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Abstract: A network of integrate-and-fire neurons with reciprocal synaptic connec-
tions to the four next neighbors is considered. The input to each neuron is the feature
of an image, i.e. light intensity. Like in the biological archetype synchronization shall
be used as an indicator if the input in certain neurons are related or not. Two rules
for the unsupervised adaption of the synaptic weigths have been derived to achieve
segmentation image of areas belonging to the same feature.

1 Introduction

To some extend biological neural networks are considered to mark a yet unreached level
of signal processing. Therefore there is a strong interest to understand their function,
and to resemble some of their features in technical installations. Certain aspects of sig-
nal processing in biological neural networks caught our attention: Almost all real neu-
rons use pulse coded information transmission, accordingly they are pulse emitting neu-
rons. Synchronization occurs between neurons signaling connected pieces of informa-
tion [BGSE01, vdM81, RLS98] A lot of connections are made by adaptive synapses,
where adaptivity is either a part of the information processing or acts as a means to adjust
connections in systems with unsupervised learning.

One area of interest for applications is object recognition in image processing. To utilize
the above mentioned features would mean to use pulse coded image information, and
to arrange a pulse coupled neural network such that synchronization of neural activity
corresponds to parts of the image which are connected by one or more of their properties.
For the ease of implementation we choose a simple image feature as input, such as intensity
at a pixel, aka grey scale.

In the following section the integrate-and-fire model is briefly reviewed. Section three
explaines how synchronization can be achieved with the help of adaptive synapses. The
paper concludes with some details of a massive parallel analog implementation of a pulse
coupled neural network (PCNN).
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Figure 1: Model of the simple integrate-and-fire (IAF) neuron. Continuous input Ik is weighted by
w0. Together with weighted input pulses from other neurons wklXl it is integrated to the membrane
potential ak. When the threshold θ is reached, ak is reset and an output pulse of fixed duration td

appears at the pulse output Xk of the neuron.

2 Neural Model

The integrate-and-fire model is quite popular among neural research groups [In00, CBD+03,
SMJK98]. The leakage common to most flavors of the model we neglect in the following.
Thus, we arrive at the non-leaky integrate-and-fire (IAF) neuron model (although practical
analog implementations show some leakage). Let us denote one such neuron by k. Its state
is described by a two-state discrete variable Xk ∈ {0, 1} and a continuous state value, the
membrane potential ak ∈ R. Figure 1 shows the signal flow in the neuron. Each neu-
ron receives a continuous scalar input Ik ≥ 0 from the input image, and pulsed inputs Xl

(l ∈ N\k) from other neurons. All inputs are weighted by corresponding synaptic weights:
w0 for the continuous input and wkl for a pulsed input from neuron l.

In the receiving state the output Xk of neuron k is equal to zero and the weighted input
signals are integrated onto the membrane potential ak. At a time t

(ν)
k the membrane po-

tential ak reaches the fixed threshold θ and the neuron switches to the sending state and
generates an output pulse. The output Xk is equal to one in the sending state and the mem-
brane potential has no meaning. The neuron stays in this state for a fixed duration td (the
pulse width). When the pulse is completed the neuron resets the membrane potential ak

and toggles its state again. By this behavior the neuron outputs a pulse or spike of constant
duration and amplitude. The beginning of the sending state denoted by t

(ν)
k is referred to

as the firing time of the νth pulse of this neuron. The membrane potential in the receiving
state can be expressed by

ak(t) =
∫ t

t
(ν)
k

[ ∑
l∈Nk

wkl(t) · Xl(t) + w0 · Ik

]
dt (1)

with

0 ≤ ak(t) < θ. (2)
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The next fire event is given by

ak(t(ν+1)
k ) = θ. (3)

Because of the (weighted) continuous input w0Ik the neuron repeatedly emits pulses. With
a constant input and in the absence of additional pulsed input the pulses occur regularly at
a frequency, which is referred to as the free-running frequency:

ff =
w0Ik

θ + w0Iktd
. (4)

Without loss of generality units for time and membrane potential can be chosen, such that

td = 1 (5)

and

θ = 1. (6)

Then, (4) is of the form
f =

x

1 + x
. (7)

A frequency of 1 in these units would mean one pulse every td, i.e. without gaps between
pulses. That is the asymptotic maximum frequency for arbitrarily large input w0Ik → ∞.
Figure 2 shows the free-running frequency dependent on input. In our simulation experi-
ments and in the analog implementation we use inputs in the range

0 ≤ w0Ik ≤ θ

10 td
. (8)

3 Synchronization with Adaptive Synapses

3.1 Adaptation Rules

When two non-leaky IAF neurons k and l are connected reciprocally by two weights wlk

and wkl, their pulse rates become interdependent. They will spike synchronously, i.e. with
the same frequency fc and a fixed phase relation, if the weights are adjusted, that it holds:

Tiw0Ik + Tpwkl = θ = Tiw0Il + Tpwlk. (9)

Ti = 1/fc − td is the non-pulse part of the common period, and Tp is the non-overlapping
part of the pulses, which is equal for both neurons.

In our network the synchronous activity shall mark neurons and corresponding pixels,
which belong to the same segment. Segments are defined roughly by the property that
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Figure 2: free-running spike frequency ff of a non-leaky IAF neuron dependent on the continuous
input w0Ik.

neighboring pixels in the same segment have similar grey levels. The corresponding neu-
rons receive these grey levels as continuous inputs w0Ik and w0Il respectively. A set of
synaptic coupling weights {wµν} is introduced and establishes nearest neighbor coupling
between them. Figure 3 summarizes the network structure.

In order to obtain synchroneity in a hypothetical segment, for each neuron in the segment
it has to hold as an generalization of (9):

θ = Tiw0Ik +
∑
l∈Nk

Tp,lwkl, (10)

where Nk is the set of neighbors making connections to neuron k, and Tp,l is the part of
the pulses from neuron l not overlapping with pulses from neuron k.

In order to establish (10) the weights have to be adjusted. This is accomplished by adapting
them according to the states and membrane potentials of the connected neurons. Figure 4
shows state and membrane potentials of two neurons and motivates weight changes to
obtain synchroneity. The general idea is to enhance the weight, if the receiving neuron is
behind, to make it fire earlier in the next cycle; and respectively to attenuate the weight, if
the receiving neuron is in advance. Two rules have been found on this base:

rule 1: ẇkl = −γwkl +

{
µ(ak − θk/2) Xk = 0 ∧ Xl = 1
0 else

(11)

rule 2: ẇkl = −γwkl +

{
µ(al − ak) ‖al − ak‖ < θa ∧ Xk = Xl = 0
0 else

(12)

According to rule (11) a weight wkl is adapted, when a pulse is transmitted over it (Xl = 1)
and the post-synaptic neuron k receives that pulse (Xk = 0). If at this instant the mem-
brane potential is closer to the threshold than to the reset potential, the weight will be
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Figure 3: Structure of the neural network with adaptive weights.
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Figure 4: Membrane potential of two neurons and motivation for weight adaptation towards syn-
chroneity. For details see text.

increased. If the membrane potential is closer to the reset potential, the weight will be
decreased.

According to rule (12) the weight is adapted during the longer periods between pulses
(Xk = Xl = 0). Here, the weight is adapted proportionally to the difference of the
membrane potentials, if this difference is below a threshold θa.

At the border of hypothetical segments weights should decrease to small values, in order
to not disturb synchronous activity within segments. At the boundaries continuous input
w0Ik has larger differences between neighboring neurons. Because of the different free-
running frequencies the rightmost terms +µ(. . .) of (11) and (12) will vary rapidly and
indeterminately. The decay term −γwkl provides weight reduction in that situation besides
adding stability to the system.

As a result of the adaptation some weights can reach a stable periodic state, where the
weight oscillates around a fixed non-zero value in the rhythm of the transmitted pulses.
That is the case when ∫ 1/fc

0

ẇkl dt = 0. (13)
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For rule (11) equation (13) reads as

∫ 1/fc

0

γwkl dt =
∫ t

(ν)
l +td

t
(ν)
l

µ(ak − θk/2) dt. (14)

From γwkl > 0 follows µ(ak − θk/2)
∣∣
t
(ν)
l

> 0. During pulse transmission the post-

synaptic membrane potential ak is close to θ. Therefore, the pulse of the post-synaptic
neuron (Xk = 1) follows shortly after the pulse of the pre-synaptic neuron (Xl = 1). The
reciprocal weight wlk between the neurons is quickly reduced to zero by µ(ak−θk/2) < 0
and by the decay term −γwlk.

The by wkl scaled pulse increases the membrane potential ak of the post-synaptic neuron
k. Therefore a stable periodic state can be reached, if the continuous input w0Ik to the
post-synaptic neuron k is less than that to the pre-synaptic neuron l.

For rule (12) equation (13) becomes

∫ 1/fc

0

γwkl dt =
∫ 1/fc

0

dt ·
{

µ(al − ak) ‖al − ak‖ < θa ∧ Xk = Xl = 0
0 else

(15)

A stable periodic state can be reached, when the pre-synaptic membrane potential al is
greater than the post-synaptic membrane potential ak most of the time. Therefore the pre-
synaptic neuron will reach the threshold earlier than the post-synaptic neuron. Again, the
reciprocal weight wlk between the neurons is quickly reduced to zero by µ(al − ak) < 0
and by the decay term −γwlk.

3.2 Activity Waves

Both rules lead to very similar pulse patterns. Lets consider a patch of the network, where
the adaptation has led to synchronous activity. The weights connecting neighbors within
this patch have been set to different values, such that the additional pulsed input to the
neurons equalizes the difference in the continuous inputs. Then, for each neuron in the
patch the following holds:

w0Ik

(
1
fc

− td

)
+

∑
l∈Nk

wklTp,l = θ. (16)

It follows that for different inputs w0Ik the pulses of synchronous neurons cannot overlap
completely, because Tp,l > 0 must hold in (16). Even if the neurons receive equal contin-
uous inputs, non-overlapping activity must be conserved, once it has been established. If
one of the neurons in the patch receives additional pulsed input, all others have to receive
an equal amount to ensure the common pulse frequency.

As a consequence, in synchronous patches of the network the neural activity shows a wave-
like patterns, which repeatedly run across the patch. Three different forms of waves have
been observed so far in a large number of simulation experiments. They appear under
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Figure 5: In synchronized patches of the network wave-like activity patterns can be observed. Three
basic form occur in most of the simulation experiments: spiral forms which spin around a fixed
central pixel, straight moving forms, and expanding circles or ovals.

various conditions in a wide range of the parameters of the adaptation rules. Figure 5
shows their basic shapes.

4 Implementation

We have implemented the PCNN in a massively parallel analog VLSI chip using an In-
fineon 130 nm CMOS technology. The chip comprises 128×128 neurons, each coupled
to its 4 nearest neighbors by adaptive synapses capable of rules (11) and (12). The im-
plemented neurons spike with frequencies of up to 10 kHz and require 10 to 30 pulses
to achieve synchroneity. Images can be loaded into an analog frame memory with up to
100 frames per second, pulses are read out in real-time via an address event representation
protocol. The chip occupies about 50 square Millimeters, figure 6 shows the layout of a
spiking neuron with four adaptive synapses. The neural network dissipates about 5 Milli-
watts, the input and output circuitry is expected to draw 100 Milliwatts from the supply of
1.5 Volts.

The analog implementation does not resemble the adaptation rules (11) and (12) exactly.
Instead, the equations are roughly approximated and parameters haven been limited to
practical values. Additionally, synapses and neurons are not perfectly identical among
each other, as usual with analog implementations. Most parameters are reproduced with
limited accuracy only. However, the implementation shows the same wave-like synchro-
nization patterns. From the evaluation of extensive simulations accuracy levels have been
determined, which ensure a good match between pulse patterns seen in the implementa-
tion and in simulations of the ideal network. Some technical details of the implemen-
tation and a discussion of the accuracy determination can be found in our previous pa-
pers [SRH+02, SRH+04].
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Figure 6: Layout of a neuron with four adaptive synapses
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