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StaRAI or StaRDB?

A Tutorial on Statistical Relational AI

Tanya Braun1

Abstract: This tutorial aims at connecting databases and statical relational AI (StaRAI), demonstrating
how database systems can benefit from methods developed within StaRAI, e.g., for implementing
efficient systems combining databases and StaRAI. Thus, the goal of this tutorial is two-fold: (i) Present
an overview of methods within StaRAI. (ii) Provide a forum to members of both communities for
exchanging ideas.
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1 Introduction

In recent years, a need for compact representations of large relational databases became
apparent, e.g., in natural language understanding or decision making. Using inductive logic
programming (ILP), one can build a model of a database, allowing for a crisp reproduction
of data. Another idea is to build a so called factor graph model of data and introduce a
probability distribution to reproduce data approximately. Such a model defines an intensional
representation of a probabilistic database. A factor graph model uses parameterised variables
similarly to the variables in ILP to compactly represent relations and objects. Grounding
such a model incurs an exponential blowup and makes inference infeasible. Instead of
grounding out a model, one can answer queries on the model directly and in a scalable way.

This tutorial aims at connecting databases and statical relational AI (StaRAI), demonstrating
how database systems can benefit from methods developed within StaRAI with the goal of
implementing efficient systems for probabilistic inference. Thus, the goal of this tutorial
is two-fold: (i) Present an overview of methods within StaRAI. (ii) Provide a forum to
members of both communities for exchanging ideas.

This tutorial provides an overview of the approaches towards probabilistic relational
modelling, looking at applications, semantics, and inference problems. The main part dives
into algorithms developed to scale inference in probabilistic relational models, highlighting
where database systems connect in our quest for efficient implementations for large data
sets. Slides are available at https://www.ifis.uni-luebeck.de/index.php?id=597.
1 Universität zu Lübeck, Institut für Informationssysteme, Ratzeburger Allee 160, 23562 Lübeck, braun@ifis.uni-

luebeck.de

cba doi:10.18420/btw2019-ws-27

H. Meyer et al. (Hrsg.): BTW 2019 — Workshopband,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 263



2 Tanya Braun

2 Probabilistic Relational Modelling

Applications of probabilistic relational modelling range from information retrieval to
predicting network attacks, often requiring some form of query answering (QA). As early
as 1995, Fuhr presents Probabilistic Datalog for information retrieval [Fu95]. In 2017,
Muñoz-González et al. use Bayesian networks for network analysis [Mu17]. While the
range of application areas is wide, the areas have all in common that QA requires proper
probabilistic reasoning which brings along scalability issues, especially under grounding
semantics [Sa95]. In a complementary approach, one is interested to lift ground instances
into a first-order or template representation and answer queries exploiting the first-order
structure during calculations [Po03]. Lifted representations allow for modelling relations
between objects under uncertainty.

Of course, there is not only the question of how to model a scenario but what semantics to link
with a model. The above mentioned grounding semantics defines a discrete joint distribution
based on factors. Various frameworks, such as the above mentioned Probabilistic Datalog or
ProbLog [RKT07] use grounding semantics, including lifted approaches [Po03, RD06]. For
continuous domains, probabilistic soft logic defines a density function using a log-linear
model [BMG10]. Maximum-entropy semantics allow for partially specifying discrete joints,
which are then completed uniformly [Th10].

The inference problems full into two categories, static or dynamic, where dynamic refers to
modelling a sequential or temporal process. In the static case, the inference tasks consist
of (i) projection (margins), (ii) most-probable explanation (MPE), and (iii) maximum a
posteriori (MAP). In the dynamic case, the inference problems are (i) filtering (present),
(ii) prediction (future), (iii) hindsight (past), and (iv) MPE/MAP (temporal sequence). The
main part, regarding scalability through lifting, focuses on solving static and dynamic
inference tasks within the parfactor modelling framework first introduced by Poole [Po03].

3 Scalability by Lifting

Lifting for inference has lead to the development of a range of representation formalisms
such as parfactor models [Po03] and Markov logic networks [RD06], lifting propositional
representations, e.g., Bayesian networks, factor graphs, or Markov networks. There exist
approaches for learning lifted representations, a prominent one being the colouring algorithm
by Ahmadi et al. [Ah13]. Learning lifted representations is a subject deserving of a tutorial of
its own. This tutorial concentrates on efficient inference algorithms for lifted representations.

Inference algorithms take a lifted representation as input and answer queries efficiently by
exploiting the first-order structures in the representations. Similar to lifting propositional
models, researchers have lifted algorithms that work for propositional models to work
for lifted models. From a more logical inference perspective, there exist lifted versions
[VMD14] of knowledge compilation [DM02] or theorem proving [GD11], all based on
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weighted model counting. Approximate lifted inference include lifted versions of belief
propagation [SD08, Ah13] as well as lifted sampling approaches [GD11, FV18].

From the area of probabilistic exact inference, variable elimination (VE) is a standard
algorithm for answering queries on static models [ZP94]. The junction tree algorithm (JT)
builds a helper structure, called a junction tree, to efficiently answer a set of queries on a
static model, incorporating VE as a subroutine [LS88]. The interface algorithm (IA) uses
the junction tree idea to formalise an efficient algorithm for answering a set of queries on a
dynamic model [Mu02]. For each algorithm, lifted counterparts exist, allowing for runtimes
no longer depending exponentially on domain sizes, i.e., number of objects in a model. Lifted
VE (LVE) avoids duplicate calculations by performing a calculation once for a representative
instance and then incorporating the isomorphic instances [Po03, dSBAR05, Mi08, Ta13].
The lifted junction tree algorithm (LJT) builds a lifted junction tree representation, which
enables LJT to use LVE as a subroutine [BM16]. The lifted dynamic junction tree algorithm
is based on IA and LJT, combining the idea behind the interface algorithm and lifted
junction trees [GBM18].

In this tutorial, we take a look at the given formalisms and algorithms through examples,
investigating possible links to database systems in a quest for an efficient implementation of
StaRAI algorithms in database systems.

References
[Ah13] Ahmadi, Babak; Kersting, Kristian; Mladenov, Martin; Natarajan, Sriraam: Exploiting

Symmetries for Scaling Loopy Belief Propagation and Relational Training. Machine
Learning, 92(1):91–132, 2013.

[BM16] Braun, Tanya; Möller, Ralf: Lifted Junction Tree Algorithm. In: Proc. of KI 2016:
Advances in Artificial Intelligence. Springer, pp. 30–42, 2016.

[BMG10] Bröcheler, Matthias; Mihalkova, Lilyana; Getoor, Lise: Probabilistic Similarity Logic.
In: UAI-10 Proc. of the 26th Conf. on Uncertainty in Artificial Intelligence. pp. 73–82,
2010.

[DM02] Darwiche, Adnan; Marquis, Pierre: A Knowledge Compilation Map. Journal of Artificial
Intelligence Research, 17(1):229–264, 2002.

[dSBAR05] de Salvo Braz, Rodrigo; Amir, Eyal; Roth, Dan: Lifted First-order Probabilistic Inference.
In: IJCAI-05 Proc. of the 19th International Joint Conf. on Artificial Intelligence. IJCAI
Organization, pp. 1319–1325, 2005.

[Fu95] Fuhr, Norbert: Probabilistic Datalog - A Logic for Powerful Retrieval Methods. In:
SIGIR-95 Proc. of the 18th Annual International ACM SIGIR Conf. on Research and
Development in Information Retrieval. pp. 282–290, 1995.

[FV18] Friedman, Tal; Van den Broeck, Guy: Approximate Knowledge Compilation by Online
Collapsed Importance Sampling. In: NIPS-18 Advances in Neural Information Processing
Systems 31. Curran Associates, Inc., pp. 8034–8044, 2018.

StaRAI or StaRDB? — A Tutorial on Statistical Relational AI 265



4 Tanya Braun

[GBM18] Gehrke, Marcel; Braun, Tanya; Möller, Ralf: Lifted Dynamic Junction Tree Algorithm.
In: Proc. of the International Conf. on Conceptual Structures. Springer, pp. 55–69, 2018.

[GD11] Gogate, Vibhav; Domingos, Pedro: Probabilistic Theorem Proving. In: UAI-11 Proc. of
the 27th Conf. on Uncertainty in Artificial Intelligence. pp. 256–265, 2011.

[LS88] Lauritzen, Steffen L.; Spiegelhalter, David J.: Local Computations with Probabilities on
Graphical Structures and Their Application to Expert Systems. Journal of the Royal
Statistical Society. Series B: Methodological, 50:157–224, 1988.

[Mi08] Milch, Brian; Zettelmoyer, Luke S.; Kersting, Kristian; Haimes, Michael; Kaelbling,
Leslie Pack: Lifted Probabilistic Inference with Counting Formulas. In: AAAI-08 Proc.
of the 23rd AAAI Conf. on Artificial Intelligence. AAAI Press, pp. 1062–1068, 2008.

[Mu02] Murphy, Kevin Patrick: Dynamic Bayesian Networks: Representation, Inference and
Learning. PhD thesis, University of California, Berkeley, 2002.

[Mu17] Muñoz-González, Luis; Sgandurra, Daniele; Barrère, Martín; Lupu, Emil C.: Exact
Inference Techniques for the Analysis of Bayesian Attack Graphs. IEEE Transactions on
Dependable and Secure Computing, PP(99):1–14, 2017.

[Po03] Poole, David: First-order Probabilistic Inference. In: IJCAI-03 Proc. of the 18th
International Joint Conf. on Artificial Intelligence. IJCAI Organization, pp. 985–991,
2003.

[RD06] Richardson, Matthew; Domingos, Pedro: Markov Logic Networks. Machine Learning,
62(1-2):107–136, 2006.

[RKT07] Raedt, Luc De; Kimmig, Angelika; Toivonen, Hannu: ProbLog: A Probabilistic Prolog
and its Application in Link Discovery. In: IJCAI-07 Proc. of 20th International Joint
Conf. on Artificial Intelligence. IJCAI Organization, pp. 2062–2467, 2007.

[Sa95] Sato, Taisuke: A Statistical Learning Method for Logic Programs with Distribution
Semantics. In: Proc. of the 12th International Conf. on Logic Programming. MIT Press,
pp. 715–729, 1995.

[SD08] Singla, Parag; Domingos, Pedro: Lifted First-order Belief Propagation. In: AAAI-08
Proc. of the 23rd AAAI Conf. on Artificial Intelligence. AAAI Press, pp. 1094–1099,
2008.

[Ta13] Taghipour, Nima; Fierens, Daan; Davis, Jesse; Blockeel, Hendrik: Lifted Variable
Elimination: Decoupling the Operators from the Constraint Language. Journal of
Artificial Intelligence Research, 47(1):393–439, 2013.

[Th10] Thimm, Matthias; Finthammer, Marc; Loh, Sebastian; Kern-Isberner, Gebriele; Beierle,
Christoph: A System for Relational Probabilistic Reasoning on Maximum Entropy.
In: FLAIRS-10 Proc. of the 23rd International Florida Artificial Intelligence Research
Society Conf. pp. 116–121, 2010.

[VMD14] Van den Broeck, Guy; Meert, Wannes; Darwiche, Adnan: Skolemisation for Weighted
First-order Model Counting. In: KR-14 Proc. of the 14th International Conf. on Principles
of Knowledge Representation and Reasoning. AAAI Press, pp. 111–120, 2014.

[ZP94] Zhang, Nevin L.; Poole, David: A Simple Approach to Bayesian Network Computations.
In: Proc. of the 10th Canadian Conf. on Artificial Intelligence. Springer, pp. 171–178,
1994.

266 Tanya Braun


