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Query Processing and Optimization in Modern Database
Systems

Viktor Leis!

Abstract: Relational database management systems, which were designed decades ago, are still the
dominant data processing platform. Since then, large DRAM capacities and servers with many cores
have fundamentally changed the hardware landscape. As a consequence, traditional database systems
cannot exploit modern hardware effectively anymore. This paper summarizes author’s thesis, which
focuses on the challenges posed by modern hardware for transaction processing, query processing,
and query optimization. In particular, we present a concurrent transaction processing system based on
hardware transactional memory and show how to synchronize data structures efficiently. We further
design a parallel query engine for many-core CPUs that supports the important relational operators
including join, aggregation, window functions, etc. Finally, we dissect the query optimization process
in the main memory setting and show the contribution of each query optimizer component to the
overall query performance.

1 The Architecture of Relational Database Systems

Relational database management systems have stood the test of time and are still the
dominant data processing platform. The basic design of these systems stems from the 1980s
and was largely unchanged for decades. The core ideas include row-wise storage as well as
B-trees on fixed-sized pages backed by a buffer pool, ARIES-style logging, and Two Phase
Locking. Recent years, however, have seen many of the design decisions become obsolete
due to fundamental changes in the hardware landscape. Before describing the contributions
of the author’s thesis [Lel6a], we give a brief outline of modern database systems and
discuss some of the challenges posed by modern hardware.

1.1 Column Stores

After decades of only minor, incremental changes to the basic database architecture,
a radically new design, column stores, started to gain traction in the years after 2005.
C-Store [St05] (commercialized as Vertica) and MonetDB/X100 [BZNOS5] (commercialized
as Vectorwise) are two influential systems that gained significant mind share during that
time frame. The idea of organizing relations by column is, of course, much older [BMKO9].
Sybase IQ [MF04] and MonetDB [BQK96] are two pioneering column stores that originated
in the 1990s.

Column stores are read-optimized and often used as data warehouses, i.e., non-operational
databases that ingest changes periodically (e.g., every night). In comparison with row stores,
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column stores have the obvious advantage that scans only need to read those attributes
accessed by a particular query resulting in less I/O operations. A second advantage is that
the query engine of a column store can be implemented in a much more CPU-efficient
way: Column stores can amortize the interpretation overhead of the iterator model by
processing batches of rows (“vector-at-a-time”), instead of working only on individual rows
(“tuple-at-a-time”).

The major database vendors have reacted to the changing landscape by combining multiple
storage and query engines in their products. In Microsoft SQL Server, for example, users
now can choose between the

. traditional general-purpose row store,
. a column store [Lal1b] for OnLine Analytical Processing (OLAP), and

° in-memory storage optimized for Online transaction processing (OLTP) [Dil3].

Each of these options comes with its own query processing model and specific performance
characteristics, which must be carefully considered by the database administrator.

The impact of column stores can be seen in the official benchmark numbers of TPC-H,
which is a widely used OLAP benchmark. Before 2011, multiple vendors competed for the
TPC-H crown, with the lead changing from time to time between Oracle, Microsoft, IBM,
and Sybase. This changed with the arrival of Actian Vectorwise in 2011, which disrupted the
incremental “rat race” between the traditional vendors by doubling the reported performance.
The dominance of Vectorwise as official TPC-H leader lasted until 2014, when Microsoft
submitted new results with their column store engine Apollo [Lal1b], which has been the
leading system in 2016.

1.2 Main-Memory Database Systems

The lower CPU overhead of column store query engines was of only minor importance
as long as data was mainly stored on disk (or even SSD). In 2000 one had to pay over
$1000 for 1 GB of DRAMZ2. At these prices, any non-trivial database workload resulted
in a significant number of disk I/O operations, and main-memory DBMSs—which were a
research topic as early as the 1980s [GS92]—were still niche products. In 2008, with the
same $1000 one could already buy 100 GB of RAM3. This rapid decrease in DRAM prices
had consequences for the architecture of database management systems.

Harizopoulos et al.’s paper from 2008 [Ha08] showed that on the—suddenly very common—
memory-resident OLTP workloads virtually all time was wasted on overhead like

° buffer management,

2 DRAM prices are taken from http://www. jcmit.com/memoryprice.htm.
3 The cost continues to decline. At the time of writing, in 2016, the cost was around $4 per GB.
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° locking,
. latching,
. heavy-weight logging, and

. an inefficient implementation.

The goal of any database system’s designer thus gradually shifted from minimizing the
number of disk I/O operations to reducing CPU overhead and cache misses. This lead
to a resurgence of research into main-memory database systems. The main idea behind
main-memory DBMSs is to assume that all data fits into RAM and to optimize for CPU
and cache efficiency. Using careful engineering and by making the right architectural
decisions that take modern hardware into account, database systems can achieve orders
of magnitude higher performance. Well-known main-memory database systems include
H-Store/VoltDB [Ka08, SW13], SAP HANA [Fal1], Microsoft Hekaton [Lal3], Oracle
TimesTen [LNF13], Calvin [Th12], Silo [Tul3], MemSQL, and HyPer [KN11].

1.3 HyPer

The author’s thesis [Lel6a] has been done in the context of the HyPer project, which
started in 2010 [KN10]. HyPer follows some of the design decisions of other main-memory
systems (e.g., no buffer manager, no locks, no latches, and (originally) command logging).
To avoid fine-grained latches, HyPer also initially followed H-Store’s approach of relying
on user-controlled, physical partitioning of the database to enable multi-threading.

HyPer has, however, a number of features that distinguish it from many other main-memory
systems: From the very beginning, HyPer supported both OLTP and OLAP in the same
database in order to make the physical separation between the transactional and data
warehouse databases obsolete. Initially, HyPer used OS-supported snapshots [KN11],
which were later replaced with a software-controlled Multi-Version Concurrency Con-
trol (MVCC) approach [NMK15]. The second unique feature of HyPer is that, via the
LLVM [LAO04] compiler infrastructure, it compiles SQL queries and stored procedures to
machine code [Nell, NL14]. Compilation avoids the interpretation overhead inherent in
the iterator model and thereby enables extremely high performance. LLVM is a widely used
open source compiler backend that can generate efficient machine code for many different
target platforms, which makes this approach portable. In contrast to previous compilation
approaches (e.g., [KVC10]), HyPer compiles multiple relational operators from the same
query pipeline into a single intertwined code fragment, which allows it to keep values in
CPU registers for as long as possible.

In terms of architecture, most column stores have converged to a similar design [Ab13],
which was pioneered by systems like Vectorwise [BZNO5] and Vertica [St05]. In-memory
OLTP systems, in contrast, show more architectural variety. Compilation is, however,
becoming a common building block for OLTP systems, as can be observed by the use of
compilation by HyPer [Nel1], Hekaton [Dil3], and MemSQL. Other high-performance
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systems like Silo [Tul3] also implicitly assume (but do not yet implement) compilation,
as the stored procedures are hand-written in C or C++ in these systems. In other areas
like concurrency control (e.g., [Tul3] vs. [Lalla] vs. [NMK15]), indexing (e.g., [LKN13]
vs. [MKM12] vs. [LLS13]), and logging (e.g., [Mal4] vs. physiological) there is much
more variety between the systems.

2 The Challenges of Modern Hardware
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Fig. 1: Number of cores in Intel server processors (largest configuration in each microarchitecture)

Besides increasing main-memory sizes, a second important trend in the hardware landscape
is the ever increasing number of cores. Figure 1 shows the number of cores for server
CPUs*. Over the entire time frame, the clock rate stayed between 2 GHz and 3 GHz and, as a
result, single-threaded performance increased only very slowly (by single-digit percentages
per year). Note that the graph only shows “real” cores for a single socket. Many servers
have 2, 4, or even 8 sockets in a single system and each Intel core nowadays has 2-way
HyperThreading. As a result, the affordable and commonly used 2-socket configurations
will soon routinely have over 100 hardware threads in a single system. Memory bandwidth
has largely kept up with the increasing number of cores and will reach over 100 GB/s per
socket with Skylake EP. However, it is important to note that a single core can only utilize a
small fraction of the available bandwidth, making effective parallelization essential.

Long before the many-core revolution, high-end database servers often combined a handful
of processors—connected by a shared memory bus—in a Symmetric Multi-Processing
(SMP) system. Furthermore, database systems have, for a long time, been capable of
executing queries concurrently by using appropriate locking and latching techniques. So one

4 The data is from https://en.wikipedia.org/wiki/List_of_Intel_Xeon_microprocessors. For Broad-
well EX and Skylake EP server CPUs we show estimates from the press as they were not yet released at the time
of writing.
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might reasonably ask if any fundamental changes to the database architecture are required
at all. Modern hardware, however, has unique challenges not encountered in the past:

Latches are expensive and prevent scaling. Traditional database systems use latches
extensively to access shared data structures from concurrent threads. As long as disk I/O
operations were frequent, the overhead of short-term latching was negligible. On modern
hardware, however, even short-term, uncontested latches can be expensive and prevent
scalability. The reason is that each latch acquisition causes cache line invalidations for all
other cores. As we show experimentally, this effect often prevents scalability on multi-core
CPUs.

Intra-query parallelism is not optional any more. For a long time, many systems relied
on parallelism from the “outside”, i.e., inter-query parallelism. With dozens or hundreds
of cores, intra-query parallelism is not an optional optimization because many workloads
simply do not have enough parallel query sessions. Without intra-query parallelism, the
computational resources of modern servers lie dormant. The widely used PostgreSQL
system, for example, will finally introduce (limited) intra-query parallelism in the upcoming
version 9.6—20 years after the project started.

Query engines should be designed with multi-core parallelism in mind. Some commer-
cial systems added support for intra-query parallelism a decade ago. This was often done by
introducing “exchange” operators [Gr90] that encapsulate parallelism without redesigning
the actual operators. This pragmatic approach was sufficient at a time when the degree of
parallelism in database servers was low (e.g., 10 threads). To get good scalability on systems
with dozens of cores, the query processing algorithms should be redesigned from scratch
with parallelism in mind.

Database systems should take Non-Uniform Memory Architecture (NUMA) into ac-
count. In contrast to earlier SMP systems, where all processors shared a common memory
bus, current systems are generally based on the Non-Uniform Memory Architecture
(NUMA). In this architecture each processor has its own memory, but can transparently and
cache-coherently access remote memory through an interconnect. Because remote memory
accesses are more expensive than local accesses, NUMA-aware data placement can improve
performance considerably. Thus, database systems must optimize for NUMA to obtain
optimal performance.

Together, these changes explain why traditional systems (e.g., as described in [HSHO7])
cannot fully exploit the resources provided today’s commodity servers. To utilize modern
hardware well, fundamental changes to core database components including storage,
concurrency control, low-level synchronization, query processing, logging, etc. are necessary.
Database systems specifically designed for modern hardware can be orders of magnitude
faster than their predecessors.
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3 Contributions

The author’s thesis [Lel6a] addresses the challenges enumerated above. The solutions
were developed within a general-purpose, relational database system (HyPer) and most
experiments measure end-to-end performance. Our contributions span the transaction
processing, query processing, and query optimization components.

We design a low-overhead, concurrent transaction processing engine based on Hardware
Transactional Memory (HTM) [LKN14, LKN16]. Until recently, transactional memory—
although a promising technique—suffered from the absence of an efficient hardware
implementation. Since Intel introduced the Haswell microarchitecture hardware transactional
memory is available in mainstream CPUs. HTM allows for efficient concurrent, atomic
operations, which is also highly desirable in the context of databases. On the other hand,
HTM has several limitations that, in general, prevent a one-to-one mapping of database
transactions to HTM transactions. We devise several building blocks that can be used to
exploit HTM in main-memory databases. We show that HTM allows one to achieve nearly
lock-free processing of database transactions by carefully controlling the data layout and the
access patterns. The HTM component is used for detecting the (infrequent) conflicts, which
allows for an optimistic—and thus very low-overhead execution—of concurrent transactions.
We evaluate our approach on a 4-core desktop and a 28-core server system and find that
HTM indeed provides a scalable, powerful, and easy to use synchronization primitive.

While Hardware Transactional Memory is easy to use and can offer good performance,
it is not yet widespread. Therefore, we study alternative low-overhead synchronization
mechanisms for in-memory data structures [Le16b]. The traditional approach, fine-grained
locking, does not scale on modern hardware. Lock-free data structures, in contrast, scale
very well but are extremely difficult to implement and often require additional indirections.
We argue for a middle ground, i.e., synchronization protocols that use locking, but only
sparingly. We synchronize the Adaptive Radix Tree (ART) [LKN13] using two such
protocols, Optimistic Lock Coupling and Read-Optimized Write EXclusion (ROWEX).
Both perform and scale very well while being much easier to implement than lock-free
techniques.

We describe the parallel and NUMA-aware query engine of HyPer, which scales up to
dozens of cores [Le14]. Our “morsel-driven” query execution framework, where scheduling
becomes a fine-grained run-time task that is NUMA-aware. Morsel-driven query processing
takes small fragments of input data (“morsels”) and schedules these to worker threads
that run entire operator pipelines until the next pipeline-breaking operator. The degree of
parallelism is not baked into the plan but can elastically change during query execution. The
dispatcher can react to the execution speed of different morsels but also adjust resources
dynamically in response to newly arriving queries in the workload. Furthermore, the
dispatcher is aware of data locality of the NUMA-local morsels and operator state, such
that the great majority of executions takes place on NUMA-local memory. Our evaluation
on the TPC-H and SSB benchmarks shows extremely high absolute performance and an
average speedup of over 30 with 32 cores.
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We complete the description of HyPer’s query engine by proposing a design for the
SQL:2003 window function operator [Le15b]. Window functions, also known as analytic
OLAP functions, have been neglected in the research literature—despite being part of the
SQL standard for more than a decade and being a widely-used feature. Window functions
can elegantly express many useful queries about time series, ranking, percentiles, moving
averages, and cumulative sums. Formulating such queries in plain SQL-92 is usually both
cumbersome and inefficient. Our algorithm is optimized for high-performance main-memory
database systems and has excellent performance on modern multi-core CPUs. We show
how to fully parallelize all phases of the operator in order to effectively scale for arbitrary
input distributions.

The only thing more important for achieving low query response times than a fast and
scalable query engine is query optimization. We shift our focus from the query engine
to the query optimizer [Lel5a]. Query optimization has been studied for decades, but
most experiments were in the context of disk-based systems or were focused on individual
query optimization components rather than end-to-end performance. We introduce the
Join Order Benchmark (JOB) and experimentally revisit the main components in the
classic query optimizer architecture using a complex, real-world data set and realistic
multi-join queries. We investigate the quality of industrial-strength cardinality estimators
and find that all estimators routinely produce large errors. We further show that while
estimates are essential for finding a good join order, query performance is unsatisfactory if
the query engine relies too heavily on these estimates. Using another set of experiments
that measure the impact of the cost model, we find that it has much less influence on
query performance than the cardinality estimates. Finally, we investigate plan enumeration
techniques comparing exhaustive dynamic programming with heuristic algorithms and
find that exhaustive enumeration improves performance despite the sub-optimal cardinality
estimates.

4 Future Work

We have shown that a modern database system that is carefully optimized for modern
hardware can achieve orders of magnitude higher performance than a traditional design.
However, there are still many unsolved problems, some of which we plan to address in the
future.

One important research frontier nowadays lies in supporting mixed workloads in a single
database. Many systems that start out as pure OLTP systems, over time add OLAP features
thus blurring the distinction between the two system types. While there may be sound
technical reasons for running OLTP and OLAP in separate systems, in reality, OLTP and
OLAP are more platonic ideals than truly separate applications. One major consequence is
that, even for main-memory database systems, the convenient assumption that all data fits
into RAM generally does not hold. Despite a number of recent proposals, we believe that
the general problem of efficiently maintaining a global replacement strategy over relational
as well as index data is still not fully solved.
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Major changes are also happening on the hardware side and database systems must keep
evolving to benefit from these changes. One aspect is the ever increasing number of cores
per CPU. While it is not clear whether servers with 1000 cores will be common in the near
future—if this indeed happens—it will have a major effect on database architecture. It is a
general rule, that the higher the degree of parallelism, the more difficult scalability becomes.
Any efficient system that scales up to, for example, 100 cores, will likely require some major
changes to scale up to 1000 cores. Thus, some of the architectural decisions may need to be
revised if the many-core trend continues.

A potentially even greater challenge is the increasing heterogeneity of modern hardware,
which has the potential of disrupting the architecture of database systems. From the point of
view of a software developer, in the past, software became faster “automatically” due to
increasing clock frequencies. The hardware technologies mentioned above have, however,
one thing in common: Programmers have to invest effort to get any benefit from them.
Programming for SIMD, GPUs, or FPGAs is very different (and more difficult) than using
the instruction set of a conventional, general-purpose CPU. A database system will have
to decide which part of a query should be executed on which device, all while managing
the data movement between the devices and the energy/heat budget of the overall system.
Put simply, no one currently knows how to do this and no doubt it will take considerable
research effort to find a satisfactory solution.

Whereas the technologies mentioned above promise faster computation, new storage
technologies like PCle-attached NAND flash and non-volatile memory (NVM) like Phase
Change Memory threaten to disrupt the way data is stored and accessed. In order to avoid
changing the software stack much, it is certainly possible to hide modern storage devices
behind a conventional block device interface. However, this approach leaves performance
on the table as it ignores the specific physical properties like the block erase requirement of
NAND flash or the byte-addressability of non-volatile memory. Thus, research is required
to find out how to best utilize these new storage technologies.

Finally, even the venerable field of query optimization still has many unsolved problems.
One promising approach is to rely more heavily on sampling, which is much cheaper than
in the past when CPU cycles were costly and random disk I/0 would have been required.
Sampling, for example across indexes, opens up new ways to estimate the cardinality
of multi-way joins [Lel7], which after decades of research, is still done naively in most
systems.
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