
cba

Herausgeber et al. (Hrsg.): BTW2021,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2020 1

B2-Tree: Cache-Friendly String Indexing within B-Trees.

Josef Schmeißer1, Maximilian E. Schüle 2, Viktor Leis 3, Thomas Neumann 4, Alfons
Kemper 5

Abstract: Recently proposed index structures, that combine trie-based and comparison-based search
mechanisms, considerably improve retrieval throughput for in-memory database systems. However,
most of these index structures allocate small memory chunks when required. This stands in contrast to
block-based index structures, that are necessary for disk-accesses of beyond main-memory database
systems such as Umbra. We therefore present the B2-tree. The outer structure is identical to that of an
ordinary B+-tree. It still stores elements in a dense array in sorted order, enabling efficient range scan
operations. However, B2-tree is composed of multiple trees, each page integrates another trie-based
search tree, which is used to determine a small memory region where a sought entry may be found.
An embedded tree thereby consists of decision nodes, which operate on a single byte at a time, and
span nodes, which are used to store common prefixes. This architecture usually accesses fewer cache
lines than a vanilla B+-tree as shown in our performance evaluation. As a result, the B2-tree answers
point queries considerably faster.

Keywords: Indexing; B-tree; String

1 Introduction

Low overhead buffer managers are a fairly recent development which provide in-memory
performance in case the data does fit into RAM [Le18; NF20]. However, database systems
based on such a low overhead buffer manager still require efficient index structures which
harness this new architecture. While systems like HyPer [KN11] could use pure in-memory
based index structures, like the Adaptive Radix Tree (ART) [LKN13] or the more recent
Height Optimized Trie (HOT) [Bi18], these are no longer an option for Umbra [NF20]. Pure
in-memory index structures usually offer better performance than various B-tree flavors,
yet their tendency to allocate small varying sized memory chunks limits their range of
applicability.

With the presentation of LeanStore [Le18], Leis et al. revisited the role of buffer managers.
LeanStore is a storage engine designed to resolve the overhead issues of traditional buffer
management architectures [Ha08]. Its main feature is to abandon a hash table based pinning
1 TU Munich, Chair for Database Systems, Boltzmannstraße 3, 85748 Garching josef.schmeisser@tum.de
2 TU Munich, Chair for Database Systems, Boltzmannstraße 3, 85748 Garching m.schuele@tum.de
3 Friedrich Schiller University Jena, Ernst-Abbe-Platz 2, 07743 Jena viktor.leis@uni-jena.de
4 TU Munich, Chair for Database Systems, Boltzmannstraße 3, 85748 Garching neumann@in.tum.de
5 TU Munich, Chair for Database Systems, Boltzmannstraße 3, 85748 Garching kemper@in.tum.de

cba doi:10.18420/btw2021-02

K.-U. Sattler et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2021),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 39

https://creativecommons.org/licenses/by-sa/4.0/
mailto:josef.schmeisser@tum.de
mailto:m.schuele@tum.de
mailto:viktor.leis@uni-jena.de
mailto:neumann@in.tum.de
mailto:kemper@in.tum.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2021-02


2 Josef Schmeißer, Maximilian E. Schüle, Viktor Leis, Thomas Neumann, Alfons Kemper

•

1

h
t
t
p
s
:
/
/
s

https://reddit.com/r/

• f •

2 4 c
o
m
p
s
c
i

f
u
n
n
y

n
e
w
s

t
u
m
u
n
i
c
h

https://

• u •

1 www.

• i •

3 4

u
m
b
r
a
-
d
b
.
c
o
m

d
b
.
i
n
.
t
u
m
.
d
e

i
n
.
t
u
m
.
d
e

t
u
m
.
d
e

Fig. 1: The B2-tree consists of decision nodes, similar to B+-tree nodes that contain separators and
pointers to sub-nodes, and span nodes for common prefixes.

architecture, which buffer managers usually use, in favor of a technique called pointer
swizzling [GUW09]. Umbra’s buffer manager extends this concept by the ability to serve
variable-sized pages with a minimum page size of 64 KiB [NF20]. This obviously affects the
architectural requirements imposed on index structures. The imposed constraint precludes
the use of most state-of-art pure in-memory based index structures. B-trees and their
variations, on the other hand, fit well into Umbra’s architecture. However, we found that
even a highly optimized B+-tree implementation is no longer competitive, with regard to
string indexing, in comparison to index structures like ART and HOT. Our B2-tree operates
on top of Umbra’s buffer manager and provides significant throughput improvements over
the original Umbra B+-tree.

Fig. 1 shows a small B2-tree. It hosts an embedded tree per B-tree page. This embedded
tree serves the purpose of directing incoming searches into narrowed down search spaces.
A search on the embedded tree yields a pair of slot indices which define a span wherein a
sought key may be found. Circular nodes point to the beginning of a search range, the upper
bound. Each search space is also highlighted by the distinct coloring of its records and the
corresponding node within the embedded tree.

Modern CPU architectures usually provide three layers of cache between their registers
and main memory in order to mitigate the imbalance between CPU performance and main
memory latency [SPB05]. Performing a naïve binary search over all the entries stored on
a reasonably large B-tree page usually results in high lookup costs. This is especially the
case when the B-tree page is used to store variable-sized records. One of the main reasons
is the binary search’s tendency to produce cache-unfriendly memory access patterns and
its relatively high amount of branch mispredictions during the search [LKN13]. Some
approaches try to mitigate these effects by using smaller nodes, often as small as a single
cache line, which are optimized for cache hierarchies of modern processors [JC10; RR99;
SPB05]. However, decreasing the page size down to the size of a single cache line may

40 Josef Schmeißer, Maximilian E. Schüle, Viktor Leis, Thomas Neumann, Alfons
Kemper



The B2-Tree 3

be infeasible or at least undesirable. Letting the storage backend handle such small pages
would also lead to a considerable overhead. In the end, the choice of a certain page size will
always be a trade-off.

We argue, that traditional index-structures for disk-based database systems can be adapted
for beyond main-memory database systems. This work focuses on the development of an
index structure based on the versatile B-tree layout. Thereby, we try to resolve the previously
stated cache-unfriendliness of most B-trees variants. The presented approach hence aims
to increase the number of successful cache accesses by applying data access patterns with
higher locality. Our approach utilizes a secondary embedded index contained within each
page. This secondary index is used to direct incoming searches to narrow down the search
space within a given page. Consequently, fewer cache lines will be accessed during the
search. We have chosen to retain the B+-tree [Co79] leaf layout, where keys are stored
sequentially in accordance to their ordering. This allows us also to maintain the usual
strength of B+-trees—their high range scan throughput.

This work’s main contributions are:

• the B2-tree, a disk-based index structure tuned for cache-friendly, page-local lookups,

• the adaption of radix trees to disk-based index structures,

• and a comparison to the already optimized Umbra B+-tree.

The focus of this work lies on the development of an index structure operating on given pages
administered byUmbra’s buffermanager. Concurrency is another aspect, our proposal utilizes
an optimistic synchronization technique [Ch01], namely Optimistic Lock Coupling (OLC)
[LHN19].

This work is structured as follows: Sect. 2 gives a summary of related work on modern
index structures. Sect. 3 introduces the B2-tree, which consists of the description of span
and decision nodes as well as insertion and retrieval algorithms. Finally, Sect. 4 compares
our proposed index structures to Umbra’s B+-tree.

2 Related Work

While there has been constant development and research in the area of index structures,
recent approaches mainly focus on main-memory database systems. Many of those index
structures are therefore not designed to be used in conjunction with a paging based storage
engine, however, their general design may still provide valuable insight.

There are a couple of proposals which aim to improve the cache-friendliness of B-trees.
One of which is the Cache Sensitive B+-Tree (CSB+-Tree) [JC10]. Completely different
approaches are the so-called Cache-Oblivious B-tree and the Cache-Oblivious string B-tree

B2-Tree: Cache-Friendly String Indexing within B-Trees 41



4 Josef Schmeißer, Maximilian E. Schüle, Viktor Leis, Thomas Neumann, Alfons Kemper

[BDF05; BFK06]. Both proposals are based on an important building block, the packed-
memory array (PMA). The PMA maintains its elements in physically sorted order, however,
elements are not organized in a dense manner, instead, empty spaces will be deployed as
necessary [BH07].

The String B-Tree is a B-tree specifically optimized to manage unbounded-length strings
[FG99] while minimizing disk I/O. It is composed of Patricia tries [Mo68] as internal nodes
where each Patricia trie node stores only the branching character. This architecture enables
the use of a constant fanout independent of the lengths of the referenced strings since the
Patricia trie leafs only store logical pointers. For this reason, searches within the String
B-Tree have to progress optimistically. A search may thereby initially yield a result which
does not match the queried key. By comparing the resulting string with the actual query, the
length of the longest common prefix will be determined. This information is then used to
find the corresponding node within the Patricia trie in question. From there on the correct
path based on the actual difference between the resulting string and the queried key will be
taken.

Additionally, the choice of a concrete binary search implementation also plays an important
role. Index structures which depend heavily on binary search, like B-trees, require an
efficient implementation thereof to achieve the best possible performance. Khuong and
Morin suggest the use of their branch-free binary search implementation for arrays smaller
than the size of the L2 cache [KM17].

Masstree is another key-value store that has mainly been designed to provide fast operations
on symmetric multiprocessing (SMP) architectures [MKM12]. It stores all data in main
memory, hence it is constructed to be used within the context of main-memory database
system. Masstree’s design resembles a trie [Br59; Fr60] data structure with embedded
B+-trees as trie nodes.

3 The B2-tree

The B2-tree is a variation of the classic B-tree, its core structure is based on the B+-
tree layout. We extend the existing layout by embedding another tree into each page, as
emphasized by the name B2-tree. The term embedded tree refers to this tree structure,
it serves the purpose of improving the lookup performance while maintaining minimal
impact on the size consumption as well as on the throughput of insert and delete operations.
Our implementation also features some commonly known optimization techniques like the
derivation of a shortened separator during a split [Ga18; GL01; Gr11].

Other approaches that combine or nest different index structures have already proved their
potential. Masstree for instance showed considerable performance improvements [MKM12].
However, Masstree is not designed to be used in conjunction with paging based storage
engines. Another point of concern is the direct correlation between the outer trie height and

42 Josef Schmeißer, Maximilian E. Schüle, Viktor Leis, Thomas Neumann, Alfons
Kemper



The B2-Tree 5

the indexed data. The inflexible maximum span length of eight bytes may lead to a relatively
low utilization and fanout of the lower tree levels when indexing strings, this is usually
caused by the sparse distribution of characters found in string keys. This is not unique to
Masstree: ART’s fanout on lower tree levels also decreases in such usage scenarios [Bi18].
B+-trees on the other hand feature a uniform tree height by design, since the tree height does
not depend on the data distribution. Comparison-based index structures such as the B+-tree
on the other hand are often outperformed by trie-based indexes in point accesses [Bi18].

Our approach intends to combine the benefits of both worlds, the uniform tree height of
B+-trees with the trie-based lookupmechanics, while still featuring a page based architecture.
Our trie-based embedded tree on each page serves the purpose of determining a limited
search space where the corresponding queried key may reside. However, we still utilize
a comparison-based search on these limited subranges. This design aims to improve the
general cache-friendliness of the search procedure on each page.

3.1 The Embedded Tree

In the following we will present the inner page layout of our B2-tree, the general outline
can be observed in Fig. 2. As already mentioned, the general page organization follows the
common B+-tree architecture, hence, payloads are only stored in leaf nodes. Leaf nodes
are also interlinked, like it is originally the case in a B+-tree, in order to maintain the high
range scan throughput usually achieved by B+-trees.

https://

1

• u •

2 www.

3
4 i 5

6

7

ri j

0 0

1 0

2 1

3 2

4 4

5 5

6 5

7 5

ri j key

2 0 https://umbra-db.com

3 1 https://wikipedia.org

4
2 https://www.db.in.tum.de

3 https://www.in.tum.de

5 4 https://www.tum.de

Span Node

Inner Decision Node

Virtual Node

Leaf Decision Node

Range Array

Page Entries

Fig. 2: The embedded tree structure together with an array responsible for translating the values
stored in the embedded tree (the 𝑟𝑖) into search ranges where sought key-value pairs may reside. Its
values are the exclusive upper bounds of offsets 𝑗 for the rightmost table (page entries). The grayish
virtual nodes are not part of the physically stored tree structure. Empty search ranges are omitted in
the rightmost table. This table shows the complete form of the stored keys, without their associated
payload.

The embedded tree itself is composed of a couple of different node types. First, we define the
decision node, it acts like a B-tree node by directing incoming queries onto the corresponding

B2-Tree: Cache-Friendly String Indexing within B-Trees 43



6 Josef Schmeißer, Maximilian E. Schüle, Viktor Leis, Thomas Neumann, Alfons Kemper

Inner Decision Node

header 0x11 0x22 0x33

key bytes

• • • •

child pointers

s1 s2 s3 s4

Leaf Decision Node

header 0x11 0x22 0x33

key bytes

ri+0 ri+1 ri+2 ri+3

range #

Span Node

header 0x0006

length

foobar

content

Fig. 3: Memory layout of all the embedded nodes deployed by B2-tree. Each node contains a one
byte large header. A flag inside the header determines whether a node contains pointers to subtrees or
references to search ranges.

child. Probably the main difference to a B-tree node, is the fact that these nodes operate on a
fixed size decision boundary represented by a single byte in our implementation, in contrast
to B+-tree nodes, which usually operate on multiple bytes at once. We hence decompose
keys into smaller units of information similar to how the trie data structure operates [Br59;
Fr60]. Nodes of this decision type direct the search to the first child where the currently
investigated byte of the search key is less or equal to the separator. The fanout of this
type of node is also limited in order to improve data locality. Another similarity to B-tree
nodes is the fact that they can be hierarchically arranged just like B-tree nodes. This node
type bears some similarity to the branch node found in Patricia tries [Mo68]. However,
Patricia’s branch nodes only compare for equality, our decision nodes use the range of
bytes to determine the position of a corresponding child. In Fig. 2 this type is illustrated as
divided rectangular shape. Fig. 3 illustrates the memory layout for this node type. Note that,
inner decision nodes and their leaf counterparts share the same layout, they just differ in
the interpretation of their two byte large payloads. Leaf nodes terminate the search for a
queried key even if it is not fully processed, the remainder of a queried key will then be
further processed by the subsequent comparison based search.

The second node type we define are span nodes. These store the byte sequence which forms
the longest common prefix found in the subtree rooted at the current node. Their memory
layout is shown in Fig. 3. This node type can be compared to the extension concept of the
Patricia trie [Mo68], however, span nodes have two additional outgoing edges to handle
non-equality. Note that, by using an order preserving storage layout for the nodes, there
is no necessity to store any next pointer within the span node, since the child node will
directly succeed the span node. In Fig. 2 span nodes are illustrated as rounded rectangles.
The deployment of span nodes is necessary to advance the queried key past the length of
a span if the current subtree has a common prefix. At the following key depth, decisions,

44 Josef Schmeißer, Maximilian E. Schüle, Viktor Leis, Thomas Neumann, Alfons
Kemper



The B2-Tree 7

whether a queried key is part of a certain range, can be made once again by the deployment
of decision nodes.

Obviously, the content of a span node does not have to match the corresponding excerpt of
the queried key exactly. In case the stored span does not match, three scenarios can occur.
Firstly, the size of the span may actually exceed the queried key. In that case the input will
be logically padded with zero bytes. This may lead to the second case where the input is
shorter. Any further comparisons with subsequent nodes are therefore meaningless. Hence,
we introduce the concept of a virtual edge pointing from each span to its leftmost child, a
so-called virtual node. To the edge itself we will refer as minimum edge. In Fig. 2 such an
edge and its corresponding node is always colored gray to emphasize the aspect that it is
not part of the physical tree structure. We follow this edge every time the input is less than
the content of the span node. Note that encountering a fully processed input key implies
that the minimum edge of a span node has to be taken. Fig. 2 illustrates the usage of this
concept with the insertion of the Wikipedia URL after the construction of the embedded
tree. This URL does not match the second span node, hence, it is delegated to the virtual
node labeled “3”.

The last casewhere the input is greater than the span node’s content is completely symmetrical
to the minimum edge situation. Therefore, a second virtual edge and node pair exists for
every span node to handle the greater than case. We will cover the algorithmic details more
elaborately in Sect. 3.2.

Fig. 2 also illustrates the range array, which stores the positions of key-value pairs. These
define limited search spaces on the page. This array serves two purposes. First, it eliminates
the need to alter the actual contents of the embedded tree during insert and removal
operations, this simplifies modification operations significantly. Second, it enables the use
of the aforementioned minimum and maximum edges.

During a lookup on a page this array is used to translate the output 𝑟𝑖 of a query on the
embedded tree into a position 𝑗 on the actual page. Each lookup on the embedded tree itself
yields an index into this array. This array, on the other hand, contains indices into the page
indirection vector [Gr06], whereas the indirection vector itself points to any data that does
not fit into a slot within the indirection vector [Gr06]. A resulting index thereby specifies an
upper limit for the search of a queried key, whereas the directly preceding element specifies
the lower limit. In Fig. 2 the annotated positions are colored differently in accordance to
their origin. The very first position is colored green, this special element ensures that the
lower limit for a search can always be determined. Indices originating from virtual edges
are colored gray, whereas blue is used for regular positions. We denote these indices as
𝑟𝑖 where 𝑖 represents the corresponding position within the array of prefix sums. Each 𝑟𝑖
occupies two bytes within each leaf node, the memory layout is illustrated in Fig. 3.

Insertion and removal operations, which are to be performed on the overlying page, also
affect the embedded tree. More precisely, this affects the search range given by the embedded

B2-Tree: Cache-Friendly String Indexing within B-Trees 45



8 Josef Schmeißer, Maximilian E. Schüle, Viktor Leis, Thomas Neumann, Alfons Kemper

tree where the actual operation took place and all subsequent search ranges, since adjusting
an upper boundary of one particular search range also implies that subsequent search ranges
have to be shifted in order to retain their original limits. This is achieved by simply adjusting
the values within the range array for the directly affected search range and every following
search range.

3.1.1 Construction

One aspect we have not covered so far is the construction of the embedded tree structure.
The construction routine is triggered each time a page is split or merged and also periodically
depending on the number of changes since the last invocation.

The construction routine always starts by determining the longest common prefix of the
given range of entries beginning at the very first byte of each entry. We will refer to the
position of the currently investigated byte as key depth, which is zero within the context
of the first invocation. On the first invocation, this spans the entire range entries on the
current page. Based on the length of the longest common prefix a root node will be created.
If the length of the longest common prefix is zero, a decision node will be created, else a
span node. In the latter case, the newly created node contains the string forming the longest
common prefix. Afterwards, the construction routine recurses by increasing the key depth
to shift the observation point past the length of the longest common prefix.

The creation of a decision node is more involved, here we investigate the byte at the current
key depth of the key in the middle of the given range. Subsequently, with the concrete value
of this byte, a search on the entries right to that key is performed. This search determines
the lower bound key index with regard to that value at the current key depth. In some cases,
the resulting index may lie right at the upper limit of the given key range. For this reason,
we also search in the opposite direction and take the index which divides the provided range
of keys more evenly. This procedure is repeated on both resulting subranges until either the
size of a subranges falls below a certain threshold or until the physical node structure of
the current decision node does not contain enough space to accommodate another entry.
Once a decision node is constructed, the construction routine recurses on each subrange,
however, this time the key depth remains unchanged. This process is repeated until each
final subrange is at most as large as our threshold value.

3.2 Key Lookup

On the page level, the general lookup principle is performed as in a regular B+-tree. The
only difference is the applied search procedure. We start by querying the embedded tree
which yields an upper limit for the search on the page records within the indirection vector.
With the upper limit known, the lower limit can be obtained by fetching the previous entry

46 Josef Schmeißer, Maximilian E. Schüle, Viktor Leis, Thomas Neumann, Alfons
Kemper



The B2-Tree 9

from the range array. Afterwards, a regular binary search on the limited range of entries
will be performed.

Querying the embedded tree not only yields the search range but also further information
about the queried key’s relationship to the largest common prefix prevailing in the resulting
search range. The concrete relationship is encoded in skip, the stored value corresponds to
the length of the largest common prefix within the returned search range. It also indicates
that the key’s prefix is equivalent to this largest common prefix. This information can be
exhibited to optimize the subsequent search procedure by only comparing the suffixes.

Algorithm 1 Traversal of the embedded tree structure.

1: function Traverse(node, key, length, skip)
2: if IsSpan(node) then
3: (exh, diff ) ← CmpSpan(node, key, length, skip)
4: if diff > 0 then
5: return MaximumLeaf(node)
6: else if diff < 0 or exh then
7: return MinimumLeaf(node)
8: else
9: spanLength← GetSpanLength(node)
10: key← key + spanLength
11: length← length − spanLength
12: skip← skip + spanLength
13: Traverse(child, key, length, skip)
14: end if
15: else
16: child← GetChild(node, key, length)
17: if IsLeaf(node) then
18: return (child, skip)
19: else
20: Traverse(child, key, length, skip)
21: end if
22: end if
23: end function

Algorithm 1 depicts a recursive formulation of the embedded tree traversal algorithm. It
inspects each incoming node whether it is a span node or not. We compare the stored span
with the corresponding key excerpt at the position defined by skip, in case a span node is
encountered. The difference between the stored span and the key excerpt will be the result of
this comparison. We also determine whether the key is fully processed in this step, meaning
that the byte sequence stored within the span node exceeds the remaining input key. Three
cases have to be differentiated at this point.

Firstly, the obtained difference stored in diff may be greater than zero, hence, the span
did not match. However, this also implies that the remaining subtree cannot be evaluated
for this particular input key. One of the outgoing virtual edges must therefore be taken.
Implementation-wise, this edge is realized by a call to MaximumLeaf. It traverses the

B2-Tree: Cache-Friendly String Indexing within B-Trees 47



10 Josef Schmeißer, Maximilian E. Schüle, Viktor Leis, Thomas Neumann, Alfons Kemper

remaining subtree by choosing the edges corresponding to the largest values. The final result
is thus the rightmost node of the remaining subtree.

The second case, where the excerpt of the input key is smaller, is mostly analog. However,
the condition must now not only include the result, whether diff is smaller than zero, but
also the result, whether the input key has been fully processed during the span comparison
or not. An input key that is shorter than the sum of all span nodes, which led to the
key’s destination search range, will be logically padded with zeros. This leads to another
interesting observation. Consider two keys with different lengths and their largest common
prefix being the complete first key, all remaining bytes of the second key are set to zero.
The index structure has to be able to handle both keys. However, from the point of view
of the embedded tree, both keys will be considered as equal. This also implies that the
embedded structure has to ensure that both keys will be mapped into the same search range.
It is therefore up to the construction procedure to handle such situations accordingly. The
subsequent binary search has to handle everything from there on.

The third and last case, where the key excerpt matches the span node, should be the usual
outcome for most input keys. We obviously have to account for the actual length of the span
to advance the queried key beyond this byte sequence. Hence, the point of observation on the
key has to be shifted accordingly. This is also the case where skip is adjusted accordingly. It
holds the accumulated length of all span nodes which were encountered during the lookup,
or an invalid value if one of the span nodes did not match or more precisely if diff evaluated
to a non-zero value. The subsequent call to either MaximumLeaf or MinimumLeaf thereupon
returns an invalid value for the skip entry in the result tuple.

3.3 Key Insertion

We have already briefly discussed, how the insertion of new entries, affects the embedded
tree, and its yielded results. Two cases have to be addressed. Either there is enough free
space on the affected page to accommodate the insertion of a new entry, or the space does
not suffice. A new entry can be inserted as usual if the page has enough free space left.
However, this will also require some value adjustments within the range array in order to
reflect the change. The latter case, where the page does not hold enough free space for the
new entry, will lead to a page split. Splitting a page additionally results in roughly half of
the embedded tree being obsolete.

For a simple insertion that does not lead to a page split, updating the embedded tree is trivial.
We first determine the affected 𝑟𝑖 in the range array where the insertion takes place. The
updated search range is then defined by the preceding value and the value at 𝑟𝑖 , which has
to be incremented, since the search range grew by exactly one entry. In Fig. 2 these index
values are denoted as 𝑗 , and they are stored within the range array. However, this change
must also be reflected in all subsequent search ranges. Therefore, all the following entries
within the range array have to be incremented as well, in order to point to their original

48 Josef Schmeißer, Maximilian E. Schüle, Viktor Leis, Thomas Neumann, Alfons
Kemper



The B2-Tree 11

elements. By conducting this change, subsequent index values will then span all the original
search spaces, which were valid up to the point where the insertion occurred.

The case where an insertion triggers a page split has to be handled differently. A split
usually implies that approximately half of the embedded tree represents the entries on the
original page whereas the other half would represent the entries on the newly created page.
Consequently, the index values defining the search ranges of one page are now obsolete.
Although, the structure could be updated to correctly represent the new state of both pages,
we instead opted to reconstruct the embedded trees. This allows us to utilize the embedded
structure to a higher degree, since the current prevailing state of both pages can be captured
more accurately. Having a newly split page also ensures that roughly half of the available
space is used. We can thus construct a more efficient embedded tree, which specifies
smaller search ranges. In turn, smaller ranges can be used to direct incoming searches more
efficiently.

3.4 Key Deletion

Deletion is handled mostly analogously. However, the repeated deletion of entries, which
define the border between two ranges, may lead to empty ranges. This is no issue per se: The
subsequently executed search routine just has to handle such a scenario accordingly. As it is
the case with insertions, the deletion of entries also requires further actions. Directly affected
search ranges have to be resized accordingly. Hence, the corresponding 𝑗 values within the
range array have to be decremented in order to reflect those changes. All subsequent values
also have to be decremented in order to point to their original elements on the page.

3.5 Space Requirements

Another interesting aspect is the space requirement of the embedded tree structure. In the
following we will analyze the worst-case space consumption in that regard. We start by
determining an upper bound for the space consumption of a path through the embedded tree
to its corresponding section of the page which defines a search range.

For now, we only consider the space required by the structure itself, not the contents
of span nodes. The complete length of all the contents of span nodes forms the longest
common prefix of a certain page section, which our second part of this analysis takes into
account. Furthermore, a node in the context of the following first part refers to a compound
construction of a decision node and a zero-length span node, this represents the worst-case
space consumption scenario, where each decision node is followed by a span. Similar to
the analysis of ART’s worst-case space consumption per key [LKN13], a space budget
𝑏(𝑛) in byte for each node 𝑛 is defined. This budget has to accommodate the size required
by the embedded tree to encode the path to that section. 𝑥 denotes the worst-case space

B2-Tree: Cache-Friendly String Indexing within B-Trees 49



12 Josef Schmeißer, Maximilian E. Schüle, Viktor Leis, Thomas Neumann, Alfons Kemper

consumption for a path through the embedded tree in byte. The total budget for a tree is
recursively given by the sum of the budgets of its children minus the fixed space 𝑠(𝑛)
required for the node itself. Formally, the budget for a tree rooted in 𝑛, can be defined as

𝑏(𝑛) =
{
𝑥 isTerminal(𝑛)∑

𝑐∈children(𝑛) 𝑏(𝑐) − 𝑠(𝑛) else.

Hypothesis: ∀𝑛 : 𝑏(𝑛) ≥ 𝑥.
Proof. Let 𝑏(𝑛) ≥ 𝑥. We give a proof by induction over the length of a path through the tree.
Base case: The base case for the terminal node 𝑛, i. e. a page section, is trivially fulfilled
since 𝑏(𝑛) = 𝑥.
Inductive step:

𝑏(𝑛) =
∑︁

𝑐∈children(𝑛)
𝑏(𝑐) − 𝑠(𝑛)

≥ 𝑏(𝑐1) + 𝑏(𝑐2) − 𝑥 (a node has at least two children)
≥ 2𝑥 − 𝑥 = 𝑥 (induction hypothesis).

Conclusion: Since both cases have been proved as true, by mathematical induction the
statement 𝑏(𝑛) ≥ 𝑥 holds for every node 𝑛. �

An upper bound for the payload of the span nodes is obtained by assigning the complete
size of the prefix of each section to the section itself. Assigning the complete prefix directly
to a section implies that the embedded tree does not use snippets of the complete prefix for
multiple sections, therefore, each span node has a direct correlation with a search range
defined by the embedded tree. The absence of shared span nodes, thus, maximizes the space
consumption for the embedded tree. An upper bound for the space consumption of the
embedded tree is given by ∑

𝑟 ∈searchRanges(𝑝) (𝑙 (𝑟) + 𝑥)
where 𝑙 (𝑟) yields the size of the longest common prefix of the search range 𝑟 within page 𝑝.
We can therefore conclude that the additional space required by the embedded tree mostly
depends on the choice of how many search ranges are created and the size of common
prefixes within them. Our choice of roughly 32 elements per search range yielded the optimal
result on all tested datasets, however, this is a parameter which may require further tuning in
different scenarios. In our setting, the space consumption of the embedded structure never
exceed 0.5 percent of the page. Note that, the prefix of each key within the same search
range does not have to be stored, the B2-tree may therefore also be used to compress the
stored keys.

In the following we will analyze how modern CPUs may benefit from B2-tree’s architecture.
Both AMD’s and Intel’s current x86 lineup feature L1 data caches with a size of 32 KiB,

50 Josef Schmeißer, Maximilian E. Schüle, Viktor Leis, Thomas Neumann, Alfons
Kemper



The B2-Tree 13

8-way associativity, and 64-byte cache-lines. Our previous worst-case space consumption
showed that the size of the embedded tree is mostly influenced by the size of common
prefixes. The constant parameter 𝑥, on the other hand, can be set to 15, which is the size of
a decision node and an empty span node. With the aforementioned setup of 32 elements
per search range and a page size of 64 KiB, we can assume that the embedded structure,
excluding span nodes, fits into a couple of cache lines, our evaluation also supports this
assumption.

Efficient lookups within the limited search ranges are the second important objective of
our approach. With the indirection vector being the entry point for the subsequent binary
search, it is beneficial to prefetch most of the accessed slots. In our implementation, each
slot within the indirection vector occupies exactly 12 bytes. Therefore, with 32 elements
per search range, only six cache-lines are required to accommodate the entire section of
the indirection vector. Recall that it is a common optimization strategy to store the prefix
of a key within the indirection vector as unsigned integer variable. The B2-tree, however,
utilizes this space to store a substring of each key since the prefixes are already part of the
embedded tree. We will refer to this substring as infix. It can also be observed that the stored
infix values within the indirection vector are usually more decisive, since the embedded
tree already confirmed the equality for all the prefix bytes. Overall, this implies that fewer
indirection steps, to fetch the remainder of a key, have to be taken.

3.6 Concurrency

B2-tree was designed with concurrent access via optimistic latching approaches taken into
consideration. While this approach adapts well to most vanilla B-tree implementations, other
architectures may require additional logic. This section covers all necessary adaptions and
changes required by the B2-tree in order to ensure correctness in the presence of concurrent
accesses.

Optimistic latching approaches often require additional checks in order to guarantee thread
safety. Leis et al. [LHN19] list two issues that may arise through the use of speculatively
locking techniques such as OLC. The first aspect concerns the validity of memory accesses.
Any pointer obtained during a speculative read may point to an invalid address due to
concurrent write operations to the pointer’s source. Readers have hence to ensure that the
read pointer value was obtained through a safe state. This issue can be prevented by the
introduction of additional validation checks. Before accessing the address of a speculatively
obtained pointer, the reader has to compare its stored lock version with the version currently
stored within the node. Any information obtained before the validation has to be considered
as invalid if those versions differ. Usually, an operation will be restarted upon encountering
such a situation.

Secondly, algorithms have to be designed in a manner that their termination is guaranteed
under the presence of write operations performed by interleaving threads. Leis et al. discuss

B2-Tree: Cache-Friendly String Indexing within B-Trees 51



14 Josef Schmeißer, Maximilian E. Schüle, Viktor Leis, Thomas Neumann, Alfons Kemper

one potential issue concerning the intra-node binary search implementation as such. They
note that its design has to ensure that the search loop can terminate under the presence of
concurrent writes [LHN19]. Optimistically operating algorithms, therefore, have to ensure
that no accesses without any validation to speculatively obtained pointers are performed
and that termination under the presence of concurrent writes is guaranteed.

However, the presented traversal algorithm does not guarantee termination without the
introduction of further logic. One main aspect concerns the observation that span nodes can
contain arbitrary byte sequences. It is hence possible to construct a key containing a byte
sequence that resembles a valid node. Such a node may also contain links pointing to itself.
An incoming searcher may then end up in a cycle due to previous modifications performed
by an interleaving writer which had conducted modifications to the embedded structure in
said manner.

To prevent issues such as the one described, certain countermeasures have to be taken.
We have to ensure that the traversal progresses with every new node. Furthermore, node
pointers must not exceed the boundary of their containing page. We could have used the
validation scheme presented by Leis et al. [LHN19]. This would require a validation on the
optimistic lock’s version after each node fetch. However, we can also use the fact, that in
our implementation each parent node has a smaller address than any of its children. We
furthermore have to ensure that each obtained node pointer lies within the boundary of
the current page. Note that any search range obtained through the embedded tree is also a
possible candidate leading to invalid reads. We hence have to ensure that each obtained
boundary value also lies within the boundary of the currently processed page. Our binary
search implementation, which will be performed directly afterwards, trivially fulfills the
previously described termination requirement.

Insert and delete operations do not require any further validation steps, since they do not
depend on any unvalidated speculative reads and exclusive locks will be held during such
operations anyway.

4 Evaluation
In the following we evaluate various aspects of our B2-tree and compare them to the Umbra
B+-tree. Note that the Umbra B+-tree is our only reference due to the lack of any other page
based index structure capable of running on top of Umbra’s buffer manager. In the following
we analyze B2-tree’s performance as well as its scalability, the space requirements for the
embedded tree, and the time required to construct the embedded tree.

4.1 Experimental Setup

All the following experiments were conducted on an Intel Core i9 7900X CPU at stock
frequency paired with 128 GB of DDR4 RAM. Furthermore, index structures do not have

52 Josef Schmeißer, Maximilian E. Schüle, Viktor Leis, Thomas Neumann, Alfons
Kemper



The B2-Tree 15

0.0 0.5 1.0

M lookups / s

Wikipedia titles

0.0 0.5 1.0

M lookups / s

Random strings

0.0 0.5 1.0

M lookups / s

URL

B2-tree Umbra B+-tree

(a) Lookup throughput in million operations per second.

0.00 0.25 0.50 0.75

M inserts / s

Wikipedia titles

0.00 0.25 0.50 0.75

M inserts / s

Random strings

0.00 0.25 0.50 0.75

M inserts / s

URL

(b) Insert throughput in million operations per second.

Fig. 4: Single-threaded throughput comparison of the B2-tree and the Umbra B+-tree grouped by the
used dataset and imposed workload.

to access background memory, everything will be kept in main memory, unless otherwise
stated. B2-tree as well as the standard B+-tree have been compiled to use 64 KiB pages
which is the smallest page size Umbra’s buffer manager provides. The evaluation system
runs on Linux with GCC 9.3, which has been used to compile all index structures.

Our reference will be the Umbra B+-tree as already stated. This particular B+-tree imple-
mentation uses some commonly known optimizations like the choice of the smallest possible
separator within the neighborhood of separators around the middle of each page, and a data
locality optimization where the first bytes of each key are stored within its corresponding
entry in the indirection vector [GL01; Gr06; Gr11].

4.2 Datasets

We have used a couple of different datasets in our evaluation. Those datasets were chosen to
resemble real-world workloads to a certain degree. Indexing of URLs and EnglishWikipedia
titles6 should resemble real-world scenarios. We also included a completely synthetic dataset
consisting of randomly drawn strings, this dataset will be denoted as Random dataset.

6 https://dumps.wikimedia.org/enwiki/20190901/enwiki-20190901-all-titles.gz

B2-Tree: Cache-Friendly String Indexing within B-Trees 53

https://dumps.wikimedia.org/enwiki/20190901/enwiki-20190901-all-titles.gz


16 Josef Schmeißer, Maximilian E. Schüle, Viktor Leis, Thomas Neumann, Alfons Kemper

distinct
count

average
length

median
length

min
length

max
length

Wikipedia 48 454 094 21.82 17 1 257
Random 30 000 000 68.00 68 8 128
URL 6 393 703 62.14 59 14 343

Tab. 1: Parameters of the used datasets.

Tab. 1 summarizes some of the most important characteristics of the used datasets. The
Random dataset is generated by a procedure which generates each string by drawing values
from two random distributions. Thereby, the first distribution determines the length of the
string which is about to be generated. Subsequently, the second distribution is used to draw
every single character in sequence until the final destination length is reached.

4.3 Lookup Performance

In the following we will compare the point lookup throughput of our B2-tree against our
reference. The lookup benchmark queries each key from the randomly shuffled dataset
which has been used for the construction of the index itself. Fig. 4a summarizes the results
of our string lookup benchmark whereas Fig. 4b shows the influence of B2-tree’s more
efficient lookup approach onto the insert throughput. B2-tree’s lookup throughput is roughly
twice as high as that of its direct competitor. Keys in the URL and Wikipedia datasets
often share large common prefixes, discriminative bits are therefore often not part of the
integer field within the indirection vector of Umbra’s B+-tree. In these situations, the B2-tree
has an advantage since the entries within the indirection vector are more likely to contain
discriminative bits. The Random dataset, on the other hand, features very short common
prefixes and a larger amount of discriminative bits between the bit string representation of
keys. It is therefore not surprising that the performance gap between the Umbra B+-tree and
our B2-tree is smaller on this dataset.

Approach Inst. IPC L1D-Miss LLC-Miss BR-Miss

Random
B2-tree 1402 0.39 38.32 10.17 15.9

Umbra B+-tree 2519 0.51 44.63 20.02 19.84

URL
B2-tree 1839 0.49 45.69 11.35 22.74

Umbra B+-tree 3382 0.51 79.58 28.88 16.15

Wikipedia
B2-tree 1593 0.38 46.02 13.84 22.76

Umbra B+-tree 3147 0.43 61.7 30.82 28.22

Tab. 2: Performance counters per lookup operation. The best entry in each case is highlighted in
bold type. B2-tree mostly dominates the Umbra B+-tree which is in accordance with the previously
discussed throughput numbers.

54 Josef Schmeißer, Maximilian E. Schüle, Viktor Leis, Thomas Neumann, Alfons
Kemper



The B2-Tree 17

Recording performance counters during experiments usually facilitates further insights,
Tab. 2 therefore contains an exhaustive summary. Comparing the averaged amount of
instructions required per lookup between the B+-tree and our B2-tree already reveals a
considerable advantage in favor of the latter approach. This advantage also exists between
the observed amount of L1 data cache misses (L1D-Miss) and last level cache misses
(LLC-Miss), where the latter metric reveals that the standard B+-tree produces roughly twice
as many misses. This is most likely related to the redesigned search procedure. Thereby,
binary search is performed on a smaller search range. Furthermore, the contents of the infix
fields within the indirection vector are usually more decisive than the contents wherein
stored by the Umbra B+-tree. As a result, the comparison procedure, which will be invoked
by the binary search procedure, can often refrain from performing any comparisons on
the suffixes stored within the area where the remainder of the records are stored. This also
reduces the total amount of cache accesses. For the B2-tree one might expect fewer branch
mispredictions, since the infix values are usually more decisive, however, the metric for the
amount of mispredicted branches (BR-Miss) per lookup reveals no significant differences
between both approaches. This is most likely the result of the additional logic performed
during the lookups on the embedded tree.

4.4 Scalability

Additionally, to evaluating B2-tree’s single-threaded point lookup and range scan throughput,
we also analyzed its scalability. We ran the same workload as in the single-threaded point
lookup experiment. The results of this experiment are shown exemplarily for the URL
dataset in Fig. 5. Note that we omitted the results for the remaining datasets due to them
being very similar.

2 4 6 8 10

threads

2

4

6

8

10

M
lo

ok
u

p
s

/
s

B2-tree

Umbra B+-tree

Fig. 5: Scalability on the URL dataset.

Also, the performance difference between our standard B+-tree and B2-tree remains as the
number of threads increases. Overall, the B2-tree scales well for still being a B+-tree from
an implementation point of view. This also correlates with previous work which did analyze
the lookup throughput of B+-trees in combination with OLC [Le18; Wa18].

B2-Tree: Cache-Friendly String Indexing within B-Trees 55



18 Josef Schmeißer, Maximilian E. Schüle, Viktor Leis, Thomas Neumann, Alfons Kemper

4.5 Throughput With Page Swapping

The experiment was set up as follows: in the first phase, all the keys of the Wikipedia titles
were inserted into an empty index structure. If necessary, pages were swapped out into a
temporary in-memory file by the buffer manager. In the second phase, the retrieval time for
each key of the randomly shuffled input was measured.

0 2 4 6 8 10

swapped pages [%]

0.0

0.2

0.4

0.6

0.8

1.0

M
lo

ok
u

p
s

/
s

B2-tree

Umbra B+-tree

Fig. 6: Lookup throughput on the URL dataset with index structures utilizing Umbra’s buffer manager.

Fig. 6 shows the results of the comparison between these two index structures in dependence
of the percentage of swapped out pages. The B2-tree outperforms the Umbra B+-tree for
every tested percentage of swapped out pages. However, note that both curves eventually
converge as the workloads become increasingly I/O bound.

4.6 Space Consumption

Another important aspect of the presented approach is the total amount of additionally
required space on each page. Recall that we use 64 KiB large pages. We were able to fit the
complete embedded tree structure in just a couple of hundred bytes as Tab. 3 affirms.

dataset size [%]
Wikipedia titles 0.48
Random strings 0.49
URLs 0.52

Tab. 3: Averaged space consumption for the complete embedded tree in percent of the page size.

The space utilization of the embedded tree has therefore never been a source of concern
in our point of view. However, it should be noted that the size of the embedded tree is
variable, and that it will be influenced by the structure of the input data. Especially long
shared prefixes have an impact on the overall space consumption of the embedded tree.

56 Josef Schmeißer, Maximilian E. Schüle, Viktor Leis, Thomas Neumann, Alfons
Kemper



The B2-Tree 19

5 Conclusion

We presented the B2-tree which speeds up lookup operations by embedding an additional
tree into each tree node. The B2-tree showed considerable performance improvements in
comparison to an optimized B+-tree. This is related to the total number of instructions
required per lookup, which in this case is lower than the number required by the Umbra
B+-tree. Our B2-tree, therefore, provides considerable improvements regarding the point
lookup throughput. The overhead inflicted by the construction of an embedded tree during
each page split is no point of concern as our experimental analysis showed. Furthermore, the
additional space required for the embedded structure is mostly negligible, as our evaluation
confirmed.

References

[BDF05] Bender, M.A.; Demaine, E. D.; Farach-Colton, M.: Cache-Oblivious B-Trees.
SIAM J. Comput. 35/2, pp. 341–358, 2005.

[BFK06] Bender, M.A.; Farach-Colton, M.; Kuszmaul, B. C.: Cache-oblivious string
B-trees. In: Proceedings of SIGMOD 2006. Pp. 233–242, 2006.

[BH07] Bender, M.A.; Hu, H.: An adaptive packed-memory array. ACM Trans.
Database Syst. 32/4, p. 26, 2007.

[Bi18] Binna, R.; Zangerle, E.; Pichl, M.; Specht, G.; Leis, V.: HOT: A Height
Optimized Trie Index for Main-Memory Database Systems. In: Proceedings
of SIGMOD 2018. Pp. 521–534, 2018.

[Br59] Briandais, R.D. L.: File searching using variable length keys. In: Papers
presented at the the March 3-5, 1959, western joint computer conference.
Pp. 295–298, 1959.

[Ch01] Cha, S. K.; Hwang, S.; Kim, K.; Kwon, K.: Cache-Conscious Concurrency
Control of Main-Memory Indexes on Shared-Memory Multiprocessor Systems.
In: Proceedings of VLDB 2001. Pp. 181–190, 2001.

[Co79] Comer, D.: Ubiquitous B-Tree. ACM Comput. Surv. 11/2, pp. 121–137, June
1979.

[FG99] Ferragina, P.; Grossi, R.: The String B-tree: A New Data Structure for String
Search in External Memory and Its Applications. J. ACM 46/2, pp. 236–280,
1999.

[Fr60] Fredkin, E.: Trie memory. In: CACM. 1960.
[Ga18] Galakatos, A.; Markovitch, M.; Binnig, C.; Fonseca, R.; Kraska, T.: A-Tree: A

Bounded Approximate Index Structure. CoRR abs/1801.10207/, 2018.
[GL01] Graefe, G.; Larson, P.-Å.: B-Tree Indexes and CPU Caches. In (Georgakopou-

los, D.; Buchmann, A., eds.): IEEE Data Eng. 2001. Pp. 349–358, 2001.

B2-Tree: Cache-Friendly String Indexing within B-Trees 57



20 Josef Schmeißer, Maximilian E. Schüle, Viktor Leis, Thomas Neumann, Alfons Kemper

[Gr06] Graefe, G.: B-tree indexes, interpolation search, and skew. In: Workshop on
Data Management on New Hardware, DaMoN 2006. P. 5, 2006.

[Gr11] Graefe, G.: Modern B-Tree Techniques. Found. Trends Databases 3/4, pp. 203–
402, 2011.

[GUW09] Garcia-Molina, J.W.H.; Ullman, J. D.; Widom, J.: DATABASE SYSTEMS
The Complete Book Second Edition.” 2009.

[Ha08] Harizopoulos, S.; Abadi, D. J.; Madden, S.; Stonebraker, M.: OLTP through
the looking glass, and what we found there. In: Proceedings of SIGMOD 2008.
Pp. 981–992, 2008.

[JC10] Jin, R.; Chung, T.-S.: Node Compression Techniques Based on Cache-Sensitive
B+-Tree. In: 9th IEEE/ACIS ICIS 2010. Pp. 133–138, 2010.

[KM17] Khuong, P.-V.; Morin, P.: Array Layouts for Comparison-Based Searching.
ACM Journal of Experimental Algorithmics 22/, 2017.

[KN11] Kemper, A.; Neumann, T.: HyPer: A hybrid OLTP&OLAP main memory
database system based on virtual memory snapshots. In: Proceedings of ICDE
2013. Pp. 195–206, 2011.

[Le18] Leis, V.; Haubenschild, M.; Kemper, A.; Neumann, T.: LeanStore: In-Memory
Data Management beyond Main Memory. In: Proceedings of ICDE 2018.
Pp. 185–196, 2018.

[LHN19] Leis, V.; Haubenschild, M.; Neumann, T.: Optimistic Lock Coupling: A
Scalable and Efficient General-Purpose Synchronization Method. IEEE Data
Eng. Bull. 42/1, pp. 73–84, 2019.

[LKN13] Leis, V.; Kemper, A.; Neumann, T.: The adaptive radix tree: ARTful indexing
for main-memory databases. In: Proceedings of ICDE 2013. Pp. 38–49, 2013.

[MKM12] Mao, Y.; Kohler, E.; Morris, R. T.: Cache Craftiness for Fast Multicore Key-
value Storage. In: Proceedings of EuroSys 2012. Bern, Switzerland, pp. 183–
196, 2012.

[Mo68] Morrison, D. R.: PATRICIA—Practical Algorithm To Retrieve Information
Coded in Alphanumeric. J. ACM 15/4, pp. 514–534, Oct. 1968.

[NF20] Neumann, T.; Freitag, M. J.: Umbra: A Disk-Based System with In-Memory
Performance. In: Proceedings of CIDR 2020. 2020.

[RR99] Rao, J.; Ross, K. A.: Cache Conscious Indexing for Decision-Support in Main
Memory. In: Proceedings of VLDB 1999. Pp. 78–89, 1999.

[SPB05] Samuel, M. L.; Pedersen, A.U.; Bonnet, P.: Making CSB+-Tree Processor
Conscious. In: Workshop on Data Management on New Hardware, DaMoN
2005, Baltimore, Maryland, USA, June 12, 2005. 2005.

[Wa18] Wang, Z.; Pavlo, A.; Lim, H.; Leis, V.; Zhang, H.; Kaminsky, M.; An-
dersen, D.G.: Building a Bw-Tree Takes More Than Just Buzz Words. In:
Proceedings of SIGMOD 2018. Pp. 473–488, 2018.

58 Josef Schmeißer, Maximilian E. Schüle, Viktor Leis, Thomas Neumann, Alfons
Kemper


