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Abstract: In this paper, we address the problem of physical object authentication
based on surface microstructure images. The authentication is based on digital con-
tent fingerprints computed from the microstructure images. We analyze the impact
of camera distortions which follow additive correlated Gaussian noise. The optimal
decision rule is derived and the performance is analyzed in the direct and transformed
domain. The theoretical derivations are supported by experimental results obtained for
the FAMOS dataset.

1 Introduction

Counterfeit products are increasingly present in the market, leading to a number of issues

for legitimate manufacturers and consumers alike. Although manufacturers might be pri-

marily interested in preventing any loss of income, the well-being of consumers can be

seriously affected by counterfeit products such as car brakes or medication.

Although solutions exist where original items or their packaging are modified, such as by

attaching holograms or embedding a digital watermark, a recent development has been

to base protection systems on forensic features that require no modification of the items.

Forensic techniques are based on the intrinsic features of the objects to be protected. A

particularly attractive option is the use of microstructures, which can be acquired by com-

monly available optical equipment. Microstructures have been shown to be present in

almost all materials and to be robust against rough treatment of the material [BCJ+05].

Although the use of microstructures is an attractive option, their usage directly entails

a number of drawbacks, most notably the large storage space required, concerns about

the safety of the stored data, and the effort required to process the data during queries.

A solution to these concerns exists in the form of digital content fingerprints, which are

short, robust and informative representations of these images.

A similar approach is taken in the field of biometrics [TSE07, Ign09], where noisy data

acquired from a person is transformed into a binary template, which must be protected

due to the great importance of privacy in biometric applications. Due to the fact that

microstructures are acquired in the form of images, there is a strong link with multimedia
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security, and particularly robust image hashing [BL96, Fri00, FLL02, SMW06].

Fingerprints are typically stored in conjuction with an identifier, usually the index in a ta-

ble of fingerprints, in a relational database. In this context it is clear that the identifier is a

primary key in the database. Note that a key in the context of this work refers to a database

key, not a secret key as used in cryptography, biometrics or multimedia security. Although

the identifier is a valid database key, the fingerprint should satisfy many of the same con-

straints, namely, a fingerprint always has a value and is expected to be uniquely associated

with the item it is derived from. A difference between traditional database keys is that

fingerprints are random, determined by the natural randomness of the items from which

they are derived and partially by noise. This implies several differences with traditional

database keys. First, the uniqueness of fingerprints is not guaranteed, whereas a simple

automatic increment is sufficient to guarantee the uniqueness of traditional database keys.

Second, the fingerprints calculated from different observations of the same item differ

slightly due to the noise. This can be likened to executing database operations on a ma-

chine where data are corrupted due to failing memory modules. The presence of noise has

two very serious consequences: first, the time-complexity of a database lookup increases

from O(1) to exponential in the fingerprint length; second, the lookup might return an

erroneous result due to the fact that the introduced uncertainty renders it impossible to

confirm that a match in correct.

The problem wherein the identity of the item under investigation is established by match-

ing a query fingerprint against the full database of fingerprints, is refered to as the iden-

tification problem. In this work, we address a simpler case, the authentication problem,

which only establishes if an unknown item is in fact a specific item in the database indi-

cated by the user. This can be seen as a query with a fingerprint against one specific row of

the fingerprint table in the database, or against a table with one row. In this work we will

investigate the probability of error of a query based on fingerprints in the authentication

setup, and propose improved matching rules to decrease that probability of error.

In previous work, the authors have released FAMOS [VDB+12], a forensics dataset of

images of microstructure of cardboard boxes, and made several theoretical and practical

contributions to the field of fingerprinting [Bee12].

Although significant progress has been made in the field, there is still room for improve-

ment of the fingerprinting technology in terms of robustness and the precision of matching.

In this work, we propose enhanced observation models of the noise, and corresponding

rules for the matching of observations and fingerprints, leading to improved performance.

1.1 Notation

Bold capitals X denote vector random variables. Corresponding small letters x denote

their respective realizations. The binarized version of x is represented by bx. X ∼ f(x)
indicates that the random vector follows distribution f(x). The identity matrix is denoted

as I.
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2 Model of Authentication

Although other solutions exist, physical objects can be protected against counterfeiting

through authentication services, which determine if a particular object is truly the authentic

object m that it is claimed to be.

An overview of authentication for physical objects is given in Figure 1. There are two

phases in the authentication system: enrollment, where authentic items are produced and

their fingerprints are placed in a database; followed by verification, wherein it is claimed

that an unknown object is the authentic object with identify m, and it must be decided if

this is true or not. During the enrollment, an image of the microstructure of an authen-

Figure 1: An authentication scheme based on fingerprinting of microstructures.

tic object, which is given an identity m, is acquired. The image obtained from item m

is represented by the vector x(m), which is transformed into a fingerprint bx(m). The

fingerprint is then stored in a database.

During verification, the noisy data y, acquired from the object under investigation, is used

to calculate a fingerprint by. The claimed identity m is used to retrieve bx(m), the content

fingerprint of the authentic object m, from the database. The decision about the authentic-

ity of the object under verification is then made by comparing bx(m) with by.

We can then formulate the authentication problem as a binary hypothesis test to answer

the question whether or not the observed item is the authentic item m, i.e.:

{

H0 : No, it is not the authentic item m,

Hm : Yes, it is the authentic item m.
(1)
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2.1 Mathematical formulation of Authentication

The process shown in Figure 1 can be expressed mathematically as shown in Figure 2,

which details the calculation of the fingerprint. During the enrollment stage, a source X

Figure 2: Mathematical overview of authentication based on content fingerprinting.

generates a vector of features associated with m, the identity of the object, resulting in a

realisation denoted as x(m). The calculation of the fingerprint is modeled as a two-step

process: in the first stage, the data is transformed by a matrix W, producing X̃(m), which

can be quantized by a function Q to produce the fingerprint BX(m).

During verification, either the authentic object x(m) is observed, or any other item denoted

as X′. We assume that X′ is generated from the same source that produced x(m). We

assume that the counterfeiters have the same equipment or the technological details of

the manufacturing process. However, we assume that they can not control the physical

randomness of microstructures, which is a strong assumption. Mathematically, this can

be expressed by assuming that counterfeiters can produce counterfeit items X′ such that

X′ ∼ f(X). The acquisition during verification may introduce additive noise Z that is

independent of the item under investigation, producing a vector Y. The noisy vector Y is

transformed using W and quantized by Q, producing BY.

We will investigate the authentication problem in the direct and transformed domains. In

the direct domain, the data evaluated directly, i.e. the data is not modified. In the trans-

formed domain, the data first undergoes a transformation, represented by W in Figure 2,

and the transformed data is evaluated.

2.2 Direct Domain

In mathematical terms, we can reformulate the hypothesis test in the direct domain as:
{

H0 : Y = X′ + Z,

Hm : Y = x(m) + Z.
(2)

In previous work [VKP08, VDB+12, Bee12], it was assumed that both the source X and

the noise were Z are i.i.d. Gaussian, from which it follows that the correlation is a suf-

ficient statistic in the direct domain. In this work, we relax these assumptions and allow
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for correlated noise, i.e., we assume that X ∼ N (0,Kxx) and Z ∼ N (0,Kzz). We

make no assumptions about the counterfeit items X′ other than that they are generated

from the same distribution as authentic items. Consequently, the hypothesis test can be

reformulated in terms of the distributions:
{

H0 : Y ∼ N (0,Kxx +Kzz) ,
Hm : Y ∼ N (x(m),Kzz) .

(3)

Following the Neyman-Pearson framework, we can then formulate the decision rule for a

chosen threshold γ which can be developed using Bayes’ rule:

Pr [Hm | y]
Pr [H0 | y] > γ ⇔

f(y|Hm)p(Hm)
f(y)

f(y|H0)p(H0)
f(y)

> γ. (4)

Assuming p(H0) = p(Hm) = 1
2 , which implies the greatest uncertainty about the hypoth-

esis in force, yields:

f(y | Hm)

f(y | H0)
> γ (5)

1
N
√
2π
√

|Kzz|
exp

(

− 1
2 (y − x(m))TK−1

zz (y − x(m))
)

1
N
√
2π
√

|(Kxx+Kzz)|
exp

(

− 1
2y

T (Kxx +Kzz)−1y
) > γ, (6)

where |.| denotes the determinant of the matrix, and which can be further developed to

obtain a sufficient statistic [Kay98]:

t(y) =yT (Kxx +Kzz)
−1y − (y − x(m))TK−1

zz (y − x(m)) (7)

=yT (Kxx +Kzz)
−1y − yTK−1

zz y + 2yTK−1
zz x(m)− xT (m)K−1

zz x(m). (8)

A simplified sufficient statistic s(y) can be formulated by assuming that the terms yT (Kxx+
Kzz)

−1y, yTK−1
zz y and xT (m)K−1

zz x(m) are all constant for the expected observations:

s(y) =yTK−1
zz x(m). (9)

2.3 Transformed Domain

The calculation of a fingerprint typically involves a transformation, which we assume to be

linear and orthogonal. An example of such a transform is the DCT, but random projections,

which are approximately orthogonal [VKB+10, FVK10] can be considered as well. Let

X̃ = WX, Ỹ = WY, and Z̃ = WZ, (10)

then

Ỹ = WY = W(X+ Z) = WX+WZ = X̃+ Z̃, (11)
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where X̃ ∼ N (0,Kx̃x̃), Z̃ ∼ N (0,KZ̃Z̃), and Kx̃x̃ = WKx̃x̃W
T and Kz̃z̃ =

WKz̃z̃W
T [Jai89]. The hypothesis test in the transformed domain is then:

{

H0 : Ỹ = X̃′ + Z̃,

Hm : Ỹ = x̃(m) + Z̃,
(12)

which can be reformulated as in the direct domain:

{

H0 : Ỹ ∼ N (0,Kx̃x̃ +Kz̃z̃),

Hm : Ỹ ∼ N (x̃(m),Kz̃z̃),
(13)

leading to a sufficient statistic in the transformed domain:

s(ỹ) = ỹTK−1
z̃z̃ x̃(m). (14)

The challenge for systems designers is to choose a transform that leads to the most infor-

mative and robust fingerprints, which can be evaluated in information-theoretical terms,

using the framework introduced in earlier work [Bee12].

3 Experimental Results

In this work, we have opted to use the DCT as transform because of its energy-compacting

properties, which offer a good future perspective for dimensionality reduction.

As stated earlier, the statistic derived for i.i.d. Gaussian noise is the sum-inner-product,

both in the direct and in the transformed domain [VKP08]:

r(y) = yTx(m), r(ỹ) = ỹT x̃(m). (15)

There are two sources of error in authentication: first, an item that is not item m may

nonetheless be accepted as such; second, the authentic item m may be wrongfully rejected.

The latter case is refered to as a miss.

Let the probability of miss pm, and false acceptance pf be defined for each of the different

statistics as:

pm = Pr [r(Y) < t | Hm] pf = Pr [r(Y) ≥ t | H0] , (16)

pm = Pr
[

r(Ỹ) < t | Hm

]

pf = Pr
[

r(Ỹ) ≥ t | H0

]

, (17)

pm = Pr [s(Y) < t | Hm] pf = Pr [s(Y) ≥ t | H0] , (18)

pm = Pr
[

s(Ỹ) < t | Hm

]

pf = Pr
[

s(Ỹ) ≥ t | H0

]

, (19)

where t is a threshold that must be derived from the chosen threshold γ for each statis-

tic. The authentication performance will be analysed in terms of a Receiver Operating

Characteristic (ROC) curve.
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3.1 Authentication Performance on Synthetic Data

The performance has first been evaluated for synthetic data, where X ∼ N (0, I) and

Z was generated by a stationary Gauss-Markov process with ρZ = 0.85, i.e. Z ∼
N (0,Kzz). The length of the vectors was 128, and 4096 different vectors were enrolled,

then transformed with a one-dimensional DCT. The results are visible in Figure 5a, in-

dicating in all cases that the use of the proposed measures s(y) and s(ỹ) lead to greater

precision than the use of regular inner products r(y) and r(ỹ). It also demonstrated that

there is no difference between the direct domain and the transformed domain. The trans-

form does not alter the performance, i.e. the performance of r(y) and r(ỹ) are similar,

and the same holds for the performance of s(y) and s(ỹ).

3.2 Authentication Performance on the FAMOS dataset

The FAMOS1 dataset contains images of 5000 cardboard patches acquired with two dif-

ferent cameras [VDB+12]. Each cardboard patch is acquired three times with the same

camera, resulting in acquisitions A, B and C and a total of 30000 images. Examples of

these acquisitions can be seen in Figure 3.

(a) Camera 1, set A (b) Camera 1, set B (c) Camera 2, set A (d) Camera 2, set B

Figure 3: Multiple acquisitions of a single microstructure sample. Histogram equalization

was used for visualisation purposes.

A justification for the assumption of correlated noise can be seen in Figure 4, where the

spectra of the differences between acquisition images of an identical sample are shown.

The non-uniformity of the spectra confirms the dominance of low frequencies, indicating

a correlation between the elements of the noise.

In these experiments, the acquisition sets A and B were compared for both cameras to

produce the results. The images have been pre-processed to render them zero-mean and

unit variance to compensate for any variations in the lighting conditions, which could result

in potentially varying means and dynamic ranges. The inner product r(y) is therefore

mathematically identical to the sample cross-correlation.

Figure 5b shows the results for when the camera 1 is used for both enrollment and verifica-

1http://sip.unige.ch/famos
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(a) Camera 1 (b) Camera 2

Figure 4: Spectra of the noise showing correlation in the noise of the FAMOS dataset.

tion, whereas Figure 5c corresponds to the case where camera 2 is used for both enrollment

and verification. The curves for s(y) and s(ỹ) are absent in Figures 5b and 5c, which in-

dicates that either pm or pf can be reduced to zero when the same camera is used for

enrollment and verification when using the proposed statistics.

Figure 5d shows results for the case where camera 1 is used for enrollment, and camera

2 for verification. In this case, the performance is relatively decreased relative to the case

where only one camera is involved, as can be seen from the corresponding ROC curves.

In all cases, the fact remains that deploying the proposed sufficient statistics s(y) and

s(ỹ) leads to a significant performance improvement over r(y) and r(ỹ), respectively.

Additionally, we see that the chosen transform does not impact the performance, neither

for synthetic data or the true microstructure images from the FAMOS dataset.

4 Conclusions

In this work we have shown that a sufficient statistic based on a model with correlated noise

leads to significantly better performance, on both synthetic data and on true microstructure

images from the FAMOS dataset, in comparison to sufficient statistics for the case of i.i.d.

additive white Gaussian noise.

There are a significant number of directions for future research. First, an important aspect

of content fingerprinting that has not been addressed in this work is dimensionality reduc-

tion, which can be optimized with respect to robustness against distortions. Second, the

role of quantization and sufficient statistics in the binary domain are of vital importance, as

fingerprints are usually binary sequences. Third, the development and testing of improved

matching techniques, specifically matching real the transformed data against binary fin-

gerprints, can be explored. Fourth, the performance can most likely be improved even

further by reconstructing X̃ from a binary fingerprint and other information available at

the detector. Furthermore, we aim to develop a thorough information-theoretical analysis

based on the framework introduced in [Bee12]. Last, the results can be extented to the

identification setup.
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(b) FAMOS Camera 1
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(c) FAMOS Camera 2
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(d) FAMOS Camera 1 vs 2

Figure 5: ROC curves of authentication on synthetic data and the FAMOS datasets.
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