Access Control and Synchronization in XML Documents

Stefan Bottcher , Adelhard Tiirling
University of Paderborn , FB 17 (Mathematik-Informatik)
Fiirstenallee 11 , D-33102 Paderborn , Germany
email : stb@uni-paderborn.de, Adelhard.Tuerling @uni-paderborn.de

Abstract: Whenever multiple users modify XML documents concurrently, access
control and synchronization of read and update operations are required. We suggest to
define access rights and locks at the level of node names that are defined in the DTD of
the XML document. This allows us to normalize (a subset of) XPath expressions, used
e.g. in queries, such that access control and synchronization can be performed at the level
of node names too. Then we show that access control and locking at the level of node
names can be solved by the same technique, i.e. the identification of corresponding node
names of XPath expressions. Finally, we extend our approach to predicate filters that
may be used in XPath expressions for both, access control and synchronization in order
to qualify a selected subset of nodes, and present a fast predicate evaluator for these
predicates.

Keywords: XML documents, XPath, access control, synchronization

1. Introduction

1.1. Problem origin and motivation

There is a growing interest in XML as a data representation language and data exchange
format for different enterprise applications. Whenever XML data is read and modified
by multiple users, then both, access control and synchronization of the clients’ access to
XML data are important topics [1],[5],[15]. Our work on access control and
synchronization is motivated by the development of applications for an internet
company, which require that multiple parties read and modify the same huge XML
document concurrently. Common to our application programs is that XPath expressions
can be used, in order to describe, which fragment of an XML document shall be read or
written. Furthermore, we have different user groups, for which we specify access rights
that limit the fragments of the XML document that may be read or written. Therefore, it
appears natural to define access rights for read or write access on parts of the XML
document with (a subset of) XPath expressions.

1.2. Relation to other work and our focus

Access control and synchronization of operations on XML documents have been
investigated separately in recent contributions, whereas we present an integrated
approach for key aspects of both problems.

53

Most contributions to access control on XML documents focus on policies [12,2,6,1].
They cover different aspects of access control, covering e.g. user groups, document
location in the web, override policies and access control for fragments of XML
documents [12,2]. Access on fragments of XML documents can be defined on the
context of the document itself or on the structure of the XML document. Within these
approaches, there is a trend towards fine-grained access rights, that include and go
beyond individual access rights at the level of attributes or elements [16,5]. We follow
this direction and allow not only for fine-grained access rights on the level of nodes, but
also include predicate filters as can be specified by XPath queries. While the other
approaches focus on transparency of the access control and use access control as an
additional filter, our approach has the goal to give complete answers to the users and
reject each access that violates access rights.

Concurrency control for concurrent operations working on XML documents has e.g.
been discussed in [4]. One approach is to store the information contained in the XML
document in a database and to use the database system for the purpose of
synchronization. This can be achieved by either mapping the XML document and
updates of this XML document to a database (see for example Updating XML [15] and
Clock [17]) or by using an XML database system such as Lore [10], Natix [11], Strudel
[9] or Tamino [14]. Another approach is to use a separate environment for the storage
and manipulation of XML documents [7,13,8]. Since our contribution does not rely on
the existence of a database system, it is compatible to both approaches.

Finally, our approach integrates ideas from predicate logic and predicative transaction
synchronization [3] and provides a uniform approach to access control and
synchronization. But in contrast to contributions from the database area, we use a subset
of XPath in order to access, lock and query document fragments.

2. Problem description

2.1. Access control and synchronization

There are two problems to be solved: access control and synchronization. For the
definition of access rights, we follow approaches of [5,14] and define for each user group
in advance, which part of the XML document may be read and which part may be
written. Access rights combine an access mode (read or write) with an XPath expression,
whereas for a given XML document the XPath expression describes that XML fragment
that may be accessed at most. For example, the write access rights for product marketing
people could be described by the following XPath expression
¢ // Product / Marketing // *~’

which means that within the XML document they have write access to the whole subtree
starting with a node ‘Marketing’ which is directly located under a node ‘Product’.

Access control has to check that no user accesses an XML fragment data beyond his
rights, i.e. the node set of any given XML document that is accessed by a user’s XPath
expression must be a subset of the node set accessible according to the XPath expression
describing his access right. Note that for our application, it is essential that access
violations are detected and e.g. produce an access violation. Since users with different

54

access rights have to cooperate, but decide on the basis of the data that they read, it is not
acceptable in our applications that different users get different answers to the same
query. Therefore, we can not rely on contributions that use an access right as an
additional filter to restrict the query results, as e.g. [16,5].

Furthermore, we assume that every access to XML data is described at the application
side in terms of XPath expressions, i.e. that the only way, the application tries to query an
XML document is by using XPath expressions. Similarly, for each write operation we
require the application to provide the XPath expression that describes the XML fragment
that is to be modified. These XPath expressions are communicated to our access control
and synchronization subsystems and are used within our algorithms for access control
and synchronization.

Synchronization has to guarantee that no fragment of the XML document is currently
accessed by two users with at least one of them requiring an exclusive access right.

2.2, The subset of allowed XPath expressions

Since the richness of XPath raises the problem of intractable expressions, we limit the
considered XPath expressions for access rights, queries, write operations and locks to a
subset called allowed XPath expressions by the following rules that restrict axes, node
tests and predicate filters:
1. Axe specifiers
We allow for absolute or relative location paths with the following axes specifiers in
their location steps: self, parent, ancestor, ancestor-or-self, child, descendant,
descendant-or-self, namespace and attribute, and we forbid the following (-sibling)
and preceding (-sibling) axes.
2. Node tests
We allow all node name tests including the wildcards * and name-spaces, but we
forbid node type tests like text(), comment(), processing-instruction() and node().
For example, when A is an attribute and E is an element, then @A , ./E , ../E, //*/E
are allowed XPath expressions.
3. Predicate filters
We restrict predicate filters [B] of allowed XPath expressions to the following filter
expressions B:

e Every allowed XPath expression is an allowed filter expression. For example,
when A is an attribute and E is an element, then @A and ../E are allowed filter
expressions used to check the existence of the attribute A or the element ../E
respectively.

e Every comparison is an allowed filter expression, where the comparison
operands are
1. constants ase.g. “’52”’ or
2. allowed XPath expressions
and the comparison operators are ‘=’ or ‘!

1

LIEY)

! We discuss the inclusion of the operators ’<”, ”<=", ”>”, ”>=" in section 4.6.

55

e If Bl and B2 are allowed filter expressions, then ‘Bl and B2’ , ‘B1 or B2’
and ‘not (B1)’ are allowed filter expressions.

The restriction for predicate filters is irrelevant for the discussion in chapter 3 but is later
used in chapter 4. The definition of allowed XPath expression shows that position
predicates like ‘[1]’ and any function calls in the predicate like ‘count()’, etc. are
forbidden. This makes sense in the context of access control and synchronization, since
we have a ”living” document. E.g. if nodes are added to or deleted from the document,
XPath expressions containing position predicates may have a different result set
afterwards. The definition of allowed XPath expression also forbids to use the
preceding(-sibling) and following(-sibling) axes because DTDs can not define an order
on sibling elements and it is impossible to decide which sibling to select without physical
access. Therefore, in the context of access control (and synchronization) we demand an
access control list (and a list of locks respectively) to contain only allowed XPath
expressions. Since, for an arbitrary XPath expression, it is always possible to compute an
allowed XPath expression locking a superset of nodes in the XML document very fast 2,
we consider our restricted set of allowed XPath expressions to be sufficient for a wide
variety of applications. In the following discussion, we will focus on the allowed subset
of XPath and use the terms location paths, location step and filter predicates referring
allowed XPath expressions only.

3. Our approach to solve the problem

3.1. Access control and synchronization based on XPath expressions

Compared to a physical approach to access control (or locking), which operates on
document nodes found in the currently processed XML document, our approach uses the
DTD to evaluate XPath expressions given for access rights, queries, write operations,
and granted locks. Our approach collects from the XPath expression the accessed
qualified node names (not the node set) for elements or attributes that have to be checked
(or locked) for a given query or update operation. Whenever an XML document contains
many document nodes with the same (qualified) node name, and a query or write
operation wants to access this node set with a single XPath expression, it may be an
advantage to access control and synchronization, if only the XPath expression for this
node set has to be checked or locked, instead of locking several nodes having the same
node name in the currently given XML document. This is a minor reason for the use of
qualified node names of XPath expressions (instead of node sets), besides the major
reason, that our applications do no accept to use access rights as filters that modify a
query result.

Ze. g. by ignoring other predicate filters and node type tests and substituting the sibling axes by a
superset fragment built on the child- and descendant-axe

56

3.2. The DTD and the corresponding DTD tree

<|ELEMENT base (page+)>
<|ELEMENT page (input*| nav?)>
<IATTLIST page id ID #REQUIRED>
<|ELEMENT input (#PCDATA)>
<|ELEMENT nav (#PCDATA)>

<IELEMENT base (page+)>
<|ELEMENT page (base*)>

A DTD defines a parent child relationship on
elements and attributes in an XML document
that can be represented as a DTD tree. For
example, see the figures on the left. We use
the defined relationship to compute possible
location paths in the normalization algorithm
outlined in the following sections.

For this purpose, the corresponding DTD
must be as strict as possible. E.g. a definition
like <!ELEMENT base ANY> will force the
algorithm of section 3.4 to explore all defined
elements and their possible children. A
definition like this is allowed but slows down
the performance. — Furthermore, we allow for
recursive definitions in the DTD as in the
third figure on the left, but set up a limit for
the recursion depth, in order to terminate the
normalization algorithm described in the
following section. Such a limit of the
recursion depth, say k=3, can be chosen e.g.

from a given XML document. Then, we substitute the recursive definition in the DTD
with a so called corresponding DTD tree, that contains the recursively defined nodes

down to the chosen recursion depth.

3.3. Examples for the normalization of XPath expressions

Before we outline the normalization algorithm, let us consider an example. Assume, we

have a DTD defined as follows.

<IELEMENT base (page)>
<|ELEMENT page (input* | nav?)>
<|ELEMENT input (#PCDATA)>
<|ELEMENT nav (#PCDATA)>
<IATTLIST page

id ID #REQUIRED

style (web | consol) #MPLIED

txtid IDREF #IMPLIED
>

<IATTLIST nav
txtid IDREF #IMPLIED

>

<IATTLIST input style (headline | plaintext) #lMPLIED >

style (headline | plaintext | button) #IMPLIED

Note that the ‘input’ element as defined in the DTD has no attribute ‘txtid’. That is why
the node test ‘input’ does not occur in the result of the second step (i.e. the expansion

57

step) in the following example.

XPath expression given by the application:
./base/page[@id="1"]//*[@txtid]/ @style

1. Anchor step: transform to absolute path:
/base/page[@id="1")//*| @1txtid]/ @style

Expand the location step using the desendant-or-self-axe according to the DTD:
/base/page[@id="1"] [@1xtid]/ @style |
/base/page[@id="1'}/nav[@txtid]/ @style

2. Transform predicate filters to relative filters (in this case nothing to do).
3. Right shuffle all predicate filters

/base/page/@style[../../@id="1"] [../@1xtid] |
/base/page/nav/@style[../../@id="1"] [../@1xtid]

A normalization example of an XPath expression that contains a relative location path using the
child-axe, the descendant-axe, node-tests, predicate-filters, and at the end the attribute axe.

Furthermore, we give an example for an expansion step (step 2) that resolves a loop, i.e.
a location step using the parent-axe.

Example 2:
/base/page[@id="1"]/input[@ style="plaintext’]/../nav/ @txtid

resolved loop:
/base/page[@id="1"][. /input[@ style="plaintext'] [/nav/@txtid

An example resolving a loop

3.5 Transforming allowed XPath expressions into normalized location paths

In order to obtain a uniform and fast processable representation of the allowed XPath
expression (AXE), we normalize it to a set of normalized location paths (NLP), where
the result set of AXE is equivalent to the result set of (NLP; INLP, | ... INLP,).

This is done in four steps:

1. Anchor stepl: If the allowed XPath expression is a relative expression, transform it
into an absolute expression. Note that relative location paths used by an application to
access an XML fragment can always be appended to the location of the current node
position in an XML document in order to compute the absolute location path for the
XML fragment. (After this step the self-axe is only used in the filter predicates.)

2. Simplify through exploring & expanding step: This step reduces the set of used
axe-specifiers * to the child, parent, namespace and attribute axe by exploring the
associated DTD and creating a set of normalized location paths.

Therefore, expressions containing the axes: ancestor (-or-self) and descendant (-or-

® This step has to be made for all location paths in the predicate filters as well. In the case of
predicate filters, the set of used axes includes the self axe.

58

self), have to be equivalently replaced by child- and parent-axe notations using the
DTD tree (see 3.2.) for substitution. Furthermore, we have to resolve loops, that
consist of location steps that use the parent-axe and have a previous (i.e. a left
neighbored) location step that has a non-parent-axe in the location path (see example
2 in section 3.3).

In order to achieve the reduction of the axes, we explore the corresponding DTD and
expand the result set by the following algorithm.

Formal notation: an allowed XPath expression (AXE) is a sequence of
location steps, /<LocationStep;>/.../<LocationStep;>/.../<LocationStepy> with
<LocationStep;> = AxisName;::NodeTest; [Predicate;]

resultSet := {AXE}
for (i=1ton) //i.e. for every location step ‘i’ found in AXE
{ for each AXE, € resultSet
/I check whether or not LocationStep; in AXE; requires to substitute AXE;
if AxisName; € { ancestor, ancestor-or-self, descendant, descendant-or-self }
{ remove AXE; from the result set and add the following expressions
for (each node on the axe AxisName; starting from any possible content
node in the DTD tree* defined by /.../<LocationStep;.,>) //explore
{ /lexpand
create an expression by replacing <LocationStep;> with
NodeName[predicate;] where NodeName is the name of any node
fitting the NodeTest; corresponding to the associated DTD.
(Note that this includes the exploration of the wildcard *)
bl
else if (AxisName; = parent and axisName;.; != parent) //resolve loops
replace the expression <LocationStep; ,>/<LocationStep; ;>/<LocationStep;>
with AxisName;,::NodeTest; , [Predicate; ;] [./NodeTest; ; [Predicate;]]
[./NodeTest; [Predicate;]]
}

3. Anchor step2: Transform all absolute expressions in predicate filters into relative
expressions. Note that an absolute location path can be rearranged to a relative
location path based on any context node using the absolute path to the context node.

4. Right shuffle of all predicate filters: This step shuffles the predicate filter of each

location step in the location path into the right most node of the expression. We call
the right most node in each expression the accessed node (AN).
Each predicate filter not belonging to (i.e. not being in the same location step as) an
accessed node has to be right shuffled until it is part of the accessed node. This is
done by adding parent axes steps to the location path of each filter comparison, not
being a constant, for each right shuffle.

* This loop terminates, because the DTD tree depths is restricted

59

Finally, all predicate filters [P1], ..., [Pn] belonging to the accessed node are
combined into a single predicate filter [P1 and ... and Pn]. This is possible, because
we restricted predicate filters to Boolean expressions and none of the filters depends
on order (neither document order nor filter application order). Whenever, there is no
predicate filter for an accessed node, we add a predicate filter [true()] to that
accessed node.

To summarize, normalization transforms an arbitrary allowed XPath expression into an
equivalent set of normalized location paths, that computes the same node set for an
arbitrary given XML document.

Notice that a normalized location path is absolute, built only along the child-axe and
contains no wildcards (’*”) as node test. Furthermore, all restrictions of the accessed
node through predicate filters are defined in the location step of the accessed node itself
and the previous location steps of the location path do not contain any predicate filter any
more. Finally, the predicates use only parent-child relationships containing no loops.

This will be the input for the predicate evaluator discussed in section 4.

3.6. Read access for the expressions used in predicate filters

Which XML fragment is written by an update operation, does not only depend on those
nodes for which write access is granted. It depends also on the values read in predicate
filters, as the following example shows. If a write lock (or write access) is granted to
/base/page/input| ../nav/@style="web”]
this implies a read lock (or read access) to
/base/page/nav/@style
because a change of this value during the write access could maliciously modify the write
access right (or lock). Therefore, the write access operation (or write lock) implicitly
read accesses (or has to read lock) all nodes, that are accessed by any predicate filter.
This can be done by applying the normalization technique to every XPath expression
used in a predicate filter as well. The same holds for read locks which use XPath
expressions in their filters.
Although we distinguish between read and write access, and use different XPath
expressions for read and write access rights, we do not explicitly mention these different
access modes in following in order to keep the discussion simple.

3.7. Access control and locking on the basis of corresponding accessed node paths

Within the remainder of section 3, we ignore the predicate filters in the last location step,
and we call a normalized location path ignoring the filters of the last location step the
access node path (AN-Path). It identifies a set of siblings in the XML document.

We now can express access rights, queries, updates and locks in terms of (sets of)
normalized XPath expressions, that characterize accessed (or locked) parts of an XML
document. We say, two (or more) normalized XPath expressions correspond, if they
have the same AN-Path.

For the remainder of this subsection, let us restrict normalized XPath expressions to AN-

60

Paths, i.e. ignore predicates. Then, in order to check whether locks conflict or an access
right covers an access operation, we only have to check whether or not their AN-Paths
correspond.

3.7.1. Access control

Given access lists containing normalized XPath expressions for both, the read and the
write access rights and a query (or update) operation, access control checks whether or
not the operation’s access list contains a subset of the access right’s access list.

For this purpose, we have to check whether or not for every AN-Path of the operation,
there is a corresponding AN-Path of the access right. Whenever the operation contains an
AN-Path (i.e. requests to access a node), for which no corresponding AN-Path is found in
the access rights (i.e. no access right exists), then the access control returns an access
violation exception, otherwise access is granted.

3.7.2. Synchronization on the basis of run time access expressions

The document fragment accessed at run time may be considerably smaller than that
fragment for which an access right was granted. Therefore, a user program may perform
a lock request at run time containing an actually used XPath access expression. Each lock
request has to be checked against the locks granted to concurrent user programs.
Concurrent operations do not conflict, if none of the accessed nodes of one operation
corresponds to an accessed node of the other operation.

3.7.3. How to compute corresponding accessed node paths (AN-Paths)

Given two sets of AN-Paths (setl and set2) that describe accessed (or locked) node
names, we can compute for a setl all corresponding AN-Paths of set2 as follows.

For each set, we use a tree for the representation of the result set of the normalization,
such that the inner nodes of the tree combine AN paths with common prefixes, i.e. we
map each set of identical prefix nodes of different AN paths to a single node of a tree.

Set1:={ /base/page/nav/@style , /base/page/nav/@txtid }
Set2:={ /base/page/nav/@style , /base/page, /base/page/input/ @style }

Setl Set2
page

ggh

61

This has to be done once per XPath expression and may take a worst time complexity of
O(n log n), with n being the number of nodes in the tree.

Now the problem of computing corresponding AN paths is to map two trees, which
requires to visit each node of both trees at most once. Therefore, a worst case time
complexity of O(n) is sufficient in order to compute for setl that subset of set2, that
represents the set of corresponding nodes, and to identify whether this subset of set2 is
empty (i.e. we have no overlap and therefore no lock conflict) or equal to setl (i.e. setl is
a subset of set2). Note that the size of each set is limited by the size of the DTD tree,
which is limited by a finite recursion depth (as described in section 3.2).

4. Predicate tests for corresponding nodes in XPath expressions

Up to now, we did not consider predicates, i.e. we only considered whether or not an
AN-Path is accessed (or locked or access is granted for it). In order to allow for finer
grained access rights (and to allow for increased user program parallelism), we can
include predicates in our XPath expressions as defined in section 2.2..

4.1. Access control using predicates of corresponding AN-Paths

Access control is performed on given normalized XPath expressions for an operation
(query or write operation) and for the access rights of the user. Access is granted, if and
only if for each normalized XPath expression of the operation, say Ngp, there is a
corresponding normalized XPath expression in the access right, Nag, with compatible
mode (read or write) such that the predicate filter [X1] used by Nop selects a subset of
the node set that is selected by the predicate filter [X2] used by Nag . If access can not be
granted, an access violation exception is thrown.
Whenever, the predicate filter [X2] is [true()], i.e. there is no access restriction for that
AN-Path, then we can grant access and we do not need to perform a subset test on the
predicate filters.
In order to give a more general example, let a given operation of a user program use a
normalized XPath expression with a predicate filter

[X1]= [@al="6"]
i.e. it selects those accessed nodes for which the attribute ‘al’ exists and has a value of
76", and let the corresponding normalized XPath expression for the access right contain a
predicate filter, that only requires the existence of attribute ‘al’ in the accessed nodes

[X2]= [@al]
then

X1 =X2
holds, and therefore, the operation accesses only a subset of that fragment for which the
access right is granted. Since the formula (X1 = X2) is equivalent to

‘the formula (X1 and not (X2)) is insatisfiable’ ,
we can use the same predicate evaluator as used for the overlap test.

62

4.2. An overlap test for predicates occurring in corresponding AN-Paths

Concurrency control is performed on given normalized XPath expressions for a new
(read or write) lock request and for a (read or write) lock already granted to a different
user. The new lock request is granted, if the Xpathe expression of the lock request does
not overlap with the XPath expression of the lock already granted. Given two normalized
XPath expressions, N1 and N2, the overlap test uses the predicate filters [X1] of N1 and
[X2] of N2 as input arguments. The overlap test returns true, if ‘(X1 and X2) is
satisfiable.
For example, assume that three conflicting operations of concurrent programs want to
access the same AN-Path of an XML document. Let [X1], [X2] and [X3] be the
predicate filters that are used for that AN-Path by the three operations, say [X1] is

[@al="5" and .fel[@a2="6"] and @a3="7"]
and [X2] is

[@al="5" and ./e2[@a2="6"1]]
and [X3] is

[not(./e2) and @a3="8”].
Both, [X1] and [X2] use the same selection [@al="5"] in the attribute ‘al’ of the
current node, and they use restrictions on different successor nodes ‘el’ and ‘e2’
respectively, i.e. the node sets filtered by these predicate filters may overlap.
However, [X1] and [X3] select node sets with different values for the attribute ‘a3’, i.e.
the node sets filtered by [X1] and [X3] do not overlap.
Finally, the node sets filtered by [X2] and [X3] do not overlap, because [X3] selects only
those elements, for which a child ‘€2’ does not exist and [X2] selects those elements
which have a child ‘e2’ that additionally has an attribute ‘a2’ with a value of 76”.
In general, for the test, whether or not two predicate filters [X1] and [X2] occurring in
corresponding AN-Paths of normalized XPath expression may address overlapping XML
fragments, our predicate evaluator described below checks whether or not the expression
‘(X1 and X2)’ is satisfiable.

4.3. Predicate filters containing elements and lock generalization

Whenever the predicate filters contain element paths with an element, say ‘e’, then it
makes a difference for the overlap test, whether the DTD allows for a given context at
most one occurrence of a child element ‘e’ or multiple child elements ‘e’. When the DTD
allows for a given context at most one child element ‘e’, then a predicate filter
[Je[@a2="6"]] must select a node set that is disjoint from the node set selected by the
predicate filter [.Je[@a2="8"]]. However, when the DTD allows for multiple
occurrences of a child element ‘e’ for a given context, then for a given context node there
may be one child element ‘e’ with a value "6" for the attribute ‘a2’ and another child
element ‘e’ with a value "8" for the attribute ‘a2’. Therefore, a predicate filter
[/e[@a2="6"]] , which requires only the existence of a child ‘e’ with an attribute ‘a2’
having a value of "6", may overlap with a predicate filter [./e[@a2="8"]] , which
requires the existence of a (possibly different) child ‘e’ with an attribute ‘a2’ having a
value of "8".

63

In the case that the DTD for the given context restricts each node of the selected node set
to have at most one child element with a given name, say ‘e’, the test
‘fe[@a2="6"] and ./e[@a2="8"]

is forwarded to our predicate evaluator’, whereas in the second case, this conjunction is
satisfiable. We treat the second case, by using a filter for a superset, i.e. if the DTD
allows for multiple child elements ‘e’ for a single context node, then we use a more
general condition, in this case ‘./e[@a2]’ as filter for the lock expression, i.e. in order to
treat this case correctly, we lock a superset of what was originally requested.

4.4. The predicate evaluator

In order to check whether or not a formula generated from the overlap test or from the
subset test is satisfiable or not, we transform the formula into disjunctive normal form
(DNF) by applying the following equivalence transformations:
Let X, Y and Z be Boolean expressions, A and B be comparison operands, and <path>
be a location path relative to the current node and <A> and AN-Paths:

Negations are moved inside the formula as far as possible, i.e.

”not (X and Y) ” is substituted with ” not (X) or not (Y)” and

”not (X or Y) ” is substituted with ” not (X) and not (Y)” and

” not (not (X)) ” is substituted with ” X ”” and

” not (<path>[X]) ” is substituted with ” not (<path>) or <path>[not (X)] ” and

”not (A =B) ” is substituted with ” not (<A>) or not() or A!=B” ®and

”not (A !=B) ” is substituted with ” not (<A>) or not() or A=B” 6,

Disjunctions are moved outside of conjunctions and location paths, i.e.
”(XorY)andZ” is substituted with ” X and Z or Y and Z ” and

” <path>[X or Y] is substituted with ” <path>[X] or <path>[Y] .
Conjunctions are moved outside of location paths, i.e.

” <path>[X and Y] is substituted with ” <path>[X] and <path>[Y]”.

A formula in disjunctive normal form (DNF) is satisfiable, if and only if at least one
conjunction of the formula in DNF is satisfiable. This is checked as follows.

4.5. The predicate evaluator for a single conjunction

In order to check, whether or not a single conjunction of conditions is satisfiable, we use
the following algorithm: We introduce an equivalence class for each constant and for
each AN-Path, where different AN-Paths are considered to be different, i.e. @a2 and
Jel/@a2 and ./el are considered to belong to three different equivalence classes.

For each comparison [left = right] occurring in the conjunction, we combine the
equivalence class containing ‘left’ and the equivalence class containing ‘right’ into a

5 The same is done for all attributes, because for every given context node, there is (at most) one
occurrence of this attribute.
6 Here, the condition not can be omitted, if B is a constant.

64

single equivalence class containing the union of all attributes and constants found in the
equivalence class containing ‘left’ and in the equivalence class containing ‘right’.
Whenever, there is an equivalence class containing two different constants, say cl and
c2, this means that the set of conditions given for that location path is equivalent to
‘c1=c2’ which is insatisfiable.

Furthermore, we consider all conditions of the form [left != right] occurring in the
conjunction. If for at least one condition of the form [left != right] we find out, that
‘left’ and ‘right’ belong to the same equivalence class (i.e. ‘left’=’right’), then this
conjunction is insatisfiable.

Finally, we check for each occurrence of ‘not(A)’ in a conjunction whether the same
conjunction contains also a comparison ‘A = B’ or a comparison ‘A != B’ or A alone
(stating that A exists). Remember that after transformation into DNF the ‘A’ occurring in
‘not(A)’ is an AN-Path, and not(A) claims that the node set selected by this AN-Path
in the currently given XML document is empty. Therefore, if the conjunction
additionally contains a comparison ‘A = B’ or a comparison ‘A != B’ or ‘A’, then this
conjunction is insatisfiable. Otherwise the conjunction is satisfiable.

4.6. The complexity of the predicate evaluator

Although transformation into disjunctive normal form requires exponential time in
general, we usually have few disjunctions in the predicates of corresponding normalized
XPath expressions, which means that this transformation usually is fast.

When m is the number of conditions in a conjunction, the predicate evaluator requires a
complexity of O(m?) per conjunction to combine equivalence classes of AN-Paths, to
check the conditions containing [A != B] and to check the conditions ‘not(A)’. If the
DNF contains ¢ conjunctions, the time complexity is O(c*m?).

If we would also include one or more of the operands ”<”, ”<=", ”>”, ”>=", this would
require a more complex predicate evaluator for conjunctions, as e.g. the predicate
evaluator described in [3], that requires a complexity of O(m?3) with m being the number
of conditions in the conjunction.

5. Summary and Conclusions

We have presented a unique approach to access control and synchronization for XML
documents, based on XPath expressions. Given XPath expressions for access rights,
queries, write operations and locks, we describe how access control and synchronization
can be implemented using the DTD and logic. The basic idea is to normalize XPath
expressions such that corresponding normalized XPath expressions can be found very
efficiently, and to reduce access control and locking to operations on corresponding
access node paths (AN-Paths). A simple approach, that we used in section 3, performs
access control and synchronization on AN-Paths alone and can be implemented
efficiently, i.e. in a time O(n log n). An improved version, that allows for a higher degree
of program parallelism and for finer grained access rights, includes the predicate filters
used in XPath expressions. We outlined the tests which have to be done for access

65

control and for synchronization, and we have shown that both tests can be implemented
by a single predicate evaluator, for which we presented one possible implementation that
(except for the transformation to DNF) needs a time of O(c*m?) per test. Since our
approach to access control and synchronization does not rely on the storage of XML
documents in a specific database system, it may be an interesting challenge to combine it
with new web services and middleware technology developed around XML.

References:

[1] Elisa Bertino , Silvana Castano , Elena Ferrari, On specifying security policies for web
documents with an XML-based language, Proceedings of the Sixth ACM Symposium on Access
control models and technologies, May 2001

[2] Elisa Bertino, Silvana Castano, Elena Ferrari, Marco Mesiti: Controlled Access and
Dissemination of XML Documents. Workshop on Web Information and Data Management 1999:
22-27

[3] S. Bottcher, M.Jarke, J.W. Schmidt: Adaptive Predicate Managers in Database Systems,
VLDB 1986.

[4] S. Bottcher, A. Tiirling: Transaction Synchronization for XML data in Client Server Web
Applications, GI-Jahrestagung, Wien, 2001.

[5] Ernesto Damiani, Sabrina De Capitani di Vimercati, Stefano Paraboschi, Pierangela Samarati:
XML Access Control Systems: A Component-Based Approach. DBSec 2000: 39-50

[6] Ernesto Damiani , Sabrina De , Stefano Paraboschi , Pierangela Samarati Securing XML
Documents Volume 1777, Issue , pp 121- Lecture Notes in Computer Science

[7] Ernesto Damiani , Sabrina De Capitani di Vimercati , Stefano Paraboschi , Pierangela
Samarati, Fine grained access control for SOAP E-services, The tenth international World Wide
Web conference on World Wide Web April 2001

[8] S. De Capitani di Vimercati , S. Paraboschi , P. Samarati International Journal of Information
Security. Securing SOAP e-services E. Damiani , Dipartimento di Tecnologie dell'Informazione,
Universita di Milano, Via Bramante 65, 260 ... ISSN: 1615-5270

[9] Florescu, D., Levy, A., Mendelzon, A.: Database Techniques for the World Wide Web: A
Survey. ACM SIGMOD Record, Vol. 27, No. 3, September, 1998

[10] Goldman, R., McHugh, J., Widom, J.: From Semistructured Data to XML: Migrating the
Lore Data Model and Query Language. Proc. of the 2nd Int. Workshop on the Web and Databases
(WebDB), Philadelphia, June, 1999

[11] Kanne, C.-C., Moerkotte, G.: Efficient Storage of XML Data. Proc. Of the 16 th Int. Conf.
On Data Engineering (ICDE), San Diego, March, 2000

[12] Michiharu Kudo , Satoshi Hada, XML document security based on provisional authorization,
Proceedings of the 7th ACM conference on Computer and communications security, 2000

[13] Dieter Scheffner, Rainer Conrad: Access Support Tree & Text Array: A Model for Physical
Storage of XML Documents. GI Jahrestagung (1) 2001: 406-416

[14] Schoning, H., Wésch, J.: Tamino -- An Internet Database System. Proc. of the 7 th Int. Conf.
on Extending Database Technology (EDBT), Springer, LNCS 1777, Konstanz, March, 2000

[15] Tatarinov, 1., Ives, Z.G., Halevy, A.Y., Weld, D.S.: Updating XML, ACM SIGMOD Int.
Conf. on Management of Data, 2001

[16] Yue Wang, Kian-Lee Tan: A Scalable XML Access Control System. WWW Posters 2001
[17] Zhang, X., Mitchell, G., Lee, W.C., Rundensteiner, E.A.: Clock: Synchronizing Internal
Relational Storage with External XML Documents, RIDE-DM 2001.

66

