
An Environment for
Modeling Workflow Components

Colin Atkinson and Dietmar Stoll

Lehrstuhl für Softwaretechnik
University of Mannheim

68131 Mannheim
{atkinson, stoll}@informatik.uni-mannheim.de

Abstract: An important goal of workflow engines is to simplify the way in which
the interaction of workflows and software components (or services) is described
and implemented. The vision of the AristaFlow project is to support a "plug and
play" approach in which workflow designers can describe interactions with
components simply by "dragging" them from a repository and "dropping" them
into appropriate points of a new workflow. However, to support such an approach
in a practical and dependable way it is necessary to have semantically rich
descriptions of components (or services) which can be used to perform automated
compatibility checks and can be easily understood by human workflow designers.
This, in turn, requires a modeling environment which supports multiple views on
components and allows these to be easily generated and navigated around. In this
paper we describe the Integrated Development Environment (IDE) developed in
the AristaFlow project to support these requirements. After outlining the
characteristics of the "plug and play" workflow development model, the paper
describes one of the main innovations within the IDE –the multi-dimensional
navigation over views.

1 Introduction

An important goal of workflow engines is to simplify the way in which the interaction of
processes and software components (or services) is described and implemented [DR04,
Ac04]. The AristaFlow project’s vision of how to achieve this is based on the "plug and
play" notion popularized on the desktop, in which workflow designers can describe
interactions with components simply by "dragging" them from a repository and
"dropping" them into the desired points of a new workflow [Da05]. However, the ability
to define new workflows in such a simple and straightforward way is only advantageous
if there is a high likelihood that the resulting processes are well-formed, correct and
reliable. In other words, to make the "plug and play" metaphor work in practical
workflow scenarios it is essential that components are used in the "correct way", and the
possibility for run-time errors is significantly reduced at design time. In short, there
should be few if any "surprises" at run-time. If workflows defined by the "plug and play"
metaphor are highly unreliable or unpredictable this approach will not be used in
practice.

99

99



In order to support this goal, components must be described in a way that –

1. has well defined semantics so that their properties are machine-readable and can
be used to automatically check workflow-component compatibility, correctness
and reliability.

2. is easy for humans to understand, so that workflow designers can easily
comprehend components’ properties and decide which components to use
where and in what way.

Only component description approaches that fulfill both of these requirements provide
the required foundation for the "plug and play" development and adaptation of
workflows. In addition, of course, workflow components must be developed using the
best available practices and subject to rigorous validation and quality assurance activities
(e.g. inspection and testing). So called "Semantic" approaches for describing
components/services, such as OWL-S [Ow04] or WSMO [Ws05] score highly on the
first requirement since they utilize a description logic based language such as OWL to
describe component semantics in a rigorous and machine-accessible way. However,
since they are optimized for reasoning efficiency rather than human readability they are
difficult to use.

Model-based representations of components based on languages such as the UML score
much more highly on the second requirement, but score less well on the first
requirement. This is because the semantics of some of the UML diagrams is somewhat
vague, and it is unclear what combination of diagrams should be used to fully document
a component and what information each diagram should contain. Indeed, the views
supported by the current set of UML diagrams do not allow all the necessary information
to be described and/or do not present it in an appropriate way. Moreover, there are no
predefined relationships between the UML diagram types, so there is no built-in way of
determining whether different views of a component are consistent with one another.

Nevertheless, modeling languages such as the UML provide a much more suitable
foundation for describing workflow components in a way that supports the plug and play
paradigm than OWL based approaches. By using OCL to tighten the semantics of
models and adding additional view types optimized for workflows it is possible to
overcome these problems and attain a component/service representation approach which
fulfills both criteria outline above. However, to make this viable in practice it is
necessary to define suitable consistency rules between views and provide a pragmatic
metaphor for creating and navigating around them. In addition, the approach must be
integrated within a practical software engineering environment that allows components
to be designed, implemented and tested using traditional development techniques.

This paper describes the approach to component modeling and development within the
AristaFlow project and the integrated development environment (IDE) created to support
it. Although these are optimized for the description of workflow components (e.g. by
views and editors especially tailored to the requirements of workflow developers and
administrators), they are useful for general component modeling as well. In the next
chapter we describe the overall life-cycle of components, and describe how they fit into

100

100



the workflow definition and execution process. The following two sections then describe
the main innovations in the AristaFlow approach. Chapter 3 describes the AristaFlow
IDE’s strategy for integrating the various kinds of diagrams types and view types needed
to fully describe workflow components and for ensuring that they stay consistent.
Chapter 4 describes the IDE’s innovative strategy for organizing the different views and
supporting navigation around them. Chapter 5 then presents some implementation details
of the IDE, and chapter 6 concludes with some final remarks.

2 Component-Oriented Development of Workflows

The AristaFlow project aims to cover the whole lifecycle of components from their
initial development to their use in workflow management systems (Figure 1). In this
lifecycle there are three main human roles: the component developer, the workflow
administrator and the workflow developer.

Component Developer

Process
Templates
Process
Templates

Process DeveloperAdministrator

Public
Repository

Enterprise
Repository

installation

publishing
composition

import
- role assignment
- installation information
- synonyms

IDEIDE

Figure 1: Workflow Component Lifecycle

The component developer models and implements components and then publishes them
in a public repository. A workflow administrator of an enterprise then browses the
repository or searches it by using various criteria as defined in the component
description. Once they have been found, suitable components can be imported into a
private enterprise repository – the so called deployment store – where they are installed
and ready to be executed. The administrator can then add information like role
assignments and deployment information. In addition, taxonomical information can be
adjusted or added, e.g. synonyms and (enterprise wide) unique identifiers for parameters,

101

101



and these can later be automatically "wired" to data elements by the workflow
management system.

A process developer then uses a process template editor to combine components and
process templates into executable processes. Figure 2 shows a screenshot of the
ADEPT2 editor developed in the AristaFlow project [Ar07]. In this example, an
application function ("Amazon Item Search") has been chosen from the activity
repository and dragged into the process graph. As the input parameter is not yet assigned
to another node in the process graph, the problem window shows an error message. A
process template can only be released to the ADEPT2 runtime system (for later
instantiation) if it contains no errors. Similar checks take place at runtime, when ad-hoc
changes or process schema evolutions are made [RD03, Ri04]. The system only allows
changes if they do not lead to inconsistencies. An extensive description of the issues and
requirements involved in modern workflow process modeling tools and workflow
management systems such as ADEPT2 is given in [Da05].

Figure 2: AristaFlow Workflow Editor

2.1 Integrated Development Environment

Since components/services are software applications in their own right, a component
development IDE needs to support the full range of development activities including
code development, testing and debugging. However, when building a component IDE it
is clearly undesirable and impractical to redesign or redevelop the rich range of
capabilities that modern IDEs provide. The AristaFlow IDE is therefore built upon an
existing, well known and extensible development environment - namely the Eclipse
environment.

102

102



Taking this goal into account, the component modeling approach and IDE were
developed to fulfill the following main requirements –

1. to fit seamlessly and with minimum impact on top of the Eclipse environment,
giving developers access to the full range of native Eclipse functionality and
existing Eclipse plug-ins,

2. to provide a concise, well-defined and human friendly representation of
components which workflow designers can easily understand and use to select
and employ components in their workflows,

3. to provide suitable, machine readable descriptions of component properties
which automated checkers (e.g. the workflow editor, the workflow execution
engine) can use to verify the suitable use of components within workflows, and

4. to support the packaging (exporting) of components in a way that can easily be
imported by the repository and the workflow tools.

Given requirements (1) and (3), it makes sense for the AristaFlow IDE to exploit as
much of the information in regular software development artifacts as possible and
translate it automatically into formats that can be understood by workflow management
systems. For example, activity templates, which are required for process modeling, can
to a large extent be automatically generated from source code. If the parameters of
operations of different vendors are related (e.g. by two parameters that represent an
account number), a mapping between parameters and unique identifiers is defined to
enable the automatic association of data elements to parameters. It is also possible to
associate a component or single operation with one or more taxonomies. The taxonomy
editor of the IDE allows custom taxonomies to be imported or created.

When a component developer specifies the behaviour of a component, for example, as a
state chart whose transitions correspond to operation calls or as regular expressions,
protocol checkers can be employed. These make sure that a process modeler can plug
operations into a workflow schema only in a way that obeys the constraints specified by
the component modeler. Similarly, constraints (i.e. invariants and pre- and post
conditions on operations) can be used for runtime checks, for example, by arranging for
the workflow execution engine to check preconditions before an operation is actually
invoked. The code for checking the preconditions can be generated by the IDE and
delivered with the component. This makes it possible to catch violated preconditions that
could lead to expensive and difficult-to-trace runtime errors and to generate a response
understandable to a workflow administrator.

The more information that is available to the execution environment, the more checks
can be made. Many of the checks are done at modeling time on the process schemata,
ensuring incorrect schemata are not allowed to be executed. In cases where modeling
time checks are impossible or too complex, checks at runtime are applied. These can
prevent unwanted behaviour of components, for example, by checking whether the
preconditions of an operation have been fulfilled by the component developer before it is
called.

103

103



3 View-Based Component Modeling

Although the basic idea of capturing software artifacts from numerous inter-related
viewpoints has been around for some time (e.g. [NKF03]), there are no widely used tools
that provide clean and inherent support for this approach. With the success of the agile
development movement most applications are still developed using source code as the
single view of software objects, and although the use of multi-view notations such as the
UML has grown in popularity, the selection of which views to use and how views should
be related is invariably left to the user. In particular, there are no widely used component
modeling tools that provide users with the flexibility to define new view types and
generate/access new view instances on demand while at the same time systematically
enforcing and checking consistency rules.

The problem is that during the development of a component, users need to generate and
work on all kinds of views ranging from UML diagrams to code fragments, and as the
number of views increases, navigation becomes more tedious and maintaining
consistency between them becomes increasingly difficult. This is particular so when the
relationships and consistency rules between different types of views are defined and
checked on a pairwise basis as is usually the case today.

An ideal solution to this problem would be for every view of the IDE to be generated
from, and to work on, a single underlying model and for changes made to individual
views to be synchronized directly with this model [AS07]. In this way, the consistency
between the editors and the model is automatically ensured, as long as each individual
change to a view is checked for validity against this model. This "on demand" generation
of views is schematically depicted in Figure 3. The single underlying model should be an
instance of a metamodel which contains the minimum set of concepts necessary to store
the required information.

However, building the whole IDE in this way, although possible in the long term, is
incompatible with requirement (1) in the short term. Thus, in the AristaFlow project a
hybrid solution was developed in which several underlying model formats coexist. In the
long term these will be merged into one representation and all views will be generated
(by model transformation) from this single representation.

Java sourceJava sourceUML classesUML classes

Figure 3: On demand View Generation

104

104



3.1 View Types

Although advanced users need to have the ability to define their own view types and to
describe how they relate to the existing views, most users will be content with using the
existing view types defined by the recommended modeling approach. A key question,
therefore, is what set of basic views users should employ to describe components.
AristaFlow's basic approach to component modeling is based on the KobrA approach
[At02], which defines a systematic approach to the UML based representation of
components. This is organized around the notion of projections, which define the kind
of information conveyed in a view, and abstraction levels, which define the level of
platform independence represented by a view and whether the information conveyed is
black box or white box.

There are currently three levels of abstraction supported in the IDE: specification,
realization and implementation. The most abstract level is the specification which
provides a black box view of the component. It describes all externally visible properties
of a component and thus serves as its requirements specification. The realization of a
component describes the design of the component and provides a white box view of its
internal algorithms and subcomponents. Source code and test cases are the most platform
specific representation, and capture the implementation of the component using the
chosen programming language.

Figure 4: Structural view of a Component Specification

KobrA also defines three fundamental projections: the structural, functional and
behavioural projection [At02]. The structural projection includes classes and associations
manipulated by the component as well as other structural information like taxonomical
information and source code. Operations of a component and their interaction with other
artifacts are modeled in the functional projection, e.g. by means of operation
specifications and UML interaction diagrams. Finally, the behavioural projection focuses

105

105



on the behaviour of the component and its operations, as manifest by UML state charts
and UML activity diagrams.

The basic principle behind KobrA is that a component should be viewable and
describable at both the specification and realization levels of abstraction from all three
"projection" perspectives. Thus, the specification of a component can be viewed from a
structural, functional and behavioural viewpoint, and the realization of a component can
be viewed from a structural, functional and behavioural viewpoint. Figure 4, for
example, is a screenshot from the IDE which shows the structural view of the
specification of a Bank component. This takes the form of a UML class diagram which
shows only externally visible properties of the component and its environment.

Figure 5, on the other hand, is a screenshot of the IDE which shows an element of the
functional view of the Bank specification. This is a so called "operation specification"
for an operation of the Bank (the withdraw operation), and defines the effects of the
operation in terms of OCL pre and post conditions. It is only one element of the

AristaFlow-Projekt, 2007

Figure 5: Functional View of a Component Specification

functional view of the Bank specification, because such a specification is needed for
each operation. Similarly, the behavioural view of a component specification consists of
a UML state diagram depicting the externally visible state and transitions of the
component. However, this is not shown here for space reasons.

106

106



These views are general views on components defined in the KobrA method. With one
exception they all employ a UML diagram. The exception is the operation specification
which is a form based view that uses the OCL. However, to support requirement (3)
above, additional views are supported in the IDE in order to provide information directly
needed for workflow compatibility checking. For example, Figure 6 below shows a view
which is used to define the classification of a component within a standardized business
taxonomy (like UNSPSC [Un07] or NAICS [Na07]). This provides information which is
directly used by the repository to support the cataloguing and organized browsing of
components.

Figure 6: Component Classification View

Figure 7 shows an even more detailed view which allows users to add extra information
needed explicitly by the ADEPT workflow editor and execution system.

Additional views can also obviously be added for different purposes. For example, it
would be easily possible to add higher-level business oriented views such as those
defined by [Tu02].

Of course, to support the integration of legacy components and not overwhelm
developers with features they are not familiar with, a developer is not forced to use all
the possibilities of the development environment. Only the use of a minimal set of
artifacts for the component repository is mandatory, e.g. information about the
executable operations of a component.

107

107



Figure 7: Component Descriptor

4 Dimension-based Navigation

Supporting a fundamentally view-based way of creating and manipulating components
of the form described in the previous section can greatly simplify the task of developing
components and assessing whether they are suitable for use in workflows. Different
stakeholders can view a component using diagram types and notations which best meet
their needs and expertise, and specialized views can be generated for specific purposes.
However, the downside to a view-based approach is that the number of views can
quickly explode. As a result, the benefit gained by the simplicity and clarity of individual
views can be outweighed by the extra complexity and overhead involved in organizing
and navigating around a large number of different views. This problem is particularly
acute in environments which use different, third party editors to generate and manage
views, since a user must then become acquainted with and navigate around different,
heterogeneous artifact trees.

An effective view-based IDE should therefore provide a simple, integrated approach for
managing and navigating around the various views supported by the system. To meet
this need the AristaFlow IDE employs a new navigation metaphor based on the notion of
independent, orthogonal development dimensions. This is motivated by the
“orthographic projection” paradigm used in mechanical and physical engineering to
create detailed drawings of physical objects, and exploits the fact that the different
projections and abstract levels used in KobrA to define the different views are essentially

108

108



orthogonal and hence can be selected independently. This is no accident, since the
KobrA method explicitly recognizes the existence of three fundamental and orthogonal
development dimensions. However, the use of these as a navigation metaphor is original
in the AristaFlow IDE. This is why we use the name “orthographic modeling” to
characterize the representation approach supported by the IDE.

In principle, there is no limit to the number of dimensions that can be supported.
However, in the current version of the IDE there are three dimensions: an abstraction
level dimension which represents the abstraction level discussed in the previous section
and has three distinct choices (specification, realization and implementation), a
projection dimension which represents the projection type discussed in the previous
section and also has three distinct choices (structural, functional and behavioural), and a
component dimension, which represents the component which is being worked on or
viewed. This has as many choices as there are components in the system – one for each
component.

The organization of the views around the notion of three orthogonal dimensions can be
visualized in terms of a cube, as illustrated in Figure 8. Each view corresponds to a cell
in the cube, which represents a particular choice for each of the independent dimensions.
Users are thus able select particular views by navigating around the cube and selecting
specific cells corresponding to specific choices of component, abstraction level and
projection.

Component

Ab
st
ra
ct
io
n

Pro
jec
tio
n

Cell

Component-based Software System

...

...

Component

Ab
st
ra
ct
io
n

Pro
jec
tio
n

Component

Ab
st
ra
ct
io
n

Pro
jec
tio
n

Cell

Component-based Software System

...

...

CellCell

Component-based Software System

...

...

Component-based Software System

...

...

Figure 8: Cube metaphor

Figure 4 to 7 show how this dimension-based navigation is actually supported in the
current IDE. The left hand side of each of these diagrams shows the navigation area
which contains a selection panel for each of the three dimensions, each showing the
currently selected option for each dimension. Thus, the navigation area on the left hand
side of Figure 4 shows that the displayed UML diagram actually occupies the cell
corresponding to the Bank option of the component dimension, the specification option
of the abstraction-level dimension and the structural option of the projection dimension.

109

109



In other words, it shows a structural view of the specification of the Bank component.
Similarly, the navigation area on the left hand side of Figure 5 shows that the displayed
operation specification occupies the cell corresponding to the Bank option of the
component dimension, the specification option of the abstraction level dimension and the
functional option of the projection dimension. In other words, it shows a functional view
of the specification of the Bank component. Obviously, by selecting different
combinations of choices from each dimension, users can navigate to different views.

Usually, one cell is associated with exactly one editor, e.g. a UML class diagram is
associated with the UML tool MagicDraw. However, if greater flexibility is desired, a
cell can be mapped to multiple editors, for example, when there are alternative tools
available for UML class diagrams. This is the role of the bottom selection panel. It
identifies which specific representation or rendering of a view is desired.

5 Configuration of the IDE

As mentioned above, to create a practical prototype IDE within the original AristaFlow
project a number of existing editors and tools were integrated under the view-based
metaphor just described. In this section we briefly explain what tools were integrated and
what role they play.

5.1 Editor overview

Projection

Abstraction

Structural Functional Behavioural

Specification UML Class Diagram
Taxonomy
Component Descript.

Operation Specification
Activity Template

UML State Chart
Regular Expression

Realization UML Class Diagram UML Communication
Diagram

UML Activity
Diagram

Implementation Source Code - -

Figure 9: Overview of editors for workflow component modeling

As an elegant and widely available UML diagramming tool, MagicDraw was chosen for
the following Perspectives: Class Diagram, State Chart, Communication Diagram, and
Activity Diagram. The Class Diagram editor is used for both the black box view
(Structural – Specification) and the white box view (Structural – Realization) of a
component. The behaviour of a component is modeled with a UML State Chart. In the
Structural Realization, the UML class diagram from the Structural Specification is
refined. The Functional Realization shows by the means of a UML communication

110

110



diagram with which components the function interacts. The Behavioural Realization
focuses on the decomposition of functions by exposing the internal logic with a UML
activity diagram.
The Operation Specification Editor focuses on pre- and post conditions of single
operations and their syntactical correctness. Especially suited for the component
repository are the Component Description Editor, the Taxonomy Editor, the Activity
Template Editor and the Regular Expression Editor (whose description can be used for
checks of allowable method call sequences at run-time).

After implementing a component, all artifacts can be packaged and saved in a single file
in the Reusable Asset Specification (RAS) format. The RAS is an OMG standard
specifying the structure, contents and description for reusable software
components/assets [Ras05]. Thus, a RAS can be populated with all the artifacts
generated during the component development process including models, requirement
specifications and tests as well as the final source code. This allows the component to be
imported into arbitrary development environments (i.e. any IDE that supports the RAS)
for further development and maintenance when the need arises.

6 Conclusion

The goal of the AristaFlow project was to develop and prototypically implement a
platform to support the whole lifecycle of flexible, process-aware information systems -
from the modeling and implementation of suitable components through process
composition in a plug and play like fashion up to flexible and adaptive process
enactment. An important part of this goal was to minimize errors at runtime by using
advanced component development and process composition methods. The IDE and
component repository described in this paper were developed to support the component
modeling element of this concept.

The developed IDE makes two major contributions to the state of the art – the first is a
novel approach for the dynamic generation of views on demand, and the second is a
novel approach for allowing users to organize and navigate around the different views.
While the IDE was specifically developed for the AristaFlow project, its view,
navigation and component representation concepts are useful for other software
development approaches as well.

Acknowledgements: This work was largely performed as part of the AristaFlow project
under the support of the State of Baden-Württemberg.

References

[Ac04] H. Acker, C. Atkinson, P. Dadam, S. Rinderle, M. Reichert: Aspekte der
komponentenorientierten Entwicklung adaptiver prozessorientierter
Unternehmenssoftware. In: K. Turowski (Hrsg.): Architekturen, Komponenten,

111

111



Anwendungen - Proc. 1. Verbundtagung AKA 2004, Augsburg, Dezember 2004. LNI P-
57, 2004, S. 7-24

[At02] C. Atkinson, J. Bayer, C. Bunse, E. Kamsties, O. Laitenberger, R. Laqua, D. Muthig, B.
Paech, J. Wüst, J. Zettel: Component-Based Product Line Engineering with UML.
Addison-Wesley Publishing Company, 2002

[Ar07] The AristaFlow project, http://www.aristaflow.de, visited Nov 2007
[AS07] C. Atkinson, D. Stoll: Orthographic Modelling Environment, Fundamental Approaches

to Software Engineering (FASE'08), Budapest (Hungary), 29 March - 6 April, 2008,
submitted

[Da05] P. Dadam, M. Reichert, S. Rinderle, C. Atkinson: Auf dem Weg zu prozessorientierten
Informationssystemen der nächsten Generation - Herausforderungen und
Lösungskonzepte. In: D. Spath, K. Haasis, D. Klumpp (Hrsg.): Aktuelle Trends in der
Softwareforschung - Tagungsband zum doIT Software-Forschungstag 2005, Karlsruhe,
Juni 2005. Schriftenreihe zum doIT Software-Forschungstag, Band 3, MFG Stiftung,
2005, S. 47-67

[DR04] P. Dadam, M. Reichert: ADEPT - Prozess-Management-Technologie der nächsten
Generation. In: D. Spath, K. Haasis (Eds.): Aktuelle Trends in der Softwareforschung -
Tagungsband zum doIT Software-Forschungstag 2003, IRB Verlag Stuttgart 2004, S.
27-43

[Na07] The North American Industry Classification System (NAICS),
http://www.census.gov/epcd/www/naics.html, visited May 2007

[NKF03] B. Nuseibeh, A. Finkelstein and J. Kramer, "ViewPoints: meaningful relationships are
difficult," International Conference on Software Engineering (ICSE 2003), Portland,
Oregon, 2003

[Ow04] The OWL Services Coalition, OWL-S 1.1 Release,
http://www.daml.org/services/owl-s/1.1/, visited Nov 2007

[Ri05] S. Rinderle: Schema Evolution in Process Management Systems. Dissertation,
Universität Ulm, Fakultät für Informatik, Dezember 2004

[RD03] S. Rinderle, P. Dadam: Schemaevolution in Workflow-Management-Systemen
("Aktuelles Schlagwort"). Informatik-Spektrum, Band 26, Heft 1, Februar 2003, S. 17-19

[Ras05] Object Management Group, Reusable Asset Specification, version 2.2.
http://www.omg.org/technology/documents/formal/ras.htm, Nov 2005, visited May 2007

[Tu02] K. Turowski (Editor) et al., Standardized Specification of Business Components,
Memorandum of the working group 5.10.3 Component Oriented Business Application
System, February 2002, http://www.wi2.info/downl/gi-files/MEMO/Memorandum-
english-final-included.pdf, visited Nov 2007

[Un07] The United Nations Standard Products and Services Code (UNSPSC),
http://www.unspsc.org/, visited May 2007

[Ws05] Web Service Modeling Ontology (WSMO), W3C Member Submission,
http://www.w3.org/Submission/2005/SUBM-WSMO-20050603/, visited Nov 2007

112

112




