variable may be restricted to take on only a limited set of values which may be
listed in a RANGE-clause, for example:

DCL TAG LABEL RANGE (M1,M2);

In this case. only the values of M1 or M2 could be assigned to the variable TAG.

4. ASSIGNATION PROTECTION
Assignations to PEARL-objects can be inhibited either completely or only when
accessing these objects using certain identifiers. This is achieved adding the keyword
"INV* in a declaration

DCL PI INV FLOAT INITIAL (3.14) ;
or a specification

SPC MOMENT INV CLOCK IDENTICAL (TIME) ;
Thus. PI and MOMENT can only be read.

Assignation protection is an important tool in structured programming, for example.

/6

when data may be modified in only one MODULE but read in others:

MODULE ;
PROBLEM ;

DCL SWITCH FIXED GLOBAL ;

MODEND ;

MODULE ;
PROBLEM ;

SPC SWITCH INV FIXED GLOBAL;

MODEND ;

5. COMPOUND OBIJECTS

Basic types and most of the other PEARL-objects may be assembled to form arrays and
Structures.

Structures may in particular contain substructures which can be handled independently.
building up data hierarchies of great complexity.

DCL STATE STRUCT
[LOCK SEMA, SWITCH-STRUCT
[POWER BIT (1),
LIGHTS BIT (1),
AIR STRUCT
[TEMP FLOAT,
HUMID FIXED
l

/7

STATE

LOCK SWITCH

POWER LIGHTS AIR

r = |
TEMP HUMID

6. POINTERS
Pointers referring to PEARL-objects are type-specific:
DCL MATREF REF (,) FLOAT;

The pointer MATREF may refer to two-dimensional matrices of floating-point num-
bers.

Not every PEARL-object may be referred to by a pointer: pointers themselves are
excluded. for example, as well as tasks or procedures.

7. PROCEDURES

Declaring a PEARL-procedure requires a precise definition of how parameters and
results are transmitted to and from the procedure respectively.

For each parameter it has to be specified, whether the procedure needs its value at the
point of invocation or its ‘identity’ (i.e. its address).

In the first case (INITIAL-mechanism), a copy of the actual parameter will be made.
In the second case (IDENTICAL-mechanism), a new identifier, whose scope is the
procedure-block, is attached to the parameter. Combining these mechanisms with selec-
tive assignation protection provides a great variety of ways to access parameters. In

P: PROC (ARRAY () FLOAT IDENTICAL.
TIME INV CLOCK IDENTICAL,

I FIXED
)

END ;

/8

ARRAY is a two-dimensional FLOAT-matrix and TIME is an object of type CLOCK,
both not copied upon a procedure-call (IDENTICAL). In addition, ‘TIME® is pro-
tected against assignation which means that it cannot be modified within the procedure
(but in a concurrent activity for example). The integer ‘I‘ will be copied upon
CALL P(...) (INITIAL is default), i.e., the procedure uses its value at the point

of invocation.

Functions, i.e.. procedures returning a result, are characterized by the attribute

RETURNS

followed by the type of the object returned:

SINE: PROC (X FLOAT) RETURNS (FLOAT) ;

END ;

Further attributes qualify the procedure-code as ‘reentrant' (REENT) or to be ‘directly
inserted* (INLINE).

8. DEFINITION OF NEW DATA TYPES

A PEARL-programmer may define identifiers for new data types as given, for example,
by structures:

TYPE COMPLEX STRUCT [RE FLOAT, IM FLOAT] ;

i)CL C COMPLEX ;
In addition, a type-identifier may stand for a set of types, for example

TYPE TRANSFER ONEOF (COMPLEX, CHARACTER (16));
. where ‘TRANSFER® is defined to be an abbreviation for the type COMPLEX or
CHARACTER(16). Used as transfer-item type of a data-station, for example, the

latter would thereby be restricted to accept (or deliver) only the data of the respective
types.

/9

9. DEFINITION OF NEW OPERATIONS

Uscr-defined data types are complemented by the definition of operators specially
designed to handle such data types.

OPERATOR + (A INV COMPLEX, B INV COMPLEX)
RETURNS (COMPLEX) ;

RETURN ([A.RE + B.RE,A.IM + B.IM]) ;
END ;

An operator-declaration introduces an identifier or a symbol for a monadic or dyadic
operation defined like a function procedure. In fact, operators are similiar to generic

functions. i.e. operators having the same identification are discriminated through their
argument-types.

IV.INPUT AND OUTPUT

To cope with the variety of peripherals to be expected in a process environment,
PEARL provides a particularly flexible I/O-system. It consists of a network of data-
ways composed of the following components:

Data-stations
generalizing real or virtual peripherals or I/O-channels

Interfaces

mapping data-stations with different properties onto each other. Interfaces offer. in
particular, the possibility to define formatting routines.

A schematic view of a set of user-defined I/0-channels mapped onto a set of system-
defined channels by an interface is given in figure 3.

1. DATA-STATIONS

In PEARL, any I/O-device (standard- as well as process-peripheral) is considered as set
of one to four channels:

A data-channel acts as sink or source of values of ‘transferable’ PEARL-objects.

/10

data-
-

control-
P = channel
interrupt-
=
signal-
E -1
e || il s DATA -STATION
A ol e X
! br—o <=’ 5
? o INTERFACE
R :
|
) U R -
L N W
ST DATA-STATION
C | S
SYSTEM g

Fig. 3: Data-stations and interfaces

Not every PEARL-value can be transferred in a datachannel. This is limited
essentially to objects of the basic types and the corresponding compound objects.
In addition, an assignation protection (INV-attribute) inhibits input.
A control-channel transmits information used to control a data-station in operation.
According to its special importance, in PEARL such informations are handled
through a separate data type: the c-channel transfers values of type CONTROL.
An interrupt-channel signals events of type INTERRUPT (refer to section V).
A signal-channel signals events of type ‘SIGNAL® (refer to section V).

In order to check the correct handling of peripherals, their properties have to be

specified at language level. This is the purpose of a data-station specification:

/11

SPC PRINTER DATION OUT ALPHIC CONTROL (ALL) :
Such a specification contains information concerning

the direction of data flow with respect to the central processor or main memory
(IN.OUT.INOUT).

the possibility of direct transfer with other peripherals and its direction (SOURCE,
SINK. SOUSI).

the representation of the data transferred: internal representation or formatting to
external objects, e.g. printable characters (ALPHIC), logic levels (BASlC) graphic
symbols (GRAPHIC),

the units of transfer. e.g. one line or the content of a display,
the structure of the data transferred, e.g. file structures,

the access-method (FORWARD, FORBACK, DIRECT),

the continuation-method (STREAM, CYCLIC).

The attributes attached to a data-station in its specification or declaration allow for a

variety of checks permitting to detect some unsafe use of I/O-instructions as early as
compile time.

2. INTERFACES

Starting from the set of devices provided by an implementation (more precisely. their
drivers). virtual data-stations may be constructed. having more adequate. problem-
oriented properties. The conversions required may be formulated in a routine called
interface. Interface-routines have some resemblance as well to procedures as to tasks
but are clearly distinct from both. They are inserted ‘between‘ two data-stations (fig. 3)
and - for example - allow for

triggering of or reaction on interrupts and signals

selection of subchannels

opening and closing files

adaptation of transfer-units (buffering)

insertion or deletion of control-information into or out of the stream of data.
respectively.

/12

3. I/O-INSTRUCTIONS

Prior to the use of 1/O-channels for transfer, the data-station/interface network has to
be set up and its access by different tasks must be synchronized. Thus, there are three
categories of 1/O-instructions:

constructing and dismantling data-ways
The CREATE-statement links data-stations and interfaces creating an alternating
sequence as, for example, the one displayed in figure 3:

CREATE OUTFILE UPON PRINTER USING PRINTERFACE ;
Correspondingly, the DELETE-statement dismantles such links:

DELETE OUTFILE ;
synchronizing data-ways
A data-way, as constructed by a CREATE-statement, may either be requested

exclusively by a task or shared by several tasks. The corresponding clauses are part
of the OPEN-statement, e.g.

OPEN OUTFILE BY EXCLUSIVE;
Accordingly, a task renouncing the use"g data-way issues a CLOSE-statement.
using data-ways
Subsequent to construction and synchronization, data-ways may be used for trans-
fer. PEARL provides different kinds of transfer-statements according to the type of
data-station and the direction of the transfer. A graphic output device, for example,
is addressed using the DRAW-statement and the above specified PRINTER, e.g., by
PUT ‘ABC* TO PRINTER BY SKIP, A (3);
where the two controls SKIP and A(3) are transferred to the control-chan-

nel whereas the character-string ‘ABC* is put to the data-channel of data-station
PRINTER.

/13

V. REAL-TIME FEATURES

A rcal-time programming language as compared to languages for commercial or

scientific-technical applications is characterized by facilities permitting control of con-
current execution of program parts.

PEARL provides a set of features to handle concurrency and to react upon interrupts
and exception conditions.

1. TASKS

A task is similar to a procedure in that a piece of code is attached to it:

FILLING : TASK ;

.END 3
The activation of a task is analogous to a procedure-call:
ACTIVATE FILLING ;
However. the executions of different tasks are uncorrelated in time.

Competing for resources, the priority of tasks is taken into account. A priority may be
attached to a task at different occasions, for example in a declaration

REPORT: TASK PRIORITY 25;

END ;
The execution of a task may be
suspended indefinitely:

SUSPEND FILLING ;

/14

continued subsequent to a suspension:
CONTINUE FILLING ;
suspended for a definite amount of time or until the occurrence of an interrupt:
AFTER 10 MIN RESUME REPORT ;
terminated:
TERMINATE FILLING ;
In addition, all schedules for a task may be cancelled:
PREVENT REPORT ;

Such schedules may be given for all of the task-operations listed above. They express
additonal conditions that have to be satisfied prior to execution of the operations, name-

ly
times. durations or both:
AT 9:0:0 ALL 2HRS UNTIL 18:0:0 ACTIVATE REPORT;

occurrences of interrupts:

WHEN EMPTY CONTINUE FILLING ;

2. SYNCHRONIZATION

Whenever operations of two tasks have to be correlated - for example because they
operate on common data or other shared resources - synchronization algorithms have to
ensure the proper order of execution. This is facilitated using the synchronization
primitives SEMAphore and BOLT.

The semaphore operations REQUEST and RELEASE may be used to synchronize
a producer/consumer-type relation between tasks or, as a special case, an exclusive

access to a resource:

DCL CLEARANCE SEMA ;

REQUEST CLEARANCE ;

/15

The latter statement is unsuccessful, i.e. leads to suspension, if another task has
successfully requested the semaphore and has not yet released it through

RELEASE CLEARANCE ;
BOLT-operations provide a convenient formulation for synchronisations requiring a

distinction between exclusive (‘writing') and shared (‘reading’) access to a resource:

DCL FILE BOLT;

RESERVE FILE ;

This demands exclusive access to the resource protected by the bolt FILE and leads
to suspension whenever other tasks are using it. However no further access will be
granted to tasks (with lower priority) demanding, for example, shared access by

ENTER FILE ;

As soon as the last ‘sharing’ task has renounced to use FILE through
LEAVE FILE;

the RESERVE becomes effective.

The end of an exclusive use is indicated by

FREE FILE;

subsequent to which new ENTER- or RESERVE-requests can be honoured (in their
order of priority).

3. EVENTS

In PEARL two types of events may be defined and reacted upon:
INTERRUPTs are asynchronous events. In general, interrupts are defined in the

SYSTEM-division as arising from a (virtual) device and may be reacted upon by
scheduling a task-operation, e.g. an activation:

/16

SPC EMPTY INTERRUPT;

WHEN EMPTY ACTIVATE FILLING ;

SIGNAL: like interrupts are in general SYSTEM-defined. They are used to handle
exceptional conditions arising from execution of instructions (for example, overflow
or end-of-file). A signal-event is notified exclusively to the task executing the

erroneous instruction, which may either

. ignore it
. leave it to the system to react adequately
- execute a specific signal-reaction, a so-called ON-block:

SPC EOF SIGNAL ;

ON EOF : BEGIN ;

/ * REACTION ON END-OF-FILE */
.END 3
Interrupts as well as signals may be stimulated at language level:
TRIGGER EMPTY ;

INDUCE EOF ;

This is of particular importance for test and simulation.

/17

REFERENCES

/18

Full PEARL Language Description
Gesellschaft fuer Kernforschung mbH, Karlsruhe,
PDV-Bericht KFK-PDV 130,1977

Basic PEARL Language Description
Gesellschaft fuer Kernforschung mbH, Karlsruhe,
PDV-Bericht KFK-PDV 120, 1977

MARTIN. T.: The Develop ment of PEARL within the
Process Computer Control Project of the FRG
Gesellschaft fuer Kernforschung mbH, Karlsruhe,
PDV-Bericht KFK-PDV 129, 1977

